二项分布 卡方检验.ppt
《卡方检验正式》课件
卡方检验的结果可以直接解释为实际意义 ,例如,如果卡方值较大,则说明观察频 数与期望频数存在显著差异。
缺点
对数据要求高
卡方检验要求数据量较大,且各分类的期望频数不能太小,否则可能 导致结果不准确。
对离群值敏感
卡方检验对离群值比较敏感,离群值可能会对结果产生较大的影响。
无法处理缺失值
卡方检验无法处理含有缺失值的数据,如果数据中存在缺失值,需要 进行适当的处理。
案例二:市场研究中的卡方检验
总结词
市场研究中,卡方检验用于评估不同市 场细分或产品特征与消费者行为之间的 关联。
VS
详细描述
在市场研究中,卡方检验可以帮助研究者 了解消费者对不同品牌、产品或服务的偏 好。例如,通过比较不同年龄段消费者对 某品牌的选择比例,企业可以更好地制定 市场策略和产品定位。
案例三:社会调查中的卡方检验
小,表示两者之间的差异越小。通常根据卡方值的概率水平来判断差异
是否具有统计学显著性。
02
卡方检验的步骤
建立假设
假设1
观察频数与期望频数无显著差异
假设2
观察频数与期望频数有显著差异
收集数据
从样本数据中获取观察频数 确定期望频数,可以使用理论值或预期频数
制作交叉表
将收集到的数据整理成二维表格形式,行和列分别表示分类变量
卡方检验的基本思想
01
基于假设检验原理
卡方检验基于假设检验的原理,通过构建原假设和备择假设,利用观测
频数与期望频数的差异来评估原假设是否成立。
02
比较实际观测频数与期望频数
卡方检验的核心是比较实际观测频数与期望频数,通过卡方值的大小来
评估两者之间的差异程度。
03
二项分布课件
概率与置信水平之间存在一定的关系 。在确定置信区间时,需要考虑到概 率的大小。
概率计算公式
根据二项分布的定义,可以使用概率 计算公式来计算某一事件发生的概率 。公式包括成功的次数和试验次数等 参数。
置信区间的确定
置信区间的概念
置信区间是指在一定置信水平下,某一参数可能取值的一个范围。 在二项分布中,置信区间通常用于估计成功概率的区间范围。
03
记录每次试验的结果, 并计算成功次数和概率 。
04
可使用图形化工具(如 matplotlib)绘制理论 概率与模拟结果的对比 图。
利用R语言进行二项分布模拟实验
安装并打开R语言环境。
使用循环结构模拟多次试 验,并记录每次试验的成 功次数。
使用“runif()”函数生成 随机数作为试验结果(成 功或失败)。
决策树分析的例子包括:项目管理、资源分配、市场营销等。在这些场景中,二 项分布可以用来计算在不同情况下发生特定事件的概率,从而帮助决策者制定更 有效的计划和策略。
二项分布的模拟实
06
验
利用Excel进行二项分布模拟实验
打开Excel软件,选择一个工作表。
在第一列输入试验次数,在第二列输 入每次试验成功的概率。
样本量计算公式
根据二项分布的性质,可以通过计算公式来确定样本数量 。公式通常基于预期的置信区间、置信水平和误差率等因 素。
样本量与置信水平的关系
样本数量与置信水平之间存在一定的关系。通常,要达到 一定的置信水平,需要足够的样本数量来支持。
概率计算
基本概念
概率与置信水平的关系
在二项分布中,概率是指某一事件发 生的可能性。在统计学中,概率通常 用小数或百分比表示。
二项分布课件(上课)
生物统计学—卡方检验PPT课件
0.5 2 301.63
Ei
(4)推断:由CHIDIST(301.63, 1)=1.45E-67,即P c 2 301.63 0.01
故应否定H0,接受HA,认为鲤鱼体色F2性状比不符合3:1比率
(4)推断:由CHIINV(0.025,
1)=5.02,
即
cc2
c2 0.05(1)
,即P
