material_studio个人经验讲解
感受对于Materials Studio 实际应用的一些看法
对于Materials Studio 实际应用的一些看法材料032 杨显“Materials Studio是Accelrys公司针对材料科学研究而开发的新一代材料模拟软件,它可以帮助解决当今化学、材料工业中的一系列重要问题。
”这是在该软件介绍资料扉页上的对于此软件的描述。
通过浏览从老师那获得的有关Materials Studio的光盘,介绍资料和书籍,并结合自己在网页和论坛上看到的对于该软件的一些介绍和评价,我了解到Materials Studio着实是一个功能极其强大而又全面的软件,因此,这样的软件如果能够恰当的应用在我们的学校科研、教学和学习生活中,给我们带来的益处将是无法预计的。
首先,在科研方面,作为目前全球范围内唯一能够提供分子模拟、材料设计以及化学信息学和生物信息学全面解决方案和相关服务的软件供应商,Accelrys公司提供的不仅仅是一个能综合运用量子力学、Monte Carlo、分子力学、分子动力学、介观动力学和耗散粒子动力学、统计方法QSAR等多种先进算法和X 射线衍射分析等仪器分析方法的强有力的模拟工具,Materials Studio软件还采用灵活的Client-Server结构。
其核心模块Visualizer运行于客户端PC,支持的操作系统包括Windows 98、2000、NT;计算模块(如Discover,Amorphous,Equilibria,DMol3,CASTEP等)运行于服务器端,支持的系统包括Windows 2000、NT、SGIIRIX以及Red Hat Linux。
浮动许可(Floating License)机制允许用户将计算作业提交到网络上的任何一台服务器上,并将结果返回到客户端进行分析,从而最大限度地利用了网络资源。
任何一个研究者,无论是否是计算机方面的专家,都能充分享用Materials Studio 软件所带来的先进技术。
Materials Studio生成的结构、图表及视频片断等数据可以及时地与其它PC软件共享,方便与其他同事交流。
materials studio操作手册
materials studio操作手册Materials Studio是一款功能强大的材料模拟软件,广泛应用于材料科学、化学、物理等领域。
本手册旨在向初学者介绍Materials Studio 的基本操作方法,帮助读者快速上手和熟练使用该软件。
一、软件介绍Materials Studio是由Accelrys公司开发的一款材料模拟软件,提供了多种计算和模拟工具,包括材料结构建模、分子动力学模拟、密度泛函理论计算等。
软件界面简洁直观,操作相对简单,适合初学者学习和使用。
二、软件安装1. 下载Materials Studio安装包,双击运行安装程序。
2. 按照安装向导的提示进行安装,并选择安装路径。
3. 安装完成后,打开软件,输入许可证信息进行激活。
三、材料结构建模1. 打开Materials Studio,点击菜单栏的“建模”选项。
2. 在“建模”界面中,选择所需的建模工具,如“晶体构建”、“分子段构建”等。
3. 根据需要输入所需的参数,如晶体的晶面、晶格常数等。
4. 完成结构建模后,保存并命名该模型。
四、模拟计算1. 在Materials Studio主界面,点击菜单栏的“计算模拟”选项。
2. 在“计算模拟”界面中,选择所需的计算方法,如分子动力学模拟、能带计算等。
3. 根据需要输入所需的参数,如温度、压力、模拟时间等。
4. 点击“开始计算”按钮,等待计算结果的生成。
五、数据分析与可视化1. 根据计算结果,在Materials Studio主界面选择“后处理与分析”选项。
2. 在“后处理与分析”界面中,选择所需的分析工具,如晶体结构分析、能带分析等。
3. 输入相应的参数和选择所需的分析方法。
4. 运行分析工具后,生成分析结果,并通过可视化方式展示。
六、参数优化1. 在Materials Studio主界面,选择“参数优化”选项。
2. 在“参数优化”界面中,选择所需的优化算法,如遗传算法、全局优化算法等。
Materials-Studio-快速入门教程
在 3D Viewer 工具栏上,单击 3D Viewer Selection Mode 按钮 。
如果 3D Viewer 工具栏
没有出现, 在View /
Toolbars 中选 3D Viewer即可。
现在处于原子和键的选择模式 (selection mode)。
2021/2/4
18
5. 编辑原子类型
To monitor and adjust distances
2021/2/4
13
下面建造苯甲酰胺结构:
1. 生成新的3D文档 在菜单上选择File / New,并且选择3D Atomistic 后单击OK。此时文件名称出现在
左侧的Project Explorer 中,名称为3D Atomistic.xsd,在其上单击鼠标右键,选择 Rename ,将名称改为my-benzamide。
在桌面双击快捷方式
或从运行菜单中运行:所有程序\ Accelrys Materials Studio 4.4 \ Materials Studio
