分析化学-第8章 电位法

合集下载

分析化学第8章电位法及永停滴定法习题参考答案

分析化学第8章电位法及永停滴定法习题参考答案

第8章 电位分析法及永停滴定法习题参考答案电位分析法及永停滴定法习题参考答案1.1.计算下列电极的电极电位计算下列电极的电极电位计算下列电极的电极电位(25(25(25℃℃),并将其换算为相对于饱和甘汞电极的电位,并将其换算为相对于饱和甘汞电极的电位 值:(1) Ag | Ag + (0.001mol/L) ]lg [059.0//++++=Ag AgAg Ag Ag q jj )(623.0001.0lg 059.07995.0V =+= 相对于饱和甘汞电极的电位:相对于饱和甘汞电极的电位: 241.0)()(//-=++SHE SCE Ag Ag AgAg j j)(382.0241.0623.0V =-= (2) Ag | AgCl (固) | Cl --(0.1mol/L) ]Cl lg[059.0//--=Ag AgCl AgAgCl q j j )(281.01.0lg 059.02223.0V =-= 相对于饱和甘汞电极的电位: 241.0)()(//-=SHE SCE AgAgCl AgAgCl j j )(040.0241.0281.0V =-= (3) P t | Fe 3+ (0.01mol/L ) , Fe 2+ (0.001mol/L) ][][lg 059.023//2323+++=++++Fe Fe Fe Fe Fe Feqj j )(830.0]001.0[]01.0[lg 059.0771.0V =+= 相对于饱和甘汞电极的电位: 241.0)()(2323//-=++++SHE SCE Fe FeFe Fe j j)(589.0241.0830.0V =-= 2.计算下列电池2525℃时的电动势,并判断银极的极性。

℃时的电动势,并判断银极的极性。

℃时的电动势,并判断银极的极性。

Cu | Cu 2+ (0.0100mol/L) || Cl -(0.0100mol/L) | AgCl (固) | Ag 解: ]Cl lg[059.0//--=AgAgCl Ag AgCl q jj )(340.00100.0lg 059.02223.0V =-=(或: ]Cl [lg 059.0]A lg[059.0///-Kspg AgAg AgAg Ag AgCl +=+=+++qqjjj)(339.00100.01056.1lg 059.07995.010V =´+=-) ]lg[2059.02//22++=++Cu CuCu CuCu q j j)(278.00100.0lg 2059.0337.0V =+=Cu C uAg A g C l //2+ñj j 银电极为电池正极\电池电动势电池电动势 )(062.0278.0340.0E //2V CuCu Ag AgCl =-=-=+jj3.计算下列原电池的电动势.计算下列原电池的电动势Hg | HgY 2- (4.50×(4.50×1010--5 mol/L) , Y 4-(x mol/L) || SCE Y 4-浓度分别为L mol /1033.31-´,L mol /1033.33-´,L mol /1033.35-´。

16页分析化学:电位法及永停滴定法永停滴定法

16页分析化学:电位法及永停滴定法永停滴定法

永停滴定法的应用
1
永停滴定法在化学分析中有着广泛的应用,可以 用于测定物质的含量、鉴定物质的成分、研究化 学反应机理等。
2
在环境监测中,永停滴定法可以用于测定水体中 的离子、有机物、重金属等物质的含量,为环境 治理提供数据支持。
3
在食品检测中,永停滴定法可以用于测定食品中 的添加剂、防腐剂、农药残留等物质的含量,保 障食品安全。
永停滴定法的定义
• 定义:永停滴定法是一种基于电化学反应的滴定分析方法 ,通过测量电位变化来确定滴定终点。
02
电位法基本原理
电位法概述
01
电位法是一种通过测量电极电位变化来进行化学分析的方法。
02
它利用了不同物质在电极上的氧化还原反应产生的电位差,从
而实现对物质浓度的测定。
电位法具有高灵敏度、高准确度和高选择性等优点,因此在分
04
实验操作方法
实验前的准备
01
02
03
仪器准备
确保电位计、滴定管、电 极等仪器干净、准确,并 进行校准。
试剂准备
根据实验需要,准备足够 的标准溶液和试剂。
环境准备
确保实验室温度、湿度适 宜,避免干扰因素。
实验步骤
安装电极
将选择好的电极安装在电位计上。
溶液准备
将待测溶液和标准溶液分别倒入烧杯中。
结果分析
电位法分析结果
通过电位滴定曲线,我们可以确定滴定终点时的电位值,从而计算出待测离子的浓度。实验结果表明 ,电位法具有较高的准确度和精密度,适用于多种离子的测定。
永停滴定法分析结果
永停滴定法是通过观察永停仪的指针偏转来判断滴定终点的方法。实验结果表明,永停滴定法具有较 高的准确度,但操作较为繁琐,需要经验丰富的操作人员。

