第六章 材料的磁学性能1PPT课件
材料物理性能 课件 第六部分 材料的磁性能
有交换相互作用
1、磁性的起源
磁畴:每个区域内部包含大量原子,这些原子的 磁矩都像一个个小磁铁那样整齐排列,但相邻的 不同区域之间原子磁矩排列的方向不同
单晶磁畴结构示意图
多晶磁畴结构示意图
1、磁性的起源
磁光效应:线偏振光透过放置磁场中的物 质,沿着磁场方向传播时,光的偏振面发 生旋转的现象。 对磁畴进行可视化
4、磁性材料的应用
由于软磁材料磁滞损耗小,适合用在交变磁场中,如 变压器铁芯、继电器、电动机转子、定子都是用软磁 材料制成。 常见的软磁材料有:铁、坡莫合金、硅钢片、铁铝合 金、铁镍合金等。
变压器
磁性传感器
4、磁性材料的应用
硬磁材料 I、具有较大的矫顽力, 典型值Hc=104~106A/m; II、剩磁很大; III、充磁后不易退磁。 IV、高的稳定性 对外加干扰磁场和温度、 震动等环境因素变化的高 稳定性。
• 1991年,英国航空公司一架波音767,从曼谷起飞后不久 失事,造成233人遇难:经查实是笔记本电脑导致了机上 一台计算机失控;
• 1996年巴西空难、1998年台湾空难:乘客违规使用了手 机;
• 2000年1月,某航班从湛江起飞后航线偏离了10海里:发 现有乘客在起飞过程中使用手机;
• 2000年2月,某航班在郑州机场降落时,导航信号不正常: 发现有乘客在降落过程中使用手机,干扰了导航系统,使 飞机无法降落。
晶粒度与矫顽力
进一步减小, 各单畴晶粒发 生转动的可能 性将越来越大 (更容易转 动)。所以矫 顽力反而减小。
晶粒度与矫顽力
4、磁性材料的应用
磁滞回线围成的面积,可以简单理解为外磁场对磁性材料做的功 对于交流环境,温度累计会使得材料的温度急剧上升。
材料的磁学性能PPT课件
原子的磁矩
电子轨道磁矩 电子自旋磁矩 原子核自旋磁矩
第15页/共105页
1. 磁 矩
与电荷类似,将磁荷定义成磁的基本单位。两磁极若分别有q1和q2磁荷的磁极强度,则其
作用力
F
k
q1q2 r2
其中r为磁极间距,k为比例常数。 磁极q在外磁场中要受到力的作用,且有该力
第21页/共105页
3. 电子自旋磁 矩 电 子 自 旋 角 动 量 L s 和 自 旋 磁 矩 m s 取 决 于 自 旋 量 子 数 s , s = 1 / 2 ,
Ls
s(s 1) 3 2
ms 2 s(s 1)B 3B
他们在外磁场z方向的分量取决于自旋磁量子数mss=1/2,即
Lsz
F=qH 其中H为外磁场的强度。
第16页/共105页
实际上磁极总是以正负对的形式存在,目前 尚未发现单独存在的磁极。 (此句要修正——《Science, 2009,9,3》)
将相互接近的一对磁极+q和-q称为磁偶极子 真空中,单位外磁场作用在相距d的磁偶极子上的最大的力矩
Pm=qd 称为该磁偶极子的磁偶极矩(磁动量)。 磁偶极矩与真空磁导率0的比值称为磁矩,用m表示,即
磁介质在磁场中发生磁化而影响磁场,所以磁介质中的磁感应强度B等于真空中的磁 感应强度B0和由于磁介质磁化而产生的附加磁感应强度B之和,即
B=B0+B
第4页/共105页
——磁感应强度B描述的是传导电流的磁场和 磁介质中磁化电流的磁场的综合场的特性。
电介质中的电场强度E为真空中的电场强度E0和由于电极化而产生的附加电场强度E之 和
B=H 其中称为材料的磁导率或绝对磁导率。
磁学性能课件
二、材料的磁学性能内容:材料磁性的本质、抗磁性、顺磁性及铁磁性):(一)基本磁学性能材料所在空间的磁场强度是外加磁场强度H和材料磁化强度M之和:H总= H + M = H (1+χ)。
磁化率:χ,表示材料在磁场中磁化的难易程度。
Μ=χΗ。
根据磁化率的符号和大小,可将材料的磁性分为铁磁性、亚铁磁性、反铁磁性、顺磁性和抗磁性。
磁感应强度Β:通过磁场中某点,垂直于磁场方向单位面积的磁力线数。
Β = μΗ,μ:磁导率。
Β = μ0Η总=μ0 (1+χ) H。
μ0 (1+χ) =μ。
相对磁导率: μr= μ/μ0 = 1 + χ(一)基本磁学性能磁偶极子:强度相等、极性相反且其距离无限接近的一对“磁荷”。
p m = ml 。
磁极化强度:单位体积内磁偶极矩矢量和。
J=∑p m /∆V, J = μ0M对磁偶极子外加一夹角为θ的恒磁场,磁偶极子受到的作用力矩为Τ = pm ×H 。