2021/2/4
2
选择此文件夹存放数据
这样就产生了新的 Materials Studio project,开始了Materials Studio 运行
写入My quickstart
* File20/21S/2a/v4e Project ,Windows / Close All
12
三. 绘制苯甲酰胺分子
目的: 介绍Materials Visualizer 中的绘图工具sketching tools 模块: Materials Visualizer 前提: 已生成一个Project 引言 化学家不得不每天处理大量的小分子和化学中间体。快速生成该类分子对于 每一个分子建模环境都是非常重要的。苯甲酰胺分子就是这样一种小分子, 在下边我们将以该分子作为例子,进行研究工作。
material-studio教程知识讲解
绘制苯甲酰胺分子
(3).将分子改变为球棍模型
在 Display Style 对话框 中进行详细操作
绘制苯甲酰胺分子
(4).绘制氧原子
在 Sketch Atom 的选项箭头下选择氧原子,以相同的 方法绘制氧原子。
(5).编辑原子类型
选中某个原子后,在Modify 菜单下的Modify Element 中选择Oxygen 来改变原子类型。 或者可以在Sketch 工具栏中选择Modify Element 按 钮来直接改变原子类型。
绘制苯甲酰胺分子
(7).调整氢原子并进行整理
✓ 可以通过程序自动加氢而不需要单独的为每个原子加上 合适的氢原子。
✓ 在 Sketch 工具栏上,单击Auto Hydrogen 按钮为结构 加入合适的氢原子。
✓ 按下Clean按钮修正结构的几何,这样结构中的键、键角 和扭转角都会变得具有化学合理性。
(1).打开一个新的研究表格文档 从 File 菜单中选择New,当打开对话框时选择Study Table Document 并单击OK。或在常规工具栏上选择New, 甚至可以在Project 对话框上单击右键选择New。
(2).将分子模型输入到研究表格中 从 Edit 菜单中选择Insert From 或者在常规工具栏上选 择Insert From 按钮。并选择要输入的相应文件进行输入。
绘制苯甲酰胺分子
(9).监控并且调整距离 ➢ 角度和扭转角的操作同上。 ➢ 完成后就可以使用 View | Explorers | Properties Explore 来查看所构造分子的信息了。 ➢ Properties Explore 可以自动显示所选对象的性质,包 括原子、键、分子以及距离、角度和扭转角等。 ➢ 可以在相应条目上双击鼠标左键进行改动,改变后的变 化会出现在结构上。
materials studio操作手册
materials studio操作手册(实用版)目录1.Materials Studio 简介2.操作手册的主要内容3.如何使用 Materials Studio 进行基本操作4.高级操作技巧与示例5.材料建模与模拟的实践应用6.常见问题与解决方案正文【1.Materials Studio 简介】Materials Studio 是一款专业的材料科学模拟软件,广泛应用于材料研究、教育等领域。
该软件集成了多种模拟方法,如第一性原理、分子动力学、蒙特卡洛模拟等,能够实现对材料的结构、性能、缺陷等方面的研究。
Materials Studio 具有用户友好的界面,支持可视化操作,使得用户可以轻松地搭建模型、设置参数、运行模拟和分析结果。
【2.操作手册的主要内容】Materials Studio 操作手册主要包括以下几个方面的内容:(1)软件安装与配置:介绍如何安装 Materials Studio 及其依赖库,以及配置环境变量等。
(2)界面与基本操作:介绍 Materials Studio 的操作界面,包括菜单栏、工具栏、状态栏等,以及如何进行文件的保存、导入、导出等基本操作。
(3)模型构建与参数设置:介绍如何添加原子、分子、晶体等模型,以及如何设置模拟参数,如温度、压力、晶格常数等。
(4)模拟运行与结果分析:介绍如何运行模拟,以及如何分析结果,如计算能量、力、电荷密度等。
(5)高级操作技巧与示例:介绍如何进行高级操作,如自定义模拟算法、编写脚本等,并提供典型示例。
(6)材料建模与模拟的应用:介绍如何应用 Materials Studio 进行材料研究,如晶体结构预测、材料性能优化等。
【3.如何使用 Materials Studio 进行基本操作】(1)打开软件:在 Windows 系统下,点击“开始”菜单,找到“Materials Studio”并双击;在 Mac 和 Linux 系统下,进入终端,输入命令并回车。
materials studio操作手册
:【序】介绍众所周知,材料工程是一门非常重要的学科,它研究的对象是材料的性能、制备、加工和应用。
一直以来,科学家们致力于寻找更好的材料,并开发出各种工具来帮助他们更好地理解和研究材料。
在材料研究领域中,Materials Studio(材料工作室)无疑是一个非常重要的软件工具,它能够帮助研究人员进行材料建模、仿真和分析,以更好地理解材料的性能和行为。