电位分析法

电位分析法

电位分析法1 前言从热力学角度讲,电化学是研究化学能于电能之间相互转变及其所遵循基本规律或规则的一门学科;从动力学角度而言,电化学是研究电解质离子在溶液中运动及电解质溶液与电极表面发生反应所遵循的基本规律。

而电分析化学则是利用物质(电解质)的物理性质及电化学性质来测定物质组成和含量的一种分析方法。

电位分析是利用电极电位和溶液中某种离子的活度(或浓度)之间的关系来测定被测物质的活度(或浓度)的一种电化学分析法,它是以测量电池电动势为基础。

其化学电池的组成是以待测试液为电解质溶液,并于其中插入两支电极,一支是电极电位与被测试液的活度(或浓度)有定量关系的指示电极;另一支是电位稳定不变的参比电极。

通过测量电池的电动势来确定被测物含量。

电位分析法根据其原理的不同可分为直接电位法和电位滴定法两大类。

直接电位法是通过测量电池电动势来确定指示电极的电位,然后根据Nernst方程,由所测得的电极电位值计算出被测物质的含量。

电位滴定法是通过测量滴定过程中指示电极的电位变化来确定滴定终点,再按滴定所消耗的标准溶液的体积和浓度来计算待测物质含量。

该法实际上是一种容量分析法。

20世纪60年代末由于膜电极技术的出现,相继成功研制了多种具有良好选择性的指示电极,即离子选择性电极(ISEs)。

离子选择性电极的出现和应用,促进了电位分析法的发展,并使其应用有了新的突破。

电位分析法具有如下特点:选择性高,在多数情况下,存在离子干扰很小,对组成复杂性的试样往往不需要经过分离处理可直接测定,且灵敏度高。

直接电位法的相对检出限量一般为10-5~10-8mol/dm3,特别适用于微量成分的测定;而电位滴定法则适用于常量分析,仪器设备简单、操作方便,易于实现分析的自动化,试液用量小,并可做无损分析和原位测量。

因此,电位分析法的应用范围很广,尤其是离子选择性电极,现已广泛应用于环保、医药、食品、卫生、地质探矿、冶金、海洋探测等各个领域,并已成为重要的测试手段。

分析化学(书后习题参考答案)第八章 电位分析法

分析化学(书后习题参考答案)第八章 电位分析法

(b)pH=4.00 +
(c) pH= 4.00 +
3. 用标准甘汞电极作正极,氢电极作负极与待测的 HCl 溶液组成电池。在 25℃时, 测 得 E=0.342V。当待测液为 NaOH 溶液时,测得 E=1.050V。取此 NaOH 溶液 20.0ml,用上 述 HCl 溶液中和完全,需用 HCl 溶液多少毫升? 解:1.050 = 0.2828 — 0.059lgKw/[OH-] 0.342 =0.2828 — 0.059lg[H+] 需用 HCl 溶液 20.0ml 。 4. 25℃时,下列电池的电动势为 0.518V(忽略液接电位) : Pt H2(100kPa),HA(0.01mol·L-1)A-(0.01mol·L-1 )‖SCE 计算弱酸 HA 的 Ka 值。 解:0.518 = 0.2438— 0.059 lg Ka 0.01/0.01 Ka = 2.29×10-5 5. 已知电池:Pt H2(100kPa),HA(0.200mol·L-1)A-(0.300mol·L-1 )‖SCE 测得 E=0.672V。计算弱酸 HA 的离解常数(忽略液接电位) 。 解:0.672 = 0.2438-0.059lgKa 0.200/0.300 [OH- ]=0.100mol·L-1 [H+]=0.100mol·L-1
AgCl 开始沉淀时:[Ag+] = 1.56 × 10-10 / C mol·L-1,
mol·L-1, 相对误差=1.5×10-16C / 1.56×10-10/C = 0.0001%,这也说明 AgCl 开始沉淀时 AgI 已沉淀完全。 14. 在下列各电位滴定中,应选择何种指示电极和参比电极? 答:NaOH 滴定 HA(Ka C =10-8 ):甘汞电极作参比电极,玻璃电极作指示电极。 K2Cr2O7 滴定 Fe2+:甘汞电极作参比电极,铂电极作指示电极。 EDTA 滴定 Ca2+:甘汞电极作参比电极,钙离子选择性电极作指示电极。 AgNO3 滴定 NaCl:甘汞电极作参比电极,银电极作指示电极。

第八章电化学分析法

第八章电化学分析法

二、电化学分析法的特点
(1)灵敏度、准确度高,选择性好 被测物质的最低量可以达到10-12mol/L数量级。 (2)电化学仪器装置较为简单,操作方便 直接得到电信号,易传递,尤其适合于化工生产中的自动控 制和在线分析。 (3)应用广泛 传统电化学:无机离子分析H+、F-、Cl-、K+; 有机电化学分析:蛋白质、氨基酸 药物分析:磺胺类药物含量分析 活体分析:肌苷含量、酶活性分析
1、直接电位法:电极电位与溶液中电活性物质活度有关,通 过测量溶液的电动势,根据能斯特方程计算被测物质的含量 如饮用水中氟离子含量测定 研制各种高灵敏度、高选择性的电极是电位分析法最活跃的 研究领域之一。目前应用最多、选择性最好的是膜电极
2、理论基础:能斯特方程(电极电位与溶液中待测离子间 的定量关系式)。
对于氧化还原体系: Ox + ne- = Red
O Ox/RedR nFTlnaaROedx
对于金属电极(还原态为金属,活度定为1):
M On/MR nF TlnaMn
二、离子选择性电极种类、结构与原理 1、种类
离子选择性电极(又称膜电极)。
1976年IUPAC基于膜的特征,推荐将其分为以下几类: 重点使用 原电极(primary electrodes)
电池工作时,电流必须在电池内部和外 部流过,才能构成回路。
溶液中的电流:正、负离子的移动。
1、原电池
负极:发生氧 化反应的电极。
正极:发生还 原反应的电极。
电极电位较高 的为正极
电极电位较低 的为负极
电池总反应是 两个电极反应 的加合
2、电解电池
阳极:与直流 电源正极相连 的一段,发生 氧化反应。
电化学分析的学习参考资料

分析化学-电位分析法

分析化学-电位分析法

膜 外 内
[ H ]2 0.059log [ H ]1
玻璃电极中,内参比溶液中的[H+] 是常数故:
膜 常数 0.059log[H ] 2

常数 0.059PH 试
由上式可见,通过测量膜电位即可得到膜外 溶液得H+ 浓度 [H+]2,这就是玻璃电极测溶液 PH的理论依据。

如果电对中某一物质是固体或水,则它们的浓 度均为常数,即[]=1;如果电对中某一物质为气体, 则它的浓度可用气体分压表示。
例 (1)
Zn 2 2e Zn 0.059 2 1 log[Zn ] / 1m ol* l 2 [ Zn 2 ] 1
Fe e Fe
K的影响因素: 玻璃电极的成分、内外参比电极的电位差、不对 称电位、温度
K在一定条件下为定值,但无法确定,故无 法用上式求得pH值。
实际测定中,式样的pH是同已知pH的标准缓冲 溶液相比求得的。 设pH标准缓冲容液为S,待测溶液为X,有:
E x K x 0.059PH x Es K S 0.059PH S
2、溶液pH值得测定
参比电极:饱和甘汞电极 指示电极:玻璃电极 两电极同时插入待测液形成如下电池:
Ag, AgCl | HCl | 玻璃膜 | 试液溶液 KCl(饱和) | Hg2Cl2(固), Hg
玻璃
E电池 右 左 电池电动势:
SCE
甘汞

SCE 常数 0.059PH试液) K 0.059PH试液
Hg 2 Cl 2 / Hg
1 [Cl ] 2 ( ) 1m ol* l 1 0.059log[Cl ] /(1m ol* l 1 )

分析化学8第四节电位测定法

分析化学8第四节电位测定法

3.996
9.276
12.820
20
1.676
3.998
9.226
12.637
25
1.680
3.559
4.003
9.182
12.460
30
1.684
3.551
4.010
9.142
12.292
35
1.688
3.547
4.019
9.105
12.130
40
1.694
3.547
4.029
9.072
11.975
二、电位滴定分析法
1.电位滴定装置与滴定曲线
每滴加一次滴定剂,平衡后测量电动势。 滴定过程的关键:确定滴定反应的化学
计量点时,所消耗的滴定剂的体积。 寻找化学计量点所在的大致范围。 突跃范围内每次滴加体积控制在0.1mL。
滴定剂用量(V)和相应的电动势数值(E),作图得 到
滴定曲线。 通常采用三种方法来确定电位滴定终点。 该点与化学计量点非常接近。
Δ2E 0.24 0.83
0.83 ;
V 24.40 24.30
V2 24.45 24.35 5.9
计算示例
滴入的 AgNO3 测量电位 E ΔE
体积(mL)
(V)
ΔV
Δ2E Δ V2
24.00
0. 174
表中的一级微商和二级微商
0.09
由后项减前项比体积差得到:
24.10
0. 183
二价离子,相对误差为7.8%
故电位分析多用于测定低价离子。
3.影响电位测定准确性的因素
(4)干扰离子: 干扰离子的影响表现在两个方面: a. 能使电极产生一定响应, b. 干扰离子与待测离子发生配位或沉淀反应。 结果:测定结果带来误差;

8章电位法和永停滴定法

8章电位法和永停滴定法
电极电位(25℃): φ = φΘ+ 0.059lgaAg+
Ag+Cl-
= φΘAg+/Ag+ 0.059lgKsp,AgCl/aCl= φΘAg+/Ag+ 0.059lgKsp,AgCl-0.059lgaClφ= φΘAgCl/Ag- 0.059lgaCl或φ= φΘ’
AgCl/Ag
- 0.059lgcCl-
(三)离子浓度的测量方法 1、电池电动势与离子浓度的关系
(-)离子选择电极|试液‖KCl(饱和),Hg2Cl2(s)|Hg(+)
电池电动势为:E = φ甘 – φ离 E =φ甘–[K’±(2.303RT/nF)lgci] E = K
±(2.303RT/nF)lgci
注:总离子强度调节剂(TISAB):将惰性电解质、缓冲 溶液和掩蔽剂的混合物溶液称为总离子强度调节剂(TISAB)。
氨气敏电极、 CO2、 NO2、SO2、O2、H2S、HCN、HF等气 敏电极。
φ= K-(RT/F)lnaH+=K-(RT/F)lnpNH3
3、酶电极 是利用酶在生化反应中高选择性的催化作用使生物大 分子迅速分解或氧化,催化反应的产物可由相应的离子选择 电极检测.因此酶电极由原电极和生物膜制成的复膜电极. 生物膜主要由具有分子识别能力的生物活性物质如酶、 微生物、生物组织、核酸、抗原和抗体组成。
第八章 电位法和永停滴定法 第 一 节 电化学分析法概述 根据所测的电化学参数不同可分四类:
电位分析法:
直接电位法、电位滴定法。
电解分析法:电重量法、库仑法、库仑滴定法
电导分析法:直接电导法 电导滴定法
伏安法:极谱法、溶出伏安法、电流滴定法
第 二 节 电位法的基本原理 一、化学电池 由二个电极、电解质溶液和外电路组成。

2024版第08章电分析化学导论

2024版第08章电分析化学导论
生物医学应用
生物组织和体液中的电解质成分与生理状态密切相关。通过 测量生物样本的电导率,可获取有关生物体内部环境的信息。 例如,在临床上可利用血液电导率的测量来辅助诊断某些疾 病。
极谱分析法与伏安分
05
析法
极谱分析法基本原理及操作
基本原理
极谱分析是一种基于电解过程中电极电位与电流关系的 分析方法。在极谱分析中,待测物质在滴汞电极上发生 还原反应,产生极谱电流,通过测量电流与电位的关系, 可以确定待测物质的浓度。
伏安分析法应用举例
伏安分析法可用于测定无机物、有机物和生物样品等物 质的含量。例如,在药物分析中,可以利用伏安分析法 测定药物中的有效成分含量;在生物分析中,可以利用 伏安分析法测定生物样品中的代谢物含量。
现代电分析化学技术
06
进展
生物传感器在电分析中应用
01
生物传感器基本原理
利用生物活性物质(如酶、抗体、细胞等)与待测物质之间的特异性相
互作用,将生物化学反应转化为可测量的电信号。
02
生物传感器在电分析中的应用实例
如葡萄糖生物传感器用于糖尿病患者ቤተ መጻሕፍቲ ባይዱ血糖监测,乳酸生物传感器用于
运动医学中的乳酸测定等。
03
生物传感器的发展趋势
提高选择性、灵敏度和稳定性,实现多组分同时测定和在线实时监测。
微流控芯片技术在电分析中应用
微流控芯片技术基本原理
要点二
库仑分析法应用举例
环境水样中重金属离子的测定、食品中添加剂的测定等。
电导分析法
04
电导率测量原理及方法
电导率定义
01
电导率是物质导电能力的量度,其大小与物质中载流子的浓度
和迁移率有关。
测量原理

电位分析法

电位分析法
外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极 (敏感膜)
内、外参比电极的电位值固定,且内充溶液中离子的活度 也一定,则电池电动势为:
RT EK ln ai nF
离子选择性电极的类型和结构
1976年IUPAC基于膜的特征,推荐将其分为以下几类
离子选择性电极(又称膜电极)
注意:离子活度系数保持不变时,膜电位才与log ci
呈线性关系。
总离子强度调节缓冲溶液简称TISAB
TISAB的作用:
①保持较大且相对稳定的离子强度,使活度系数恒定; ②维持溶液在适宜的pH范围内,满足离子电极的要求; ③掩蔽干扰离子。 典型组成(测F-): 1mol/L的NaCl,使溶液保持较大稳定的离子强度; 0.25mol/LHAc和0.75mol/LNaAc, 使溶液pH在5左右; 0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
公式使用时注意:对阳
离子,△E不变;对阴离子,△E
前加负号或取△E的绝对值。
优点:
(1)无须绘制标准曲线
(仅需一种浓度标液) (2)无需配制或添加 TISAB (3)操作步骤简单、快 速
3、直读法--pH测定原理与方法 ⑴ 直读法:对于被测溶液中
的某种成分能够在仪器上直接读 出其浓度的方法称为直读法。如 在pH计或pNa计上就能测定pH值
影响电位测定准确性的因素
(1) 测量温度:影响主要表现在对电极的标准电极电位、 直线的斜率和离子活度的影响上。 仪器可对前两项进行校正,但多数仅校正斜率。 温度的波动可以使离子活度变化,在测量过程中应尽量 保持温度恒定。 (2) 线性范围和电位平衡时间:一般线性范围在10-1~10-6 mol / L;平衡时间越短越好。测量时可通过搅拌使待测离子 快速扩散到电极敏感膜,以缩短平衡时间。 测量不同浓度试液时,应由低到高测量。

分析化学课件-电位法的基本原理

分析化学课件-电位法的基本原理

例如:用pH玻璃电极测量pH=4.00的缓冲溶液时, 测得电池的电动势为0.064V,测量pH=9.18的缓冲 溶液时的电动势为0.360V,测量未知溶液的pH值时, 电动势为0.281V。计算未知溶液的pH值和H活度。
解:pHx = pHs+EX ES =9.180.+059(0.281-0.360) /0.059=
电解池:Daniell电池
Zn棒
V Cu棒
盐桥
ZnSO4
CuSO4
化学电池
原电池:电极反应自发进行,化学能转变为 电能。
电解池:电极反应不能自发进行,必须有外 加电压电极反应方可进行,电能转 变为化学能的装置。
原电池与电解池的比较
作用 条件
电极名称
电极反应 电子流动
方向
原电池
电解池
化学能转变为电能
2.303RT
pH = K -
pH
F
F
pH玻璃电极的性能
①转换系数S:S = 2.303RT,φ pH曲线的斜率。
F
②碱差与酸差
③不对称电位:使用前水中充分浸泡一定时间消除。
④电极内阻: 内阻很大(50~500MΩ),组成电池测量 电动势时只允许微小电流通过。
⑤使用温度:0~50℃范围使用。
酸差和碱差 酸差
解:E-V曲线法略。由题设数据可得如下数据处理表:
V(ml)
E (mV)
ΔE
ΔV
E V
V
(ml)
( E ) V
△V
2E V 2
29.90 240
10
0.1
100
29.95
30.00 250
16
0.1
160
30.05 60 0.1 600

《分析化学》习题参考答案-仪器部分

《分析化学》习题参考答案-仪器部分

第八章 电位法及永停滴定法思考题和习题1、解释下列名词:相界电位、液接电位、不对称电位、碱差和酸差。

相界电位:两个不同物相接触的界面上的电位差。

液接电位:两个组成或浓度不同的电解质溶液相接触的界面间所存在的微小电位差。

不对称电位:当玻璃膜外溶液H +浓度或pH 值相等时,从前述公式可知,M =0,但实际上M 不为0,仍有1~3 mV 的电位差碱差:当测定较强碱性溶液pH 值(pH > 9)时,测得的pH 值小于真实值而产生的负误差。

酸差:当用pH 玻璃电极测定pH<1的强酸性溶液或高盐度溶液时,电极电位与pH 之间不呈线性关系,所测定的值比实际的偏高,这个误差叫做酸差2、金属基电极与膜电极有何区别?金属基电极是以金属为基体,共同特点是电极上有电子交换即氧化还原反应的存在。

膜电极即离子选择性电极是以敏感膜为基体,特点是薄膜不给出或得到电子,而是电极膜选择性地使离子渗透和离子交换。

3、什么叫盐桥?为什么说它能消除液接电位?盐桥:沟通两个半电池、消除液接电位、保持其电荷平衡、使反应顺利进行的一种装置,充高浓度的电解质溶液。

用盐桥将两溶液连接后,盐桥两端有两个液接界面,扩散作用以高浓度电解质的阴阳离子为主,而其是盐桥中电解质阴阳离子迁移速率几乎相等,所以形成的液接电位极小,在整个电路上方向相反,可使液接电位相互抵消。

电极 电极组成 电极反应 电极电位 金属-金属离子电极M∣M n+ M ne M n ⇔++ +++=n n M M M o a z lg 0592.0/ϕϕ金属-金属难溶盐电极M MX n nX M ne MX n +⇔+ nX MX sp a K z n)(lg0592.0,0+=ϕϕ 惰性电极Pt∣[Ox ],[Red] Ox + ne ===Red dOxaa z Re 0lg 0592.0+=ϕϕ膜电极 电极膜等 离子交换和扩散i a zK lg 0592.0±=ϕ 标准氢电极 镀铂黑铂电极通氢气)(22gas H e H ⇔++Hg Hg 2Cl 2,KCl(xM) AgAgCl,(xM)KCl 5.简述玻璃电极的基本构造和作用机制。

分析化学PPT课件:第八章-电位分析法-第二节-电极的构造和原理-2

分析化学PPT课件:第八章-电位分析法-第二节-电极的构造和原理-2
(将两个电极先后一起插入pH已知的标液和未知的待测溶液)
EX 参 玻 参 K'0.059 pHX K''0.059 pHX
ES 参 玻 参 K'0.059 pHS K''0.059 pHS
EX ES 0.059( pH X pH S )
玻璃电极定义式pHX
pHS
EX ES 0.059
• 软质球状玻璃膜:含Na2O、CaO和SiO2 厚度小于0.1mm 对H+选择性响应
• 内部溶液:pH 6-7的膜内缓冲溶液 0.1 mol/L 的KCl内参比溶液
• 内参比电极:Ag-AgCl电极
玻璃电极——组成电池的表示形式
(-)Ag,AgCl︱缓冲溶液(PH 4或7)︱膜︱H+(x mol/L)‖KCl(饱和)︱Hg2Cl2,Hg (+)
0.059lg aCl ' 0.059lgCCl
(3) 惰性电极:
✓ 应用:测定氧化型、还原型浓度或比值 ✓ 例如:Pt︱Fe3+ (aFe3+),Fe2+ (aFe2+)
Fe3+ + e → Fe2+
0.059 lg aFe3 aFe2
(4) 膜电极:
✓ 应用:测定某种特定离子 ✓ 例如:玻璃电极;各种离子选择性电极 ✓ 特点(区别以上三种):
液体接界电位:
在两种不同离子的溶液或两种不同浓度的溶液接触界面 上,存在着微小的电位差,称之为液体接界电位。 液体接界电位产生的原因:
各种离子具有不同的迁移速率而引起。
(动画):液接电位的产生
实际的液接电位是难以准确计算和单独测量的。因此,在 实验中常用盐桥将两溶液相连,以降低或消除液接电位。

分析化学(高教第五版)课后习题及思考题电位分析法章节答案(整理排版11页)

分析化学(高教第五版)课后习题及思考题电位分析法章节答案(整理排版11页)

分析化学(高教第五版)课后习题及思考题第八章 电位分析法思 考 题1. 参比电极和指示电极有哪些类型它们的主要作用是什么答:参比电极包括标准氢电极(SHE ),标准氢电极是最精确的参比电极,是参比电极的一级标准。

实际工作中常用的参比电极是甘汞电极和银-氯化银电极。

参比电极电位恒定,其主要作用是测量电池电动势,计算电极电位的基准。

指示电极包括金属-金属离子电极,金属-金属难溶盐电极,汞电极,惰性金属电极,离子选择性电极。

指示电极能快速而灵敏的对溶液中参与半反应的离子活度或不同氧化态的离子的活度比,产生能斯特响应,主要作用是测定溶液中参与半反应的离子活度。

2. 直接电位法的依据是什么为什么用此法测定溶液pH 时,必须使用标准pH 缓冲溶液 答:直接电位法是通过测量电池电动势来确定待测离子活度的方法,其主要依据是E=Φ参比— ΦMn+/M = Φ参比—ΦθMn+/M —nFRT ln αMn+ 式中Φ参比和ΦθMn+/M 在温度一定时,都是常数。

由此式可知,待测离子的活度的对数与电池电动势成直线关系,只要测出电池电动势E ,就可求得αMn+。

测定溶液的pH 时是依据:E = ΦHg 2Cl 2/Hg — ΦAgCl/Ag — K + pH试+ ΦL , 式 中ΦHg 2Cl 2/Hg, ΦAgCl/Ag ,K ,ΦL 在一定的条件下都是常数,将其合并为K ˊ,而K ˊ中包括难以测量和计算的不对称电位和液接电位。

所以在实际测量中使用标准缓冲溶液作为基准,并比较包含待测溶液和包含标准缓冲溶液的两个工作电池的电动势来确定待测溶液的pH 值,即:25℃时Es = Ks ˊ+ , Ex = Kx ˊ+ ,若测量Es 和Ex 时的条件保持不变,则Ks ˊ= Kx ˊ,pHx =pHs+(Ex -Es)/ ,由此可知,其中标准缓冲溶液的作用是确定K ˊ。

3. 简述pH 玻璃电极的作用原理。

答:玻璃电极的主要部分是 一 个玻璃泡,泡的下半部是对H + 有选择性响应的玻璃薄膜,泡内装有pH 一定的·L -1的HCl 内参比溶液,其中插入一支Ag-AgCl 电极作为内参比电极,这样就构成了玻璃电极。

分析化学:第八章 电位法和永停滴定法二

分析化学:第八章 电位法和永停滴定法二
• 不对称电位随时间而变化,但在测试的较短时间 内可认为是定值。
分析化学
第八章 电位法和永停滴定法
19
• (4)电极的内阻: • 玻璃电极的内阻很大,约为50 ~ 500MΩ,测定
由它组成的电池电动势时,只允许有微小的电流 通过,否则会造成很大的误差,因此需使用特殊 的电位计来进行测量。
• 若玻璃电极的内阻R=100MΩ,使用一般电位计 (可测得的最小电流为10-9A),由于V=IR,则 电压为0.1V;使用专门的电位计(高输入阻抗的 电子伏特计,可测得最小电流为10-12A),电压 为0.0001V,误差分别为:
分析化学
第八章 电位法和永停滴定法
2
• pH玻璃电极的敏感膜是在SiO2基质中加入 Na2O和CaO烧结而成的特殊玻璃。把这种 特殊组成的玻璃接在厚壁硬质玻璃管的一 端,吹制成厚度约为0.05~0.1mm的玻璃泡, 内含一定浓度的KCl和一定pH(4、7)的 缓冲溶液(内参比溶液),内插一支Ag- AgCl电极(内参比电极)所构成。
0.1 100%=1.7pH
0.059
0.0001 100%=0.0017 pH
0.059
分析化学
第八章 电位法和永停滴定法
20
• (5)使用温度:玻璃电极的使用温度一般在0~ 50℃。温度太低,电极内阻增大,使准确测量困 难;温度太高时使用寿命下降或电极性能变差, 不利于离子交换。。
• (6)特点:玻璃电极对H+很敏感,达到平衡快; 可以做得很小,用于很少溶液的测定;可以连续 测定,记录流动溶液的pH;不受溶液中氧化还原 剂干扰,也可用于混浊、粘稠和带色溶液的pH测 定。不足之处是内阻大,易损坏,会老化和不能 用于含F-的酸性溶液的pH测定。

chapter-8-电位分析法 厦门大学分析化学课件

chapter-8-电位分析法 厦门大学分析化学课件

8.3.1 玻璃电极 玻璃电极的选择性源于玻璃敏感膜组成的不同。
Na2O·CaO·SiO2= 21.4 : 6.4 : 72.2
Si–O 正四面体 三维空间网络支架 电荷载体
Si O
Ca++(使内阻减少) Na+(使Si–O键断裂
体积小活动性强)
H+(置换出Na+的H+)
玻璃电极在使用前必须在水中浸泡一定时间。浸泡时,
Na+(溶液)+ H+Gl-(玻璃)
内膜电位: 外膜电位:
内=K+0.059 lg
aH 内 aH 内(Gl)
外=K+0.059 lg
aH 外 aH 外(Gl)
玻璃电极电位:
膜 外 内
K'0.059lg
aH 外 aH 外(Gl)
aH 内(Gl) aH +内
=K
'
'0.059
lg
a H

不对称电位不对称产生的原因: 由于薄膜内外两个表面的状况不同,如含钠量、张力以及外 表面的机械和化学损伤等不同而产生的。
Chapter 8 电位分析法
内容
8.1 概述 8.2 参比电极 8.3 指示电极 8.4 电位测定法 8.5 电位滴定法 8.6 电位分析法计算示例
8.1 概述
电化学分析:根据物质在溶液中的电化学性质及其变化来进行 分析的方法。它是以溶液的电导、电位、电流和电量等电化学 参数与被测物质含量之间的关系作为计量基础。
电位选择性系数Ki,j表明电极的选择性,若Ki,j =10-3 表明选择性电极对i离子的敏感性为j离子的1000倍。
例:有一NO3离子选择性电极,对SO42的电位选择系数 K NO3 ,SO42 4.1105。用此电极在1.0mol L1H 2SO4介质中 测定NO3,测得aNO3 为8.2 104 mol L1。SO42引起的测量 误差是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SHE 0
2.甘汞电极:Hg和甘汞糊,及一定浓度KCL溶液
电极表示式 Hg︱Hg2CL2 (s)︱KCL (x mol/L)
电极反应
Hg2CL2 + 2e → 2Hg +2CL-
SCE 0.2412V
图示
表 甘汞电极的电极电位( 25℃)
温度校正,对于SCE,t ℃时的电极电位为: Et= 0.2438- 7.6×10-4(t-25) (V)
图示
盐桥的组成和特点:
高浓度电解质溶液 正负离子迁移速度差不多
*盐桥的作用: 1)防止两种电解质溶液
混和,消除液接电位, 确保准确测定 2)提供离子迁移通道 (传递电子)
续前
3.电解池: (阳)Cu ︱Cu2+(1mol/L)‖ Zn2+(1mol/L)︱Zn (阴)
电极反应——外加电压 (阴极)Zn极 Zn2+ + 2e (阳极)Cu极 Cu - 2e
4.膜电极: 应用:测定某种特定离子
例:玻璃电极;各种离子选择性电极
特点(区别以上三种):
1)无电子转移,靠离子扩散和离子交换产生膜电位 2)对特定离子具有响应,选择性好 ** 对指示电极的要求: 电极电位与待测离子浓度或活度关系符合Nernst方程
(二)参比电极
1.标准氢电极(SHE): 电极反应 2H+ + 2e → H2
续前
(二)电池的表示形式与电池的电极反应
1.表示形式: 1)溶液注明活度 2)用︱表示电池组成的每个接界面 3)用‖表示盐桥,表明具有两个接界面 4)发生氧化反应的一极写在左
发生还原反应的一极写在右
Daniel 电池——铜锌电池结构 2.原电池:
(-) Zn ︱Zn2+(1mol/L)‖ Cu2+(1mol/L)︱Cu (+)
(二)参比电极:电极电位不受溶剂组成影响,其值维 持不变(φ与C无关)
(一)指示电极
1.金属-金属离子电极: 应用:测定金属离子 例:Ag︱Ag+
Ag+ + e → Ag
0.059 lg aAg ' 0.059 lg CAg
2.金属-金属难溶盐电极: 应用:测定阴离子 例:Ag︱AgCL︱CL-
五、电极电位的测量
经与参比电极组成原电池,测得电池电动势, 扣除参比电极电位后求出待测电极电位
E SCE x E j IR
可忽略 电压降
第三节 直接电位法
直接电位法(离子选择性电极法): 利用电池电动势与被测组分浓度的函数关系直接测定 试样中被测组分活度的电位法
一、氢离子活度的测定(pH值的测定) 二、其他离子活度的测量
第二节 电位法基本原理
一、几个概念 二、化学电池 三、可逆电极和可逆电池 四、指示电极和参比电极 五、电极电位的测量
一、几个概念
1.相界电位:两个不同物相接触的界面上的电位差 2.液接电位:两个组成或浓度不同的电解质溶液相
接触的界面间所存在的微小电位差,称~。 3.金属的电极电位:金属电极插入含该金属的电解
Cu2 Cu 0.377V
电极反应
Zn2 Zn 0.763V
(-)Zn极 (+)Cu极 电池反应
Zn – 2e Cu2+ + 2e
Zn2+ (氧化反应) Cu (还原反应)
Zn + Cu2+
Zn2+ + Cu (氧化还原反应)
E E j (有液接电位) E 0.337 (0.763) 1.100(无液接电位)
一、氢离子活度的测定(pH值的测定)
指示电极——玻璃电极 (-); 参比电极——饱和甘汞电极(SCE) (+)
(一)玻璃电极 (二)测量原理与方法 (三)注意事项
质溶液中产生的金属与溶液的相界电位,称~。
Zn → Zn2+
双电层
动态平衡
稳定的电位差
4.电池电动势:构成化学电池的相互接触的各相界 电位的代数和,称~。
二、化学电池:
一种电化学反应器,由两个电极插入适当电解质 溶液中组成
(一)分类: 1.原电池:将化学能转化为电能的装置(自发进行) 应用:直接电位法,电位滴定法 2.电解池:将电能转化为化学能的装置(非自发进行) 应用:永停滴定法
分析化学Ⅱ 第8章 电位分析法
第一节 电化学分析概述
1.电化学分析:根据被测溶液所呈现的电化学性质 及其变化而建立的分析方法
2.分类: 根据所测电池的电物理量性质不同分为 (1)电导分析法 (2)电解分析法 (3)电位分析法:直接电位法,电位滴定法 (4)库仑分析法 (5)极谱分析法 (6)伏安分析法
续前
电位分析法:利用电极电位与化学电池电解质 溶液中某种组分浓度的对应关系而实现定量测 量的电化学分析法
3.特点: (1)准确度高,重现性和稳定性好 (2)灵敏度高,10-4~10-8mol/L
10-10 ~10-12 mol/L(极谱,伏安) (3)选择性好(排除干扰) (4)应用广泛(常量、微量和痕量分析) (5)仪器设备简单,易于实现自动化
Zn (还原反应) Cu 2+ (氧化反应)
电池反应 Zn2+ + Cu
Zn + Cu2+ (被动氧化还原反应)
பைடு நூலகம்
三、可逆电极和可逆电池
可逆电极:无限小电流通过时,电极反应可逆 可逆电池:由两个可逆电极组成
四、指示电极和参比电极
(一)指示电极:电极电位随电解质溶液的浓度或活度 变化而改变的电极(φ与C有关)
续前
3.银-氯化银电极: 电极表示式 Ag︱AgCL︱CL- (x mol/L) 电极反应式 AgCL + e → Ag + CL-
0.059 lg aCL ' 0.059 lg CCL (250 C)
饱和KCL溶液 0.2000V
** 对参比电极的要求: 1)电极电位稳定,可逆性好 2)重现性好 3)使用方便,寿命长
AgCL + e → Ag + CL-
0.059 lg aCL ' 0.059 lg CCL
续前
3.惰性电极: 应用:测定氧化型、还原型浓度或比值 例:Pt︱Fe3+ (aFe3+),Fe2+ (aFe2+)
Fe3+ + e → Fe2+
0.059 lg aFe3 aFe2
相关文档
最新文档