0.05
c2 1
和c
2
c
2
2
2
第10页/共31页
例:已知某农田受到重金属污染,经抽样测定铅浓度分别为:
4.2, 4.5, 3.6, 4.7, 4.0, 3.8, 3.7, 4.2 (ug/g),方差为0.150, 试检验受到
污染的农田铅浓度的方差是不是和正常浓度铅浓度的方差
(0.065)相同
分析:1)一个样本方差同质性检验
论值记为:Ei,即 k c2
Oi Ei 2 , (df k 1)
i1
Ei
第12页/共31页
卡方检验的原理和方法
Pearson定理的基本含义: 如果样本确实是抽自由(P1,P2,…,Pk)代
表的总体,Oi和Ei之间的差异就只是随机误差, 则Pearson统计量可视为服从卡方分布
反之,如果样本不是抽自由(P1,P2,…,Pk) 代表的总体,Oi和Ei之间的差异就不只是是随机 误差,从而使计算出的统计量有偏大的趋势
解:(1)假设 H0 : 鲤鱼体色F2性状分离符合3:1 对 H A : 鲤鱼体色F2性状分离不符合3:1
(2)选取显著水平 0.05
第17页/共31页
(3)检验计算: 计算鲤鱼体色的理论值
体色 F2理论尾数
青灰色 1201.5
二项分布教学课件ppt
0.4
0.3
0.2
0.1
0.0
0
1
2
3
x
(0.2+0.8)3 二项分布示意图
构成成-败型实验序列的n次实验中,事件A出现 的次数X的概率分布为:
P X CnX X 1 nX
其中X=0,1,2…,n。 n,π是二项分布的两个参数 。
对于任何二项分布,总有
中国福利彩票
发行量1500万元,特等奖100个,金额5万元; 每张彩票面值2元,中奖概率1/75000。
投入金额 未中概率 中奖概率
100元 1000元 1万元 10万元 100万元 0.99933 0.99336 0.93551 0.51341 0.00127 0.00067 0.00664 0.06449 0.48659 0.99873
例4-2 临床上用针灸治疗某型头疼,有效的概率为60% 现以该疗法治疗3例,其中2例有效的概率是多大?
B(X;n,π)或B(n,π)。
二项分布的概率函数
• 任意一次试验中,只有事件A发生和不发生
两种结果,发生的概率分别是: 和1-
• 若在相同的条件下,进行n次独立重复试验,
用X表示这n次试验中事件A发生的次数,那 么X服从二项分布,记做 XB(n,) 或 B(X;n,π) 。
举例 设实验白鼠共3只,要求它们同种属、同 性别、体重相近,且他们有相同的死亡概率, 即事件“白鼠用药后死亡”为A,相应死亡概率 为π。记事件“白鼠用药后不死亡”为 ,相 应不死亡概率为1-π。设实验后3只白鼠中死亡 的白鼠数为X,则X的可能取值为0,1,2和3,
例 实验白鼠3只,白鼠用药后死亡的死亡概率 π=0.6,则3只白鼠中死亡鼠数X的总体均数为
统计学-第十二章卡方检验
避免误用与误判的建议
充分理解卡方检验的原理 和适用条件,避免在不满 足条件的情况下使用。
结合专业知识判断观察频数与 期望频数的差异是否具有实际 意义,避免过度解读统计结果 。
ABCD
在进行卡方检验前,对数据 进行充分的描述性统计分析 ,了解数据的分布特点。
统计学-第十二章卡方检验
目 录
• 第十二章概述 • 卡方检验的基本原理 • 卡方检验的应用场景 • 卡方检验的步骤与实现 • 卡方检验的优缺点及注意事项 • 实例分析与操作演示
01
第十二章概述
章节内容与目标
01
掌握卡方检验的基本原理和假设检验流程
02
了解卡方检验在不同类型数据中的应用
能够运用卡方检验进行实际问题的分析和解决
THANK YOU
卡方分布及其性质
卡方分布的定义