【一】Materials Studio的基本概念让我们来介绍一下Materials Studio的基本概念。
Materials Studio 是由Accelrys公司开发的一款集成的材料建模软件评台,它包括多个模块,可以用于原子建模、晶体学分析、分子建模、材料性能预测和材料工程等领域。
使用Materials Studio,研究人员可以对材料的结构和性能进行全面的分析和预测,这对于新材料的设计和开发非常有帮助。
【二】Materials Studio的操作手册接下来,让我们来详细了解一下Materials Studio的操作手册。
在使用Materials Studio进行材料建模和仿真时,研究人员需要掌握一系列的操作技能,包括建立原子模型、进行能带计算、进行分子动力学模拟等。
在操作手册中,会详细介绍每个操作步骤,并提供相关的实例和案例,帮助研究人员更好地掌握这些操作技能,从而更好地应用Materials Studio进行材料研究。
【三】对Materials Studio操作手册的个人理解在我看来,Materials Studio操作手册是非常有价值的。
通过学习和掌握这些操作技能,我可以更好地进行材料建模和仿真,更好地理解材料的性能和行为,从而为新材料的设计和开发提供有力的支持。
Materials Studio操作手册还可以帮助我更好地应用软件工具进行科研工作,提高工作效率和研究质量。
【结语】总结和回顾经过对Materials Studio的基本概念和操作手册的介绍,我对这个材料研究工具有了更深入的了解。
MaterialsStudio快速入门教程
材料性质预测
分子动力学模拟:预测材料力学性 质
弹性常数计算:评估材料稳定性
添加标题
添加标题
添加标题
添加标题
密度泛函理论:计算材料电子结构
声子谱分析:研究材料热力学性质
分子结构优化
目的:通过优化 分子结构来提高 材料的性能
方法:使用 MaterialsStudi o软件中的模块 进行分子结构优 化
目的:预测材料的物理、化学和机械性能,为材料设计和优化提供 依据
方法:利用MaterialsStudio的高级功能,如X射线衍射、中子衍 射和电子显微镜等手段进行实验测量和数据处理
应用:广泛应用于材料科学、化学、物理学和工程等领域
Part Five
常见问题与解决方 案
常见问题汇总
材料计算软件 运行缓慢
量子力学计算
MaterialsStudio中的量子力 学计算模块可用于模拟分子的 电子结构和性质
支持多种量子力学方法,如密 度泛函理论、分子力学等
可用于研究分子的电子结构、 能量、振动频率等性质
用户可以通过简单的界面和操 作完成量子力学计算
晶体结构分析
定义:通过MaterialsStudio软件对晶体结构进行分析,了解材料 的性质和行为
应用场景:在 MaterialsStudi o中,蒙特卡罗 模拟可用于模拟 材料的物理性质, 如热导率、电导 率等。
优势:蒙特卡罗 模拟可以快速得 到近似解,对于 大规模复杂系统 具有很高的计算 效率。
操作步骤:在 MaterialsStudi o中,用户可以 通过选择 “Simulate”菜 单下的“Monte Carlo”选项来 进行模拟。
步骤:选择优化 算法、设置优化 参数、执行优化 计算、分析优化 结果
materialstudio使用经验总结
materialstudio使用经验总结关于K点1. 应当使用多少个k网格?很难一般地回答,只能给出一般建议。
注意:一定要检查k网格,首先用较粗糙的网格计算,接下来用精细的网格计算。
通过比较两次的结果,决定选用较粗糙的网格,或是继续进行更精细网格的计算,直到达到收敛。
金属体系需要精细的网格,绝缘体使用很少的k点通常就可以。
小单胞需要精细格点,大单胞很可能不需要。
因此:单位晶胞内原子数很多(比如40-60个)的绝缘体,可能仅需要一个(移动后的)k点。
另一方面,面心立方的铝可能需要上万个k点以获得好的DOS。
对于孤立原子或分子的超晶胞,仅需要在Gamma点计算。
对于表面(层面)的超晶胞计算,仅需要(垂直于表面)z方向上有1个k点。
甚至可以增加晶格参数c,这样即使对精细格点,沿z方向上也只产生一个k点(产生k点后,不要忘记再把c改回)。
2. 当体系没有出现时间反演对称操作时,是否加入?大多数情况下的回答是“是”,只有包含自旋-轨道耦合的自旋极化(磁性)计算除外。
这时,时间反演对称性被破坏(+k和-k的本征值可能不同),因此决不能加入时间反演对称性。
3. 是否移动k网格?(只对某些格子类型有效)“移动”k网格意味着把所有产生的k点增加(x,x,x),把那些位于高对称点(或线)上的k 点移动到权重更大的一般点上。
通过这种方法(也即众所周知的“特殊k点方法”)可以产生等密度的,k点较少的网格。
通常建议移动。
只有一点注意:当对半导体的带隙感兴趣时(通常位于Gamma,X,或BZ边界上的其它点),使用移动的网格将不会得到这些高对称性的点,因此得到的带隙和预期结果相比或大或小。
这个问题的解决:用移动的网格做SCF 循环,但对DOS计算,改用精细的未移动网格。