当θ为0时,力矩为0,磁偶极子处于稳定状态。
在磁场作用下,磁偶极子将转向与磁场平行的方向,该过程中磁场对磁矩所做的功为:E = ∫Td θ= p m H cos θ。
静磁能:原子磁矩与外加磁场的相互作用能。
(二)抗磁性与顺磁性材料分类:抗磁性、顺磁性与铁磁性抗磁性:材料受外磁场H 作用后,感生出和H 相反的磁化强度,使磁场减弱。
磁化率χ<0,抗磁性的磁化率约10-4–10-6,且和温度、磁场无关。
材料的抗磁性来源于将材料放入外磁场中时,外磁场对电子轨道运动产生洛仑兹力,附加磁矩方向与外磁场方向相反。
抗磁矩为外磁场对电子轨道运动的作用结果,任何材料在磁场作用下都产生抗磁性。
抗磁磁化率绝对值很小,只有在材料的原子、离子或分子固有磁矩为0时,才能观察出抗磁性。
Cu, Au, Ag 及大多数有机材料在室温下是抗磁性材料,超导态的超导体也是抗磁性材料。
形成抗磁矩的示意图(二)抗磁性与顺磁性 顺磁性:材料在外磁场中感生出和H 相同方向的磁化强度,使磁场略有增强。
材料物理课件 材料磁性性质
Performance and requirements
Fast access Non-volatility Unlimited R/W cycles
Low power Wide temperature range Low cost
Emerging memory
FeRAM Organic Memory Nano-Crystal Floating-Gate Flash Memory Phase Change Memory NRAM
4π.10-7 which corresponds to the fundamental
physical constant μ0.
P
magnetic flux density :
M
m
V
(A/m, Gs)
B = μ0 (H + M ). M = χ mH B = μH= μ0 (1+χm)H ,
μ r= μ/ μ0
10-4
10-5
10-6
Magnetic Bubble Memories
10-7
10-8
Semiconductor RAMs
10-9
10-10
Semiconductor ROMs
Main memory Cache
Cost per bit
10-9 10-8
10-7
10-6
10-5
10-4
10-3 10-2
write read
ROM
Mask ROM
EPROM
PROM EEPROM (Flash)
Flash
MOSFET + Floating Gate
Dielectric Tunnel oxide
磁学性能第一讲优秀课件
天然磁体(磁铁矿):
人 造 磁 体
磁铁的磁性两端最强, 中间最弱。
磁极:磁体上磁性最强的部分。它 的位置在磁铁的两端。
将一个磁铁分割为数段,每一段 磁体上仍然有N极和S极
指南针对人类文明发展起了 很大的作用,世界上最早的指南 针是我国战国时期制造的“司 南”。我国不但是世界上最早发 明指南针的国家,而且是最早把 指南针用在航海事业上的国家。 据记载,南宋的时候,航海的人 已经用“罗盘”来指示航向了。
2)原子磁矩 轨道磁矩:电子循规运动(绕核子在s、p、d、f等轨道运动)产生的磁
矩。 大小: I与闭合环面积S的乘积。 方向:垂直于电子运动的轨迹平面,符合右手定则。 自旋磁矩:电子自旋运动产生的磁矩,方向平行于自旋轴。 电子磁矩:轨道磁矩和自旋磁矩的矢量和。本征磁矩 原子核自旋产生的磁矩很小(重,速度很低),约为电子磁矩的1/2000,
❖ 圆电流产生的磁矩
Mm 0iS
i:电流强度(A) S:圆电流回线包围的面积(m2) Mm方向:右手定则
❖ 一根长为l (m),极强为m (wb)的棒 状磁铁产生的磁矩。
Mm ml
方向:由S→N极
µ0Am2与wbm为同一量纲。
静磁能
磁矩与外加磁场的作用能称为静磁能,处于 磁场中某方向的磁矩所具有的静磁能
铁磁体的形状各向异性及退磁能
铁磁体在磁场中的能量为静磁能,包括
❖ 铁磁体与外磁场的相互作用能; ❖ 铁磁体在自身退磁场中的能量,称为退
磁能。
铁磁体的形状不同,其 退磁能不同,导致磁化 形为不同,称为形状各 向异性。
退磁场
当铁磁体表面出现磁极后, 除在铁磁周围空间产生磁场外, 在铁磁体内部也产生磁场,这一 磁场与铁磁体的磁化方向相反, 起到退磁作用,称为退磁场。
第六章 材料的磁学性能
5、亚铁磁体 • μr>>1,χ>0。 • 它是反铁磁体的一个变种,其内部的原子磁 矩之间存在着反铁磁相互作用,只是两种相 反平行排列的磁矩大小不同,导致了一定的 自发磁化。所以在外加磁场中的表现与铁磁 体相似。 • 亚铁磁体多为金属氧化物。Χ比铁磁体小。 • 例如:铁氧体(磁铁矿,Fe3O4)、V、Cr、 Mn、Fe、Co等与O、S、Te、P、As、Sb 等的化合物,钕铁硼磁体,稀土与金属间的
2012-10-25 24
三、正离子的顺磁性 • 正原子的顺磁性来源于原子的固有磁矩。 • 原子的固有磁矩就是电子轨道磁矩和电子自旋磁矩的 矢量和,又称本征磁矩,Pm。 • 如果原子中所有电子壳层都是填满的,由于形成一个 球形对称的集体,则电子轨道磁矩和自旋磁矩各自相 抵消,Pm=0,不产生顺磁性。 • 因此,产生顺磁性的条件就是: Pm≠0。在如下情况下, Pm≠0: 1. 具有奇数个电子的原子或点阵缺陷; 2. 内壳层未被填满的原子或离子。如过渡族金属(d壳层 没有填满电子)和稀土金属(f壳层未填满电子)。
2012-10-25 25
• 在B0=0时,由于原子的热运动,各原子的磁矩倾 向于混乱分布,此时原子的动能Ek∝kT。对外表 现出宏观磁特性H’=0。 • 当加上外加磁场时,外磁场要使原子磁矩Pm与 B0的夹角θ 减小。使原子磁矩转向外加磁场方向。 • 当外磁场逐渐增加到使能量U=-PmB0cosθ 的减 少能补偿热运动能量时,原子磁矩就一致排列了。 此时有kT=PmB0。
2
rj
22
2012-10-25
则可得:
2
抗
Ne 0
2
6m
j1
z
rj
铁磁学性能材料物理性能ppt课件.ppt
3 1 1 112 12 2323 3 1 3 1
磁化强度方向( 1,2,3 ) , 观测方向(1,2,3)
K1 , K2
易磁化方向 各向异性能 各向异性场HA
立方晶系各向异性
K1 0
K1
1 9
K2
<100>
0
2K 1 IS
0
K1
4 9
K2
<110>
1 42K1/Is
( 110 ):
K1
1 2
K2
/
I
s
4 K1 9K2,K1 0 K1 94K2,K1 0
<111>
1
1
3 K1 27 K2
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
2、抗磁介质磁化机制
抗磁性起源于分子附加磁矩的感应磁化
抗磁质分子的固有磁矩为零。 但在外磁场作用下,每一分子沿 外磁场的反方向感应出附加磁矩, 使磁介质被磁化,在磁介质表面 产生磁化电流。由于附加磁矩的 方向始终与外磁场方向相反,所 以抗磁质表面的磁化电流方向与 顺磁质磁化电流方向相反,产生 的附加磁场方向与外磁场方向相 反,所以抗磁质内的总磁感强度 为:
➢当距离很大时,J接近于零。 ➢随着距离的减小,相互作用有所 增加,J为正值,就呈现铁磁性, 如图所示。 ➢当原子间距a与未被填满的电子 壳层直径D之比大于3时,交换能 为正值;小于3时,交换能为负值, 为反铁磁性。
交换能与铁磁性的关系
a/D >3时 交换能为正值;
材料物理课件 材料磁性性质
V, Hysteresis loop
Memory devices
Ouห้องสมุดไป่ตู้line
Background Semiconductor
Conventional memory technologies Emerging memory technologies
1 Magnetic Memory
Magnetic Memory materials: -Fe2O3 , CrO2, Fe-Co et
al
Read/write heads
Mechanism:
Main applications Diskette
Tape
Magnetic drum
2 Optical Memory Optical storage materials: PC、PMMA、Epoxy et al. Mechanism:
τ = B × i × A × sinθ τ = B × m × sinθ
III, Diamagnetic and paramagnetic materials
Diamagnetic materials are those whose atoms have only paired electrons.
Advantage:low price, high storage density; disadvantage low access, large box
Applications:
CD
DVD
DVD-RW
3 Semiconductor memory Based on semiconductor devices; Advantage: fast access, high data storage, low power;
材料的磁性能与磁性功能材料幻灯片PPT
磁畴壁示意图
居里温度:对于所有的磁性材料来说,并不是在任何温
度下都具有磁性。一般地,磁性材料具有一个临界温度 Tc,在这个温度以上,由于高温下原子的剧烈热运动, 原子磁矩的排列是混乱无序的。在此温度以下,原子磁 矩排列整齐,产生自发磁化,物体变成铁磁性的。
应用举例:〔电饭煲的控制〕
磁学根本概念:
材料的磁性能与磁性功能 材料幻灯片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
磁学初步认识:
• 磁学现象的两个根本命题:
3、铁磁体,χ为很大的正数,在较弱磁场作用下可 以产生很大的磁化强度,如铁、钴、镍。
4、亚铁磁体,χ处于铁磁体与顺磁体之间,即通常 所说的磁铁矿、铁氧体等。
5、反铁磁体, χ为小正数,高于某一温度时其行为 与顺磁体相似,低于某一温度磁化率与磁场的取向有 关。
铁磁性材料 M
亚铁磁性材料
顺铁性材料 反铁磁性材料 H
• 1 磁及磁现象的根源是电流,或者说是电 荷 的运动。
• 2 所有的物质都是磁性体
电流(或运动电荷)
磁场 电流(或运动电荷)
安培分子电流学说: 组成磁铁的每个分子都具有一个小的分 子电流,经过磁化的磁铁其小分子电流 都定向规那么排列。
现代科学认为物质的磁性来源于组成物质中 原子的磁性: 1 原子中外层电子的轨道磁矩 2 电子的自旋磁矩 3 原子核的核磁矩
抗铁磁性材料
五种磁体的磁化曲线示意图
磁饱和性
磁性物质因磁化产生的磁场是不会无限制增加的,当 外磁场(或鼓励磁场的电流)增大到一定程度时,全部 磁畴都会转向与外场方向一致。这时的磁感应强度将 到达饱和值。
磁学性能
3. 物质的顺磁性
来源:原子(离子)的固有磁矩。 无外H时:由于热运动的影响,固有磁矩取向无序,宏观上无磁性。 外H作用下:固有磁矩与H作用,有较高的静磁能,为降低静磁能,固 有磁矩改变与H的夹角,趋于排向外H方向,表现为正向磁化。在常温和 H不是很高的情况下,M与H成正比,磁化要克服热运动的干扰,磁矩难 以有序排列,故顺磁化进行十分困难,磁化率较小。 常温下顺磁体达到饱和磁化所需的H非常大,技术上难以达到,但温度 降至接近0K时,就容易了。 根据顺磁磁化率与温度的关系,可把顺磁体分为三类: 正常顺磁体:磁化率随温度升高而降低的顺磁体。 符合居里定律: 或居里-外斯定律:
根据磁化率符号和大小,可把磁介质分为五类。
亚铁磁性材料
顺磁性材料 反铁磁性材料
0
抗磁性材料
H
2. 磁化率与物质磁性的分类
1)抗磁体 χ为甚小负常数,约在10-6数量级,即M与H方向相反,在磁场中使磁场稍减弱, 受微弱斥力,约有一半的简单金属是抗磁体。分为: (1)“经典”抗磁体,χ 不随T变化,如铜、银、金、汞、锌等。 (2)反常抗磁体,χ 随T变化,为前者10~100倍,如铋、镓、锑、锡等。 2)顺磁体 χ为正常数,约为10-3~10-6数量级,即M与H方向相同,在磁场中使磁场稍增 强,受微弱引力,分为: (l)正常顺磁体,χ 随T变化,且符合与T反比关系,如铂、钯、奥氏体不锈钢、 稀土金属等。 (2)χ 与T无关的顺磁体,如锂、钠、钾、铷等。 3)反铁磁体 χ是甚小的正常数,当T高于某个温度时(尼尔温度TN),转换为顺磁体,T- χ曲线?如α-Mn、铬、氧化镍、氧化锰等。 4)铁磁体 χ为很大的正变数,约在10~106数量级,且不大的H就能产生很大的M,在磁场 中被强烈磁化,受强大的吸力,如铁、钴、镍等。其M-H 、 χ-H曲线? 5)亚铁磁体 类似铁磁体,但χ值没有铁磁体大,如磁铁矿(Fe3O4)等。