若$n$个相互独立的随机变量$X_1, X_2, ldots, X_n$均服从标准正态分布$N(0,1)$,则它们的 平方和$X^2 = sum_{i=1}^{n}X_i^2$服从自 由度为$n$的卡方分布,记为$chi^2(n)$。
期望和方差
$E(X) = n$,$D(X) = 2n$,其中$X sim chi^2(n)$。
运行分析
点击“确定”按钮,运行卡方检验分 析。
结果解读与报告撰写
结果解读
根据卡方检验的结果,判断各组分类数据的 分布是否存在差异,以及差异的显著性水平 。
报告撰写
将分析结果以文字、表格和图表的形式呈现 出来,包括研究目的、数据收集与整理过程 、卡方检验结果和结论等部分。同时,需要
注意报告的规范性和可读性。
二项分布and卡方检验2002
表7-2 两种药物治疗脑血管疾病有效率的比较
组别 胞磷胆碱组
有效
无效
46 6
合计 52
有效率 (%)
88.46
神经节苷酯组 18 8(4.67) 26 69.23
合计
64 14
78 82.05
校正:
2 c
3.14
未校正: 2 4.35
24
第二节 配对四格表资料的 2检验
表7-3 两种方法的检测结果
2. 率的标准误,用来描述样本率的抽样误差,率 的标准误越小,则率的抽样误差就越小。
S p p(1 p) / n
7
三、总体率的区间估计
当n较大、p和1-p均不太小如np和n(1-p)均大于 5时,可利用样本率p的分布近似正态分布来估计 总体率的可信区间。
( p u 2S p , p u 2S p )
表7-10 某地5801人的血型
ABO血型
O A B AB 合计
M 431 388 495 137 1451
MN血型
N
MN
490
902
410
800
587
950
179
32
1666 2684
合计
1823 1598 2032 348 5801
问题:(1)两分类变量有无关联?
(2)关联程度如何?
32
分析步骤:
4
从阳性率为π的总体中随机抽取大小为n的样
本,则出现阳性数为X的概率分布即呈二项分布,
记为X~B(n,π),
P(X )
n! X (1 )nX
X !(n X )!
X 0,1, 2,, n
5
中国福利彩票
发行量1500万元,特等奖100个,金额5万元; 每张彩票面值2元,中奖概率1/75000。
《卡方检验》课件
制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。
《二项分布及其应》课件
• 改进方向: a. 引入其他分布:对于样本量较小的情况,可以考虑使用泊松分布等其他分布来近似二项分布。 b. 利 用贝叶斯推断:贝叶斯推断可以用于估计未知的分布参数,提高二项分布在实际应用中的精确度。 c. 考虑其他模型: 对于某些特定问题,可以考虑使用其他模型来描述实际数据,如正态分布、泊松分布等。
贝叶斯估计法的定义和原理 贝叶斯估计法在二项分布参数估计中的应用 贝叶斯估计法的优缺点分析 贝叶斯估计法与其他参数估计方法的比较
最小二乘估计法
定义:最小二乘法是一种数学统计方法,通过最小化误差的平方和来估计参数
原理:最小二乘法通过最小化预测值与实际值之间的误差平方和来估计参数,从而得到最佳的 参数估计值
假设检验的步骤和实例
提出假设
构造检验统计量
确定临界值
做出推断
实例演示
06
二项分布在实际应用中的案例分析
实验设计和数据分析
实验设计:确 定实验目的、 设计实验方案、 选择实验样本
数据分析:对 实验数据进行 整理、分析和 解释,得出结
论
实验结果:展 示实验结果, 包括数据表格、
图表等
结论与讨论: 对实验结果进 行讨论,提出 改进意见和建
议
二项分布在实际应用中的案例介绍