关于k空间布点的问题,建议参阅以下文献Phys.Rev.B 49,16223 (1994)如何构建缺陷晶体结构晶体结构改成P1,然后去掉想抹去的原子就可以了在ms中如何做空穴对于金属缺陷,是直接剪切一个原子?个人经验:就是直接把原子去掉就OK;如果不是正版软件,有可能出现同时去掉其他同位置的原子,如果这种情况,就重新定义,问题就不会出现了.还有,一般考虑孔穴的时候,都要标明哪些原子的迟豫,具体为什么不知道,国外的文献有提到.希望有做空位的一起多讨论.我Q:183876402PDOS选项计算DOS时,选择PDOS,可以画出s,p,d轨道的DOS,但无法画出某一个原子的s,p,d图关于PDOS的Chart中求积分的问题在用Castep计算出PDOS后,如何在Chart中对曲线局部进行积分?将Chart输出为cav格式,然后在excel中求和?简单,把数据导出,在Origin里作图,程序里有积分微分卷积功能,在数据分析下面。
materials studio操作手册
materials studio操作手册摘要:1.Materials Studio 简介2.Materials Studio 操作手册内容概述3.操作手册的主要章节和内容4.如何获取和安装Materials Studio5.Materials Studio 的基本操作和功能6.材料建模和模拟的流程7.常见问题和解决方案8.材料科学研究中的应用案例正文:Materials Studio 是一款专业的材料科学研究软件,广泛应用于材料模拟、计算和数据分析等领域。
它提供了丰富的功能和工具,使得科研人员可以更加高效地进行材料研究和开发。
操作手册是Materials Studio 的重要组成部分,它详细介绍了软件的使用方法和技巧。
操作手册的内容涵盖了Materials Studio 的各个方面,包括软件的安装、界面操作、功能模块、材料建模和模拟等。
操作手册的主要章节包括:软件安装和配置、界面导航和基本操作、材料建模和模拟、数据处理和分析、脚本编写和自动化等。
在这些章节中,用户可以找到详细的操作步骤和实例,帮助他们更好地掌握Materials Studio 的使用方法。
在获取和安装Materials Studio 方面,用户需要先购买软件许可证,然后从官方网站下载软件安装包。
安装过程中需要按照提示进行操作,确保软件能够正确安装和运行。
Materials Studio 的基本操作和功能包括:文件管理、界面导航、视图控制、选择和编辑等。
通过掌握这些操作,用户可以更加高效地进行材料研究和开发。
材料建模和模拟是Materials Studio 的核心功能,它包括:材料结构输入、模拟参数设置、模拟过程监控、结果分析等。
用户需要按照流程进行操作,以获得准确的模拟结果。
在使用Materials Studio 过程中,可能会遇到一些常见问题,如软件无法启动、模拟结果不准确等。
针对这些问题,操作手册提供了详细的解决方案,帮助用户排除故障。
Materials-Studio培训学习教程资料
Materials-Studio培训学习教程资料MaterialsStudio 培训学习教程资料在当今科技迅速发展的时代,材料科学的研究和应用变得越来越重要。
而 MaterialsStudio 作为一款功能强大的材料模拟软件,为科研人员和工程师提供了有力的工具。
对于想要深入学习和掌握这款软件的人来说,一套系统全面的培训学习教程资料是必不可少的。
首先,我们来了解一下 MaterialsStudio 软件的基本情况。
它涵盖了众多的模块,能够对材料的结构、性能、热力学等方面进行精确的模拟和分析。
无论是在化学、物理、材料科学还是工程领域,都有着广泛的应用。
那么,一份好的 MaterialsStudio 培训学习教程资料应该包含哪些内容呢?基础知识部分是重中之重。
这包括软件的安装与配置,让学习者能够顺利地在自己的电脑上搭建起学习和工作的环境。
同时,要详细介绍软件的界面和操作流程,让初学者能够快速熟悉各个功能区域和操作按钮。
对于材料结构的建模,教程资料应当有清晰的步骤和示例。
从简单的晶体结构构建,到复杂的分子体系建模,都要逐步引导学习者掌握。
并且,要讲解如何优化模型结构,以获得更准确的计算结果。
在性能计算方面,要涵盖诸如能带结构、态密度、光学性质等重要内容。
通过实际案例,演示如何设置计算参数,解读计算结果,并分析材料的性能特点。
热力学性质的计算也是不可忽视的一部分。
比如,相图的绘制、热膨胀系数的计算等,这些内容对于研究材料的稳定性和相变过程具有重要意义。
除了理论知识和操作方法,实际案例的分析也是教程资料的关键组成部分。
通过实际的科研项目或工程应用案例,让学习者能够看到MaterialsStudio 在解决实际问题中的强大能力。
同时,也能帮助他们更好地理解和运用所学的知识。
为了让学习者更好地掌握所学内容,教程资料还应当配备相应的练习和作业。
这些练习可以是针对某个具体知识点的小题目,也可以是综合性的项目,让学习者在实践中巩固和提高。
material-studio个人经验
Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件,可帮助研究人员解决当今化学及材料工业中的许多重要问题。
Materials Studio软件采用Client/Server结构,客户端可以是Windows 98、2000或NT系统,计算服务器可以是本机的Windows 2000或NT,也可以是网络上的Windows 2000、Windows NT、Linux 或UNIX系统。
使得任何的材料研究人员可以轻易获得与世界一流研究机构相一致的材料模拟能力。
Materials Studio是ACCELRYS 公司专门为材料科学领域研究者所涉及的一款可运行在PC上的模拟软件。
他可以帮助你解决当今化学、材料工业中的一系列重要问题。
支持Windows98、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。
任何一个研究者,无论他是否是计算机方面的专家,都能充分享用该软件所使用的高新技术,他所生成的高质量的图片能使你的讲演和报告更引人入胜。
同时他还能处理各种不同来源的图形、文本以及数据表格。
多种先进算法的综合运用使Material Studio成为一个强有力的模拟工具。
无论是性质预测、聚合物建模还是X射线衍射模拟,我们都可以通过一些简单易学的操作来得到切实可靠的数据。
灵活方便的Client-Server结构还是的计算机可以在网络中任何一台装有NT、Linux或Unix操作系统的计算机上进行,从而最大限度的运用了网络资源。
ACCELRYS的软件使任何的研究者都能达到和世界一流工业研究部门相一致的材料模拟的能力。
模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。
Materials Studio采用了大家非常熟悉Microsoft标准用户界面,它允许你通过各种控制面板直接对计算参数和计算结构进行设置和分析。
国内第一MS(materialstudio)学习实例(原创)新手第一步必看materi..
Materials studio 使用笔记使用materials studio 首先建一个project (当然也可以打开一个之前的project啦)这里将之命名为NaCl.stp按OK完成新建project操作。
以下是新建project后的materials studio UI界面:这里有几个重要的窗口,可分为这三类:一、job,己完成的、正在跑的;二、project,各种输入与输出文件,可以查看结果、修改输出入的相关设定;三、property,材料的原子及电子结构3D模型等物性数据,例如晶体晶胞边长、原子元素种类等等。
从V eiw的Explorer 可见:jobExploroer、project exploroer、property explorer。
job explorer显示运行的job,近端远程的状态都可以显示。
project explorer默认值是开着的,project的相关对象,如文字输出、3D 结构等等,job相关的目录、文件等。
property explorer,在MS相对Cerius2而言是新的东西。
只要是3D 对象有呈现的状况之下,可以直接在上面显现出各种可以看得见的特性还有可以改得了的选项。
现在,我们需要一个晶胞结构,用于演示CASTEP计算。
这个结构可以是import 的,也可以是自己手动建立。
Import方式可以通过File-import,导入structure内建的结构。
手动建立方式如下:先建立一个3D atomistic Document,方式如上但不限于以上,还有其他几种方式各位按习惯选择。
建完后:Build-crystal-Buildcrystal此时会打开Build crystal 对话框如下,根据icsd查询的NaCl晶体参数,输入进去:space group:225显示出NaCl的FM-3M结构Attice parameter 填写晶格常数,比如a,b,c及三个角度值这里,钠的a=b=c=5.64Options里基本只要用预设值即可按apply或Build即可生成晶格模型添加原子方式很多,这里也仅取一种方便的方式如下选择Na和Cl原子,钠的abc选0,Cl选0.5如下,分别按add,完成原子的添加,完成后三维图如下,是因为没有进行旋转,此时选工具旋转,即可得到从别的角度看见的三维图更改三维显示方式可以在三维图上单击右键,在弹出的菜单中选display style设置3D格式,如atom中我选择stick等就产生了形状的模型。
Materials Studio操作步骤(本人原创)
第3章铁基块体非晶合金-纳米晶转变的动力学模拟过程3.1 Discover模块动力学模拟3.1.1 原子力场的分配在使用Discover模块建立基于力场的计算中,涉及几个步骤。
主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。
在这些步骤中,指定原子类型和计算电荷一般是自动执行的。
然而,在某些情形下需要手动指定原子类型。
原子定型使用预定义的规则对结构中的每个原子指定原子类型。
在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。
通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。
然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。
图 3-1调出选择原子窗口图3-2 选择原子窗口计算并显示原子类型:点击Edit→Atom Selection,如图3-1所示。
弹出对话框,如图3-2所示。
从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe原子都将被选中,原子被红色线圈住即表示原子被选中。
再编辑集合,点击Edit→Edit Sets,如图3-3、3-4所示。
图3-3 编辑集合图3-4 设定新集合弹出对话框见图3-4,点击New...,给原子集合设定一个名字。
这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3-5。
图3-5 给原子添加力场在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。
注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。
3.1.2体系力场的选择点击Energy选项卡,见图3-6。
图3-6 Energy选项卡图3-7 力场下拉菜单力场的选择:力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的原子是如何相互作用的。
materials studio操作手册
materials studio操作手册
摘要:
1.Materials Studio 操作手册概述
2.操作手册的内容
3.如何使用操作手册
4.操作手册的优点和局限性
正文:
Materials Studio 操作手册是一本针对Materials Studio 软件使用的指南,该软件是一款广泛应用于材料科学领域的第一性原理软件。
操作手册内容全面,涵盖了软件的各个方面,从基础操作到高级技巧,以及常见问题和解决方案,帮助用户更好地理解和使用该软件。
操作手册的内容主要包括以下几个方面:软件的安装和配置,基础的操作方法,如创建、编辑和删除晶体结构等,高级技巧,如优化算法和模拟方法等,以及常见问题和解决方案。
此外,手册还包括了一些案例分析,帮助用户更好地理解软件的使用。
使用操作手册的好处是显而易见的。
首先,手册内容全面,可以帮助用户系统地学习和掌握软件的使用。
其次,手册中的案例分析可以帮助用户更好地理解软件的使用,提高用户的使用效率和效果。
最后,手册中列出了许多常见问题和解决方案,可以帮助用户在遇到问题时快速找到解决方案。
然而,操作手册也存在一些局限性。
首先,手册的内容可能过于专业,对于初学者来说可能难以理解。
其次,手册中的案例分析可能过于简单,对于进
阶用户来说可能无法满足其需求。
最后,手册的更新速度可能无法跟上软件的更新速度,这可能会导致手册中的内容与软件的实际使用情况不符。
总的来说,Materials Studio 操作手册是一款非常有用的软件使用指南,可以帮助用户更好地理解和使用该软件。
Material Studio建模知识讲解
M a t e r i a l S t u d i o建模铁基块体非晶合金-纳米晶转变的动力学模拟过程Discover模块1 原子力场的分配在使用Discover模块建立基于力场的计算中,涉及几个步骤。
主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。
在这些步骤中,指定原子类型和计算电荷一般是自动执行的。
然而,在某些情形下需要手动指定原子类型。
原子定型使用预定义的规则对结构中的每个原子指定原子类型。
在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。
通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。
然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。
图 3-11)计算并显示原子类型:点击Edit→Atom Selection,如图所示弹出对话框,如图所示从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe原子都将被选中,原子被红色线圈住即表示原子被选中。
再编辑集合,点击Edit→Edit Sets,如图所示弹出对话框见图,点击New...,给原子集合设定一个名字。
这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡。
图3-2 Discover Setup对话框Typing选项卡在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。
注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。
2力场的选择1)Energy力场的选择:力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的原子是如何相互作用的。
对系统中的每个原子,力场类型都被指定了,它描述了原子的局部环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件,可帮助研究人员解决当今化学及材料工业中的许多重要问题。
Materials Studio软件采用Client/Server结构,客户端可以是Windows 98、2000或NT系统,计算服务器可以是本机的Windows 2000或NT,也可以是网络上的Windows 2000、Windows NT、Linux 或UNIX系统。
使得任何的材料研究人员可以轻易获得与世界一流研究机构相一致的材料模拟能力。
Materials Studio是ACCELRYS 公司专门为材料科学领域研究者所涉及的一款可运行在PC上的模拟软件。
他可以帮助你解决当今化学、材料工业中的一系列重要问题。
支持Windows98、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。
任何一个研究者,无论他是否是计算机方面的专家,都能充分享用该软件所使用的高新技术,他所生成的高质量的图片能使你的讲演和报告更引人入胜。
同时他还能处理各种不同来源的图形、文本以及数据表格。
多种先进算法的综合运用使Material Studio成为一个强有力的模拟工具。
无论是性质预测、聚合物建模还是X射线衍射模拟,我们都可以通过一些简单易学的操作来得到切实可靠的数据。
灵活方便的Client-Server结构还是的计算机可以在网络中任何一台装有NT、Linux或Unix操作系统的计算机上进行,从而最大限度的运用了网络资源。
ACCELRYS的软件使任何的研究者都能达到和世界一流工业研究部门相一致的材料模拟的能力。
模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。
Materials Studio采用了大家非常熟悉Microsoft标准用户界面,它允许你通过各种控制面板直接对计算参数和计算结构进行设置和分析。
模块简介:基本环境MS.Materials Visualizer分子力学与分子动力学MS.DISCOVERPASSMS.Amorphous CellMS.ForciteMS.Forcite PlusMS.GULPMS.EquilibriaMS.Sorption晶体、结晶与X射线衍射MS.Polymorph PredictorMS.MorphologyMS.X-CellMS.ReflexMS.Reflex PlusMS.Reflex QPA量子力学MS.Dmol3MS.CASTEPMS.NMR CASTEPMS.VAMP高分子与介观模拟MS.SynthiaMS.BlendsMS.DPDMS.MesoDynMS.MesoPro定量结构-性质关系MS.QSARMS.QSAR Plus  MS.Dmol3 Descriptor基本环境·MS Visualizer PDF文件下载提供了搭建分子、晶体、界面、表面及高分子材料结构模型所需的所有工具,可以操作、观察及分析计算前后的结构模型,处理图型、表格或文本等形式的数据,并提供软件的基本环境和分析工具以支持Materials Studio的其它产品。
是Materials Studio产品系列的核心模块。
同时Materials Visualizer还支持多种输入、输出格式,并可将动态的轨迹文件输出成avi文件加入到Office系列产品中。
MS4.0版本增加了纳米结构模建、分子叠合以及分子库枚举等功能。
分子力学与分子动力学·MS.DISCOVER PDF文件下载Discover 是Materials Studio的分子力学计算引擎。
它使用了多种成熟的分子力学和分子动力学方法,这些方法被证明完全适应分子设计的需要。
以多个经过仔细推导的力场为基础,Discover可以准确地计算出最低能量构象,并可给出不同系综下体系结构的动力学轨迹。
Discover还为Amorphous Cell等产品提供了基础计算方法。
周期性边界条件的引入使得它可以对固态体系进行研究,如晶体、非晶和溶剂化体系。
另外,Discover还提供强大的分析工具,可以对模拟结果进行分析,从而得到各类结构参数、热力学性质、力学性质、动力学量以及振动强度。
·PASS PDF文件下载COMPASS 是“Condensed-phase Optimized Molecular Potential for Atomisitic Simulation Study”的缩写。
它是一个支持对凝聚态材料进行原子水平模拟的功能强大的力场。
它是第一个由凝聚态性质以及孤立分子的各种从头算和经验数据等参数化并验证的从头算力场。
使用这个力场可以在很大的温度、压力范围内精确地预测出孤立体系或凝聚态体系中各种分子的构象、振动及热物理性质。
在COMPASS力场地最新版本中,Accelrys加入了45个以上的无机氧化物材料以及混合体系(包括有机和无机材料的界面)的一些参数,使它的应用领域最终包含了大多数材料科学研究者赶兴趣的有机和无机材料。
你可以用它来研究诸如表面、共混等非常复杂的体系。
COMPASS力场是通过Discover模块来调用的。
·MS.Amorphous Cell PDF文件下载Amorphous Cell允许你对复杂的无定型体系建立有代表性的模型,并对主要性质进行预测。
通过观察体系结构和性质的关系,可以对分子的一些重要性质有更深入的了解,从而设计出更好的新化合物和新配方。
可以研究的性质有:内聚能密度(CED)、状态方程行为、链堆砌以及局部链运动、末端距和回旋半径、X光或中子散射曲线、扩散系数、红外光谱和偶极相关函数等。
Amorphous Cell的特征还包括提供:任意共混体系的建模方法(包括小分子与聚合物的任意混合)、特殊的产生有序的向列型中间相以及层状无定型材料的能力(用于建立界面模型或适应粘合剂及润滑剂研究需要)、限制性剪切模拟、研究电极化和绝缘体行为的Poling法、多温循环模拟以及杂化的蒙特卡罗模拟。
Amorphous Cell的使用需要Discover分子力学引擎的支持。
·MS.Forcite PDF文件下载先进的经典分子力学工具,可以对分子或周期性体系进行快速的能量计算及可靠的几何优化。
包含Universal、Dreiding 等被广泛使用的力场及多种电荷分配算法。
支持二维体系的能量计算。
MS4.0版本中可以进行刚体优化,同时还加入了分析Discover 所产生的.arc 和.his 轨迹文件的功能.·MS.Forcite Plus PDF文件下载先进的经典力学模拟工具,能够进行能量计算、几何优化、动力学模拟。
可对从简单分子到二维表面到三维周期等范围很广的结构进行上述操作。
一整套的分析工具可用来对诸如偶极相关等复杂性质进行分析。
MS4.0版本中可以进行刚体优化,同时还加入了分析Discover 所产生的.arc和.his轨迹文件的功能。
·MS.GULPGULP 是一个基于分子力场的晶格模拟程序,可以进行几何结构和过渡态的优化,离子极化率的预测,以及分子动力学计算。
GULP既可以处理分子晶体,也可以计算离子性的材料。
GULP可以计算的性质包括:氧化物的性质,点缺陷、掺杂和空隙,表面性质,离子迁移,分子筛和其他多孔材料的反应性和结构,陶瓷的性质,无序结构等,可应用于多相催化、燃料电池、核废物处理、蒸气电解、气体传感器、汽车尾气催化以及石油化工等诸多工业领域。
·MS.Equilibria PDF文件下载使用独有的NERD力场来计算烃类化合物单组分体系或多组分混合物的气液、液液相图,溶解度作为温度、压力和浓度的函数也可同时得到,还可计算单组分体系的二阶virial系数,临界常数和共存曲线可以通过Ising Scaling分析得到。
适用领域包括石油及天然气加工过程(如凝析气在高压下的性质)、石油炼制(重烃相在高压下的性质)、气体处理、聚烯烃反应器(产物控制)、橡胶(作为温度和浓度的函数的不同溶剂的溶解度)。
最新的版本中可计算的体系增加了:主要的醇类、硫化物、硫醇、氢化硫和氮气。
·MS. Sorption  PDF文件下载使用Grand Canonical Monte Carlo (GCMC) 方法预测分子在微孔材料(如分子筛) 中的吸附性质,可用于吸附等温线、结合位、结合能、扩散途径及分子选择性的研究。
晶体、结晶与X射线衍射·MS.Polymorph Predictor PDF文件下载Polymorph 是一个算法集,目的是测定晶体的低能多晶型。
此方法可以与实验衍射数据相关联或者仅仅使用材料的化学结构来实现此目的。
晶体的多晶型可能会导致不同的性质,因此判断哪种晶型更加稳定或者接近稳定态势非常重要的。
在处理过程中微小的改变都会导致稳定性的大幅度变化。
Polymorph中的相似性挑选和聚类算法允许用户将相似模型归类,从而节省计算时间。
·MS.Morphology PDF文件下载从晶体的原子结构来模拟晶体形貌。
可以预测晶体外形,研发特殊效果的掺杂成分,控制溶剂和杂质的效应。
·MS.X-Cell PDF文件下载已申请专利的X-Cell是一种全新、高效、综合、易用的指标化算法,它使用消光决定(extinction-specific)的二分法方法对参数空间进行详尽无遗的搜索,最终给出可能的晶胞参数的完整清单。
在许多情况下显示出比DICVOL、TREOR 和ITO更高的成功率。
X-Cell 可以很好的处理粉末衍射指标化中的许多难点,如样品含有杂质相、峰位重叠、零点偏移、极端形状的晶胞等。
·MS.Reflex PDF文件下载模拟晶体材料的X光、中子以及电子等多种粉末衍射图谱。
可以帮助确定晶体的结构,解析衍射数据并用于验证计算和实验结果。
模拟的谱图可以直接与实验数据比较,并能根据结构的改变进行即时的更新。
粉末衍射指标化算法包括:TREOR90, DICVOL91, ITO andX-cell。
结构精修工具包括Rietveld精修和Pawley精修。
·MS.Reflex Plus PDF文件下载在Reflex标准功能的基础上加入已被广泛验证的Powder Solve技术,提供了一套可以从高质量的粉末衍射数据确定晶体结构的完整工具。
包括粉末指标化、Pawley精修、解结构以及Rietveld精修。