案例一:医学研究计学中的 二项分布
案例四:计算机科学中的 二项分布
二项分布在实际应用中的优缺点分析
优点:适用于独立 重复试验,可以快 速准确地计算概率
缺点:不适用于连 续性随机变量,需 要满足独立同分布 的条件
医学统计学二项分布课件
该公式用于计算在n次独立的是/非试验中取得k次成功的概率。p和(1-p)分别是每次试验成功的概率和失败的概率,C(n, k)表示n个独立的是/非试验中取得k次成功的所有可能组合数。
二项分布的概率计算
方差计算公式
二项分布的方差计算公式为:Var(X) = np(1-p),其中n为试验次数,p为每次试验成功的概率。
二项分布与其他分布的区别与联系
卡方分布是一种连续型概率分布,适用于样本数据的卡方检验和独立性检验。卡方分布与二项分布的区别在于其应用于不同的统计检验方法和样本数据类型。
泊松分布是一种离散型概率分布,适用于描述时间间隔或事件发生次数的情况。泊松分布与二项分布的区别在于其应用于不同的随机变量类型和参数条件。
与正态分布的区别
与卡方分布的区别
与泊松分布的区别
05
总结与展望
基本的概率模型
01
二项分布是一种基本的概率模型,用于描述在n次独立的是/非试验中成功的次数的概率分布。
二项分布的重要地位
医学研究中的应用
02
在医学研究中,二项分布被广泛应用于描述实验结果、制定诊断策略和评估治疗效果等。
统计学中的重要性
传染病发病率的估计
04
二项分布的扩展知识
确定样本量和实验组与对照组的样本比例
在科研设计中,二项分布可以用于估算样本量,以确保在给定的置信水平和精度下能够检测到预期的效果。同时,可以确定实验组和对照组的样本比例,以避免偏倚和增加研究结果的可靠性。
二项分布在科研设计中的应用
临床试验设计
在临床试验设计中,二项分布可以用于估算每个组别的预期疗效和样本量,以确保能够检测到治疗或干预措施的效果。此外,二项分布还可以用于评估疗效指标的可信限和置信区间。
二项分布_卡方检验1
二项分布的概念
二项分布是一种重要的离散型分布,也 称为伯努利分布,是用来描述二分类变 量得两种观察结果的出现规律的一种离 散型分布。
常用于总体率的估计和两样本率的比较
等。
二项分布的概率
设总体中的每一观察单位具有相互对立的一种 结果,如有效或无效、阴性或阳性。 已知发生某一结果(如阳性)的概率为π,此概 率对于每一个个体是相同的;其对立结果(阴 性)发生的概率为1-π,各单位的观察结果相互 独立,则从该总体中随机抽取 n 例,其中恰有 X 例是某一结果(阳性)的概率为:
2 ARC (A T ) 2 = =n ( 1) T n R nC 2
ν=(R-1)(C-1)
R×C表资料的2检验的注意事项
R×C表资料2检验中,如假设检验的结果拒绝H0, 只能认为各总体率或总体构成比不全相等,但不能 说明它们彼此之间都有差别,要解决这个问题必须 通过2分割进行率或构成比的多重比较。 对行×列表资料进行检验时,一般认为不能有 1/5以 上的格子的理论频数小于5,也不能有任何一个格子 的理论频数小于1,否则很容易导致分析结果出现偏 性。如果出现这种情况,可采取以下解决方法:
0.0 0 5 10 15 20 25
2 检验
2检验是一种用途非常广泛的以2分布
为理论依据的假设检验方法,主要用于:
– 两个或多个总体率或构成比的比较; – 两个分类变量之间的关联分析; – 频数分布资料的拟和优度检验等。
2 检验的基本思想
实际频数和理论频数差异的大小可以用 2 值的大 小来说明,当样本量n和各个按检验假设计算的理 ) 论频数T都足够大时,比如n≥40,T≥5, (A T值近 T 似于2分布,n越大,近似程度越好。
生物统计上机操作第四讲 卡方检验 二项分布检验.
研究生《生物统计学》课程上机内容第四讲:独立性检验与二项分布检验独立性检验(χ2检验)与二项分布检验:是针对离散型数据的检验,在生物科学研究中,除了分析计量资料外,还常常需要对质量性状和质量反应的次数资料进行分析,其变异情况只能用分类计数的方法加以表示,属于计数资料。
本次主要练习:⑴卡方检验(独立性检验):[Analyze]=>[Decriptive Statistics](描述性统计)=>[Crosstabs](交叉列联表过程)⑵二项分布检验:[Analyze]=>[Nonparametric Tests] (非参数检验)=>[Binominal](二项分布)一、独立性检验(一)2×2列联表独立性检验案例:下表给出不同给药方式与给药效果,问口服与注射两种给药方式的效果差异是否显著?SPSS操作:(1)建立数据文件:在Variable View中定义三个变量(方式、效果、计数),其中“方式”、“效果”的变量类型定义为字符串(string)型,“计数”定义为数值(Numeric)型;在Data View中输入数据;(2)用Weight Cases对频数变量“计数”进行加权: [Data]=>[Weight Cases],弹出对话框,选中“Weight cases by”,将“计数”导入“Frequency Variable”框中,<OK>(3)卡方分析:1) [Analyze]=>[Decriptive Statistics] =>[Crosstabs],弹出对话框,将“方式”导入[Row(s)]中,将“效果”导入[Column(s)]中;2)点击[Statistics],弹出对话框,选中[Chi-square](卡方检验),continue返回;3)点击[Cells],弹出对话框,选中Counts下的[Expected](显示理论值),continue 返回;4)OK,运行结果输出到output窗口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(
X
)
(
n X
)
X
(1
)nX
X=0,1,2,…,n
二项分布的应用条件
每次试验只会发生相互对立的两种结果之一, 如阳性或阴性,生存或死亡;
每次试验产生某种结果的概率固定不变,已 知发生某一结果(如阳性的概率为π,其对 立结果的概率则为1-π;
重复试验是相互独立的,即每次试验的观察 结果不会影响到其它试验的结果,也不会受 其它试验的结果的影响。
n (b d )(c d )
n
n
a
(ad bc)2 n
bc d a cb
d
四格表2检验的校正公式
2界值表是根据连续性的2分布计算出来的,但原 始数据是分类资料,不是连续的,由此计算的2 值也是不连续的,它仅仅是连续性的2分布的一种 近似。
n≥40&T ≥ 5时,这种近似效果较好。
但在样本例数较少或出现理论频数小于5时,算出 的2值可能偏大,既求出的概率P值可能偏小,此 时须根据具体情况作不同的处理。
u p1 p2 s P1 P2
S p1 p2
X1 X 2 (1 X1 X 2 )( 1 1 )
n1 n2
n1 n2 n1 n2
例:为研究某职业人群颈椎病患病率的性别差异,随 机抽查了该职业人群男性120人和女性110人,检查出 男性中有36人患有颈椎病,女性中有22人患有颈椎病, 试比较不同性别的颈椎病患病率的差异。
பைடு நூலகம்
n=5 π=0.3
.2
.1
0.0
0
1
2
3
4
5
二项分布的图形
.2 n=20 π=0.3
.1
0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
二项分布的应用
总体率的区间估计 样本率与总体率的比较 两个样本率的比较
总体率的区间估计
正态近似法:当n较大,且np和n(1-p)均大于5 时,可利用样本率p的分布近似正态分布的原 理估计总体率的1-α可信区间。
(P - uαSp , P + uα Sp)
查表法: n 50
样本率和总体率的比较
正态近似法:当n较大,且np和n(1-p)均 大于5时,可利用样本率的分布近似正态 分布的原理。
u
p 0
0 (1 0 ) / n
直接概率法:
两样本率的比较
正态近似法:当n1、n2较大,且n1 p1、n1(1-p1)、 n2 p2、n2(1-p2)均大于5时,可利用样本率的分布近似正 态分布的原理。
四格表只有两行两列,故其自由度为1。
四格表资料2 检验的专用公式
2 (A T )2 T
a (a b)(a c) b (a b)(b d )
n (a b)(a c)
n (a b)(b d )
n
n
c (a c)(c d ) d (b d )(c d )
n (a c)(c d )
二项分布的图形
当 0.5时,分布是对称的;
当0.5 时,分布是偏的,特别是1% 或 99% 时分布非常偏, 但n增大时又趋于对称, 当n→∞时,只要不太靠近0或1,则近似正态 分布。
一般来说当n足够大,n和n(1-)均不小于5时, 常用正态分布原理来处理二项分布的问题。
二项分布的图形
.4
.3
二项分布的均数与标准差
若X~B(n,π),则
– X的总体均数 μ=nπ
– X的总体方差 σ2=nπ(1-π)
– X的总体标准差 n(1)
若以率表示
– 样本率p的总体均数 – 样本率p的总体标准差
μp=π
p
(1 )
n
– 当总体率未知时,以样本率p作为π的估计值,
则σp的估计用
sp
p(1 p) n
2 检验的基本思想
实际频数和理论频数差异的大小可以用2值的大
小来说明,当样本量n和各个按检验假设计算的理
论频数T都足够大时,比如n≥40,T≥5, 似于2分布,n越大,近似程度越好。
(A
T值)2 近
T
2值的计算公式如下:
2= (A T )2
T
– 式中A代表实际频数,T代表理论频数。 – ν=(R-1)(C-1)
T
(a b)(c d )(a c)(b d )
当n<40,或T<1时,应采用四格表精确概率法。
2 检验的基本思想
2检验实际上是将率或构成比的比较演绎为实际频 数与理论频数的比较,2值反映了实际频数和理论 频数吻合的程度。
如会果很大H0,成则立,2值则也实会际小频,数当与理2<论2频界数值之时差,一P>般α不, 则尚无理由拒绝它。
反之,若 会大,则
H20值不也成会立大,,实若际频2≥数2与界理值论,频P≤数α的,
四格表资料的2 检验
当n≥40,且T≥5 时,不需要进行校正。
2= (A T ) 2
(ad bc) 2 n
T
(a b)(c d )(a c)(b d )
当 n≥40, 但有1≤T<5时,需对进行连续性校正。
2= ( A T 0.5)2
( ad bc n )2 n 2
差值 则可
以认为实际频数与理论频数的差别已超出了抽样
误差允许的范围 拒绝它。
,有理由怀疑
H0的正
确性,
因而
2 检验的自由度
2值的大小,除决定于A与T的差值外,还 取决于格子数(自由度)的多少。
2检验的自由度是指在周边合计固定不变的 条件下,表内全部格子数据中可以自由取值 的格子数。 ν=(R-1)(C-1)
2检验 (chi-square test)
.5
.4
ν=1
.3
.2
ν=3
ν=6
.1
ν=10
0.0 0
5
10
15
20
25
2 检验
2检验是一种用途非常广泛的以2分布 为理论依据的假设检验方法,主要用于:
– 两个或多个总体率或构成比的比较; – 两个分类变量之间的关联分析; – 频数分布资料的拟和优度检验等。
二项分布
二项分布的概念
❖ 二项分布是一种重要的离散型分布,也 称为伯努利分布,是用来描述二分类变 量得两种观察结果的出现规律的一种离 散型分布。
❖ 常用于总体率的估计和两样本率的比较 等。
二项分布的概率
设总体中的每一观察单位具有相互对立的一种 结果,如有效或无效、阴性或阳性。
已知发生某一结果(如阳性)的概率为π,此概 率对于每一个个体是相同的;其对立结果(阴 性)发生的概率为1-π,各单位的观察结果相互 独立,则从该总体中随机抽取n例,其中恰有X 例是某一结果(阳性)的概率为: