2018-2019学年第一学期高一数学期中考试试题及参考答案
苏教版2018-2019学年高一(上)期中数学试卷(精品Word版,含答案解析)
2018-2019学年高一(上)期中数学试卷一.选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知全集U={x|x≥2},集合M={x|x≥3},则∁U M=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|x≤3}D.{x|x<2}2..设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅3.下列函数是偶函数,且在(0,+∞)是增函数的是()A.f(x)=x2+2x B.f(x)=x﹣2C.f(x)=|x|D.f(x)=lnx4.已知函数f(x)=的定义域为R,则实数k的取值范围是()A.k≠0B.0≤k≤4C.0≤k<4D.0<k<45.已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x﹣1,则f(x)<0的解集是()A.(0,1)B.(﹣1,1)C.(﹣1,0)D.(﹣∞,﹣1)∪(0,1)6.若(a+1)<(3﹣2a),则a的取值范围是()A.()B.()C.()D.()7.若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内8.已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f()+f(x﹣1)的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)9.已知a=2,b=log2,c=log23,d=log45.则()A.a>c<d>b B.b<a<c<d C.b<a<d<c D.c>a>d>b10.函数f(x)=log(x2﹣4x)的单调递增区间为()A.(﹣∞,2)B.(2,+∞)C.(﹣∞,4)D.(4,+∞)11.若方程x2﹣4|x|+3=m有四个互不相等的实数根,则m的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(3,+∞)D.(﹣1.+∞)12.对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1B.2C.3D.0二.填空题:(本题共4小题,每小题5分,共20分)13.函数y=的定义域为.14.函数f(x)=a+2(a>0且a≠1)的图象过定点;15.已知函数,则f(log23)=.16.已知函数f(x)=a(e x﹣e﹣x)+b+2,若f(lg3)=3,则f(lg)=.三.解答题:(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式:(1)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2;(2)log3+lg25+lg4+7.18.(12分)已知集合A={x|x2﹣x﹣2<0},B={x|x2﹣(2a+1)x+a(a+1)<0},且B⊆A,求实数a的取值范围.19.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.20.(12分)已知函数.(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,求函数f(x)的值域.21.(12分)已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.(1)求函数g(x)的解析式及定义域;(2)求函数g(x)的最值.22.(12分)定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.(1)求f(0),f(﹣1)的值;(2)判断该函数的单调性,并证明;(3)求不等式f(x+1)<4的解集.2018-2019学年黑龙江省哈师大附中高一(上)期中数学试卷参考答案与试题解析一.选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知全集U={x|x≥2},集合M={x|x≥3},则∁U M=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|x≤3}D.{x|x<2}【分析】根据补集的定义,写出∁U M.【解答】解:全集U={x|x≥2},集合M={x|x≥3},则∁U M={x|2≤x<3}.故选:B.【点评】本题考查了补集的定义与应用问题,是基础题.2..设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅【分析】由2x>3,得x>log23,由(x﹣1)(x+3)<0,得﹣3<x<1即M=(log23,+∞),N=(﹣3,1),得M∩N=∅.【解答】解:∵2x>3∴x>log23,即M=(log23,+∞)又∵(x﹣1)(x+3)<0,∴﹣3<x<1∴N=(﹣3,1),又∵log23>1,∴M∩N=∅故选:D.【点评】本题考查了指数不等式与二次不等式的解法,属简单题.3.下列函数是偶函数,且在(0,+∞)是增函数的是()A.f(x)=x2+2x B.f(x)=x﹣2C.f(x)=|x|D.f(x)=lnx【分析】根据题意,依次分析选项,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,f(x)=x2+2x,不是偶函数,不符合题意;对于B,f(x)=x﹣2=,是偶函数,在(0,+∞)是减函数,不符合题意;对于C,f(x)=|x|=,是偶函数,且在(0,+∞)是增函数,符合题意;对于D,f(x)=lnx,不是偶函数,不符合题意;故选:C.【点评】本题考查函数的奇偶性与单调性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.4.已知函数f(x)=的定义域为R,则实数k的取值范围是()A.k≠0B.0≤k≤4C.0≤k<4D.0<k<4【分析】根据f(x)的定义域为R,即可得出不等式kx2+kx+1≥0的解集为R,显然k=0时满足题意,而当k≠0时,则满足,解出k的范围即可.【解答】解:∵f(x)的定义域为R;∴不等式kx2+kx+1≥0的解集为R;①k=0时,1≥0恒成立,满足题意;②k≠0时,;解得0<k≤4;综上得,0≤k≤4.故选:B.【点评】考查函数定义域的概念及求法,以及一元二次不等式ax2+bx+c≥0的解集和判别式△取值的关系.5.已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x﹣1,则f(x)<0的解集是()A.(0,1)B.(﹣1,1)C.(﹣1,0)D.(﹣∞,﹣1)∪(0,1)【分析】由已知得f(x)在(﹣∞,0)单调递减,且f(﹣1)=0,结合简图易得结果.【解答】解:∵f(x)为偶函数,∴f(x)图象关于y轴对称,∵当x∈[0,+∞)时,f(x)=x﹣1,∴f(x)在[0,+∞)单调递增,且f(1)=0,∴f(x)在(﹣∞,0)单调递减,且f(﹣1)=0,∴f(x)<0的解集是(﹣1,1).故选:B.【点评】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.6.若(a+1)<(3﹣2a),则a的取值范围是()A.()B.()C.()D.()【分析】用a=1排除A、D,由底数大于0,排除B.【解答】解:a=1时,2<1成立,排除A、D又3﹣2a>0得a<,排除B,故选:C.【点评】本题考查了其它不等式的解法,属基础题.7.若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内【分析】由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.【解答】解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f (c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选:A.【点评】熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.8.已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f()+f(x﹣1)的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)【分析】根据f(x)的定义域,可看出,要使得函数g(x)有意义,则需满足,解出x的范围即可.【解答】解:∵f(x)的定义域为(﹣1,1);∴要使g(x)有意义,则;解得1<x<2;∴g(x)的定义域为(1,2).故选:A.【点评】考查函数定义域的概念及求法,已知f(x)定义域,求f[g(x)]定义域的方法.9.已知a=2,b=log2,c=log23,d=log45.则()A.a>c<d>b B.b<a<c<d C.b<a<d<c D.c>a>d>b【分析】直接利用对数的运算性质进行大小比较.【解答】解:∵0<a=2<20=1,b=log2<log21=0,c=log23>1,d=log45>1.且.∴b<a<d<c.故选:C.【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.10.函数f(x)=log(x2﹣4x)的单调递增区间为()A.(﹣∞,2)B.(2,+∞)C.(﹣∞,4)D.(4,+∞)【分析】先求得函数的定义域,本提即求t=x2﹣4x在定义域内的增区间,再利用二次函数的性质得出结论.【解答】解:由函数f(x)=log(x2﹣4x),可得x2﹣4x>0,求得x<0,或x>4,故函数的定义域为{x|x<0,或x>4 },本题即求t=x2﹣4x在定义域内的增区间.再利用二次函数的性质可得t=x2﹣4x在定义域内的增区间为(4,+∞),故选:D.【点评】本题主要考查复合函数的单调性,对数函数、二次函数的性质,属于中档题.11.若方程x2﹣4|x|+3=m有四个互不相等的实数根,则m的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(3,+∞)D.(﹣1.+∞)【分析】作出y=x2﹣4|x|+3的函数图象,根据图象得出m的范围.【解答】解:作出y=x2﹣4|x|+3的函数图象如图所示:∵程x2﹣4|x|+3=m有四个互不相等的实数根,∴直线y=m与y=x2﹣4|x|+3的函数图象有4个交点,∴﹣1<m<3.故选:B.【点评】本题考查了方程解的个数与函数图象的关系,属于中档题.12.对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1B.2C.3D.0【分析】由奇偶性的定义可判断①;讨论x>2,x<2,求得f(x),以及导数,判断符号,即可判断②;由f(x)的单调性可判断③.【解答】解:函数f(x)=(|x﹣2|+1)4,设g(x)=f(x+2)=(|x|+1)4,g(﹣x)=g(x),可得g(x)是偶函数,故①正确;x>2时,f(x)=(x﹣1)4的导数为f′(x)=4(x﹣1)3>0;x<2时,f(x)=(3﹣x)4递,导数为f′(x)=4(x﹣3)3<0,可得f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数,故②正确;由②可得f(x)在x=2处取得最小值1,故③错误.故选:B.【点评】本题考查函数的奇偶性和单调性、最值的求法,考查导数的运用和奇偶性定义的应用,考查运算能力,属于基础题.二.填空题:(本题共4小题,每小题5分,共20分)13.函数y=的定义域为.【分析】函数y=有意义,可得0<5x﹣3≤1,解不等式即可得到所求定义域.【解答】解:函数y=有意义,可得,即为0<5x﹣3≤1,解得<x≤,则定义域为.故答案为:.【点评】本题考查函数的定义域的求法,注意运用对数的真数大于0,以及偶次根式被开方数非负,考查运算能力,属于基础题.14.函数f(x)=a+2(a>0且a≠1)的图象过定点(1,3);【分析】令幂指数等于零,求得x,y的值,可得函数的图象经过定点的坐标.【解答】解:对于函数f(x)=a+2(a>0且a≠1),令x2﹣2x+1=0,求得x=1,y =3,可得函数f(x)=a+2(a>0且a≠1)的图象过定点(1,3),故答案为:(1,3).【点评】本题主要考查指数函数的图象经过定点问题,属于基础题.15.已知函数,则f(log23)=.【分析】先判断出log23的范围,代入对应的解析式求解,根据解析式需要代入同一个式子三次,再把所得的值代入另一个式子求值,需要对底数进行转化,利用进行求解.【解答】解:由已知得,,且1<log23<2,∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=f(log224)==.故答案为:.【点评】本题的考点是分段函数求值,对于多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解,此题利用了恒等式进行求值.16.已知函数f(x)=a(e x﹣e﹣x)+b+2,若f(lg3)=3,则f(lg)=1.【分析】f(lg3)=a(e lg3﹣e﹣lg3)+b+2=3,从而a(e lg3﹣e﹣lg3)+b=2,进而f(lg)=a(﹣)+g+3=﹣[a(e lg3﹣e﹣lg3)+b]+3,由此能求出结果.【解答】解:∵函数f(x)=a(e x﹣e﹣x)+b+2,f(lg3)=3,∴f(lg3)=a(e lg3﹣e﹣lg3)+b+2=3,∴a(e lg3﹣e﹣lg3)+b=2,∴f(lg)=a(﹣)+g+3=﹣[a(e lg3﹣e﹣lg3)+b]+3=﹣2+3=1.故答案为:1.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.三.解答题:(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式:(1)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2;(2)log3+lg25+lg4+7.【分析】(1)根据指数幂的运算性质计算即可,(2)根据对数的运算性质计算即可.【解答】解:(1)原式=﹣1﹣+=,(2)原式=﹣+lg100+2=﹣+2+2=.【点评】本题考查了指数幂和对数的运算性质,属于基础题18.(12分)已知集合A={x|x2﹣x﹣2<0},B={x|x2﹣(2a+1)x+a(a+1)<0},且B⊆A,求实数a的取值范围.【分析】先确定A、B,由B⊆A得,得﹣1≤a≤1.【解答】解:A={x|﹣1<x<2},B={x|a<x<a+1},∵B⊆A,∴,∴﹣1≤a≤1.【点评】本题考查的知识点是集合的包含关系判断及应用,集合关系中的参数问题,难度中档.19.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.【分析】(Ⅰ)利用f(0)=2,f(x+1)﹣f(x)=2x﹣1,直接求出a、b、c,然后求出函数的解析式.(Ⅱ)利用二次函数的对称轴与区间的关系,直接求解函数的最值.(Ⅲ)利用g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出M的范围.【解答】(本小题满分14分)解:(Ⅰ)由f(0)=2,得c=2,又f(x+1)﹣f(x)=2x﹣1得2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,所以f(x)=x2﹣2x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(a,b,c各(1分),解析式1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)f(x)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1∈[﹣1,2],故f min(x)=f(1)=1,又f(﹣1)=5,f(2)=2,所以f max(x)=f(﹣1)=5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)g(x)=x2﹣(2+m)x+2,若g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,则满足﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)解得:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查二次函数的解析式的求法,二次函数的性质与最值的求法,零点判定定理的应用,考查计算能力.20.(12分)已知函数.(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,求函数f(x)的值域.【分析】(1)f(x)是增函数,利用单调性的定义进行证明;(2)先求出a,再求函数f(x)的值域.【解答】解:(1)f(x)是增函数.证明如下:函数f(x)的定义域为(﹣∞,+∞),且,任取x1,x2∈(﹣∞,+∞),且x1<x2,则.∵y=2x在R上单调递增,且x1<x2,∴,∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(﹣∞,+∞)上是单调增函数.(2)∵f(x)是定义域上的奇函数,∴f(﹣x)=﹣f(x),即对任意实数x恒成立,化简得,∴2a﹣2=0,即a=1.(也可利用f(0)=0求得a=1)∴,∵2x+1>1,∴,∴,∴.故函数f(x)的值域为(﹣1,1).【点评】本题考查函数的单调性与奇偶性,考查函数的值域,考查学生的计算能力,属于中档题.21.(12分)已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.(1)求函数g(x)的解析式及定义域;(2)求函数g(x)的最值.【分析】第一步得到解析式和x的范围后注意整理;第二步换元时要注意新元的范围,为下面的函数求值域做好基础.【解答】解:(1)由题意可得g(x)=,且,进一步得:,且定义域为【2,8】,(2)令t=log2x,则t∈[1,3],h(t)=﹣t2+t+1,∵h(t)在【1,3】递减∴h(t)的值域为【h(3),h(1)】,即【﹣5,1】,∴当x=8时,g(x)有最小值﹣5,当x=2时,g(x)有最大值1.【点评】此题考查了求函数解析式的基础方法,确定定义域和换元需注意的地方,并综合考查了二次函数求最值,综合性较强,难度不大.22.(12分)定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.(1)求f(0),f(﹣1)的值;(2)判断该函数的单调性,并证明;(3)求不等式f(x+1)<4的解集.【分析】(1)根据题意,用特殊值法分析:令a=1,b=0,则f(1)=f(0)•f(1),可得f (0)的值,令a=1,b=﹣1,则f(0)=f(1)•f(﹣1),分析可得f(﹣1)的值;(2)任取x1,x2∈(﹣∞,+∞)且x1<x2,则有x2﹣x1>0,则f(x2﹣x1)>1,进而有f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1)>f(x1),结合单调性的定义分析可得结论;(3)根据题意,f(2)=f(1+1)=f(1)•f(1)=4,据此分析可得f(x+1)<4⇒f(x+1)<f(2)⇒x+1<2,解可得x的取值范围,即可得答案.【解答】解:(1)根据题意,对任意的a,b∈R,满足f(a+b)=f(a)•f(b);令a=1,b=0,则f(1)=f(0)•f(1),又由f(1)>1,则f(0)=1;令a=1,b=﹣1,则f(0)=f(1)•f(﹣1),又由f(1)=2,则;(2)f(x)在(﹣∞,+∞)上单调递增;任取x1,x2∈(﹣∞,+∞)且x1<x2,则有x2﹣x1>0,则f(x2﹣x1)>1,f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1)>f(x1),则f(x2)﹣f(x1)>0,即函数f(x)为增函数;(3)根据题意,f(2)=f(1+1)=f(1)•f(1)=4,则f(x+1)<4⇒f(x+1)<f(2)⇒x+1<2,解可得:x<1,即不等式的解集为(﹣∞,1).【点评】本题考查抽象函数的应用,涉及函数的奇偶性与单调性的证明与综合应用,注意用赋值法分析.。
2018-2019学年高一数学上学期期中试题(含解析)
2018-2019学年高一数学上学期期中试题(含解析)一、选择题(本大题共10小题,共40.0分)已知元素a∈{0,1,2,3},且a∉{1,2,3},则a的值为()A. 0B. 1C. 2D. 3在同一坐标系中,函数y=3x与y=3-x的图象关于()A. 直线对称 B. x轴对称 C. 直线对称 D. y轴对称设偶函数f(x)的定义域为R,当x∈[0,+∞)时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A. B.C. D.已知f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()A. B. C. D.下列对应是集合A到集合B上的映射的个数是()(1)A=R,B=N*,对应关系f:对集合A中的元素取绝对值,与B中的元素相对应;(2)A={1,-1,2,-2},B={1,4},对应关系f:f:x→y=x2,x∈A,y∈B;(3)A={三角形},B={x|x>0},对应关系f:对集合A中的三角形求面积,与集合B中的元素对应A. 0B. 1C. 2D. 3如图的曲线是幂函数y=xa在第一象限的图象.已知a取四个值,则相应的曲C1、C2、C3、C4的a依次为()A.B.C.D.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,则实数m的取值范围是()A. B. C. D.已知定义在R上的函数f(x)满足(x1-x2)[f(x1)-f(x2)]>0,设,则()A. B.C. D.已知函数f(2x+1)的定义域为[0,2],则y=f(x)的定义域为()A. B. C. D.已知函数y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,记g(x)=f(x)[f(x)+f(2)-1].若y=g(x)在区间上是增函数,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共16.0分)已知幂函数f(x)的图象经过点(2,4),则f(x)为______函数.(填奇偶性)设函数,则=______.设函数的定义域是实数集,则实数k的取值范围是______.已知对于任意实数x,函数f(x)都满足f(x)+2f(2-x)=x,则f(x)的解析式为______.三、解答题(本大题共5小题,共44.0分)设全集U=R,集合A={x|-2<x<3},B={y|y=2x-4,x∈A}.试求A∩B,(∁UA)∩B,(∁UA)∩(∁UB).设.(1)在图的直角坐标系中画出f(x)的图象;(2)若f(t)=2,求t值;(3)求函数f(x)的最小值.(1)求(log2125+log425+log85)(log52+log254+log1258)的值;(2)化简已知函数.(1)若函数f(x)是R上的奇函数,求m的值;(2)若函数f(x)的值域为D,且D⊆[-3,1],求m的取值范围.已知函数.(1)若m=0,求函数f(x)的定义域;(2)若函数f(x)的值域为R,求实数m的取值范围;(3)若函数f(x)在区间上是增函数,求实数m的取值范围.2018-2019学年高一数学上学期期中试题(含解析)一、选择题(本大题共10小题,共40.0分)已知元素a∈{0,1,2,3},且a∉{1,2,3},则a的值为()A. 0B. 1C. 2D. 3在同一坐标系中,函数y=3x与y=3-x的图象关于()A. 直线对称B. x轴对称C. 直线对称D. y轴对称设偶函数f(x)的定义域为R,当x∈[0,+∞)时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A. B.C. D.已知f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()A. B. C. D.下列对应是集合A到集合B上的映射的个数是()(1)A=R,B=N*,对应关系f:对集合A中的元素取绝对值,与B中的元素相对应;(2)A={1,-1,2,-2},B={1,4},对应关系f:f:x→y=x2,x∈A,y∈B;(3)A={三角形},B={x|x>0},对应关系f:对集合A中的三角形求面积,与集合B中的元素对应A. 0B. 1C. 2D. 3如图的曲线是幂函数y=xa在第一象限的图象.已知a取四个值,则相应的曲C1、C2、C3、C4的a依次为()A.B.C.D.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,则实数m的取值范围是()A. B. C. D.已知定义在R上的函数f(x)满足(x1-x2)[f(x1)-f(x2)]>0,设,则()A. B.C. D.已知函数f(2x+1)的定义域为[0,2],则y=f(x)的定义域为()A. B. C. D.已知函数y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,记g(x)=f (x)[f(x)+f(2)-1].若y=g(x)在区间上是增函数,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共16.0分)已知幂函数f(x)的图象经过点(2,4),则f(x)为______函数.(填奇偶性)设函数,则=______.设函数的定义域是实数集,则实数k的取值范围是______.已知对于任意实数x,函数f(x)都满足f(x)+2f(2-x)=x,则f(x)的解析式为______.三、解答题(本大题共5小题,共44.0分)设全集U=R,集合A={x|-2<x<3},B={y|y=2x-4,x∈A}.试求A∩B,(∁UA)∩B,(∁UA)∩(∁UB).设.(1)在图的直角坐标系中画出f(x)的图象;(2)若f(t)=2,求t值;(3)求函数f(x)的最小值.(1)求(log2125+log425+log85)(log52+log254+log1258)的值;(2)化简已知函数.(1)若函数f(x)是R上的奇函数,求m的值;(2)若函数f(x)的值域为D,且D⊆[-3,1],求m的取值范围.已知函数.(1)若m=0,求函数f(x)的定义域;(2)若函数f(x)的值域为R,求实数m的取值范围;(3)若函数f(x)在区间上是增函数,求实数m的取值范围.。
学2018-2019学年高一数学上学期期中试题(含解析)
学2018-2019学年高一数学上学期期中试题(含解析)一、选择题(共12道小题,每道题5分,共60分.请将正确答案填在答题卡上)1. 已知集合A={3,4,5},B={1,3,6},则A B等于()A. {4,5}B. {3}C. {1,6}D. {1,3,4,5,6}【答案】D【解析】【分析】利用集合的并集的定义计算即可.【详解】集合A={3,4,5},B={1,3,6},则故选:D【点睛】本题考查集合的交并补运算,属于基础题.2. 已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(CUB)等于()A. {4,5}B. {2,4,5,7}C. {1,6}D. {3}【答案】A【解析】试题分析:根据题意,由于全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6}那么可知,CUB={2,4,5,7},则A∩(CUB)= {4,5},故选A.考点:交、并、补的定义点评:本题考查利用交、并、补的定义进行集合间的混合运算,属于基础题3. 函数的定义域为()A. RB.C.D.【答案】D【解析】须满足3x-1>0,即其定义域为.4. 如果二次函数的图象的对称轴是,并且通过点,则()A. a=2,b=4B. a=2,b=-4C. a=-2,b=4D. a=-2,b=-4【答案】B【解析】【分析】由题得且,解方程组即得解.【详解】由题得,解之得a=2,b=-4.故选:B【点睛】本题主要考查二次函数的解析式的求法,意在考查学生对这些知识的理解掌握水平.5. 函数y=2|x|的图象是()A. B.C. D.【答案】B【解析】【分析】将函数写成分段函数,再结合指数函数的图象,即可容易判断.【详解】y=2|x|=,故当时,函数图象同单调递增;当时,函数图象同单调递减,且时,.满足以上条件的只有.故选:B.【点睛】本题考查指数型函数的图象,属简单题.6. 如果(且),则()A. B.C. D.【答案】A【解析】【详解】因为即,所以,即,故选A.考点:指数式与对数式.7. 已知,,,则的大小关系是()A. B. C. D.【答案】C【解析】【分析】根据指数函数,幂函数,和对数的单调性,即可得出结论.【详解】,.故选:.【点睛】本题主要考查指数、对数、幂的运算及性质等基础知识,注意与特殊数的对比,如“0”“1”等等,属于基础题.8. 下列说法中,正确的是A. 对任意,都有B. =是上的增函数C. 若且,则D. 在同一坐标系中,与的图象关于直线对称.【答案】D【解析】令,则,排除A;=是上的减函数,排除B;当时,成立,当时,不成立,排除C.选D.9. 如果函数在区间]上是减函数,那么实数a 的取值范围是()A. B. C. D.【答案】A【解析】因为二次函数开口向上,对称轴为,所以其减区间为,又函数在上是减函数,故,所以,解得,故选A.10. 已知f(x)=log x,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数为()A. 0B. 1C. 2D. 不确定【答案】B【解析】【分析】利用函数的单调性结合零点存在性定理求解.【详解】函数在上单调递减,且当时,;当时,则函数的零点个数为故选:B【点睛】本题考查函数的零点存在性定理,考查指对函数的单调性,属于基础题.11. 若函数为定义在R上的奇函数,且在内是增函数,又,则不等式的解集为()A. B.C. D.【答案】B【解析】【分析】利用奇函数的单调性的性质,可以知道函数在上的单调性,结合的值可以知道的值,分类讨论求出的解集.【详解】奇函数在内是增函数,所以函数在内是增函数,当时,则有,当时, 则有,所以的解集为.故选:B.【点睛】本题考查了利用函数奇偶性和单调性求解不等式解集问题,属于基础题型.12. 已知函数的定义域是,则的定义域为()A. B.C. D.【答案】D【解析】【分析】由定义域为,求得,进而得出,即可求得函数的定义域.【详解】因为定义域为,即,可得,故函数满足,解得,即的定义域是.故选D.【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记函数的定义域的定义,以及抽象函数的定义域的求法是解答的关键,着重考查推理与运算能力.二、填空题(共5道小题,每道题5分,共20分.)13. 已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+ .则f(3)=____________.【答案】18【解析】【分析】根据递推关系式依次求f(2) ,f(3).【详解】因为f(n+1)=3f(n),所以【点睛】本题考查根据递推关系求函数值,考查基本求解能力.14. 函数的值域为_______________.【答案】【解析】【分析】令,,首先求出取值范围,再根据对数函数的性质求出的范围,即可得解;【详解】解:因为,令,则,则,,所以,故故答案为:【点睛】本题考查对数型复合函数的值域,属于中档题.15. 计算:______________.【答案】【解析】【分析】利用指数、对数的运算性质以及对数恒等式可计算得出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数式与代数式的混合运算,考查指数、对数的运算性质以及对数恒等式的应用,考查计算能力,属于基础题.16. 函数,则的值为_______________.【答案】【解析】【分析】由题意先求出的值,即可得到的值.【详解】解:函数,,,故答案为:.【点睛】本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,分类讨论是解题的关键,属于基础题.三、解答题(6道题,共70分)17. 已知函数,,求函数的最大值和最小值.【答案】最大值是,最小值是.【解析】【分析】利用函数单调性的定义证明出函数在区间上为减函数,由此可求得函数在区间上的最大值和最小值.【详解】设、,且,即,则,,,,,,即,所以,函数在区间上为减函数,所以,,.因此,函数在区间上的最大值为,最小值为.【点睛】本题考查函数在区间上最值的求解,考查函数单调性的应用,属于中等题.18. 当时,幂函数为减函数,求实数的值.【答案】【解析】【分析】本题先得到且,再求解即可得到答案.【详解】解:因为当时,幂函数为减函数,所以且,解得,【点睛】本题考查利用幂函数的定义与性质求参数,是基础题.19. 已知函数,试解答下列问题:(1)求的值;(2)求方程=的解.【答案】(1);(2)或【解析】【分析】(1)已知为分段函数,把代入相对应函数值,然后再进行代入,从而求解;(2)分成两种情况:;,从而代入求方程的解;【详解】解:(1)函数,所以所以(2)当时,即,解得或(舍去);当时,即,解得;综上所述,或.【点睛】此题主要考查分段函数的性质,利用了分类讨论的思想,属于基础题;20. 已知函数f(x)=是定义在(-1,1)上的奇函数,且.(1)求函数f(x)的解析式;(2)已知f(x)在定义域上是增函数,解不等式f(t-1)+f(t)<0.【答案】(1);(2).【解析】【分析】(1)由奇函数及条件即可得解;(2)由函数为奇函数可得,进而由函数为增函数可得,解不等式组即可得解.【详解】(1)∵为奇函数∴∴∴,经检验为奇函数.(2)∴∵为奇函数.又∵为增函数∴∴.∴t的范围是.【点睛】本题主要考查利用函数的奇偶性和单调性解不等式,属于常考题型.解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成后再利用单调性和定义域列不等式组.21. 已知全集,集合或,,(1)求、;(2)若集合是集合A子集,求实数k的取值范围.【答案】(1),或;(2)或.【解析】分析】(1)先求出,,,再求,即可;(2)先分类讨论①当时,不存在;②当时,解得或,最后写出实数k的取值范围即可.【详解】解:(1)因为全集,集合或,,所以,,或,所以,或,(2)因为集合是集合A的子集,所以①当时,,不存在;②当时,或,解得:或,综上所述:实数k的取值范围是或.【点睛】本题考查集合的运算、根据集合的基本关系求参数范围,是基础题.22. 已知函数且(1)若函数图象经过P(3,4)点,求a的值;(2)若,求a的值【答案】(1);(2)或【解析】【分析】(1)函数的图象经过点,可得,由此求出;(2)由知,,对此类指对结合的不等式不能用常规解法求解,需要借助相关的公式求解,本题这种类型的一般采取两边取对数的方式将其转化为一元二次函数型的方程求解,两边取以10为底的对数可得,解此方程先求,再求.【详解】解:(1)函数的图象经过,即.又,所以.(2)由知,.所以,..,或,所以,或.【点睛】本题考点是指数函数单调性的应用,考查了求指数函数解析式,解指数与对数方程,本题涉及到的基础知识较多,综合性较强,在本题中解指数与对数方程时用到了两边取对数将指数方程转化为一元二次方程求解,这是此类方程求解时专用的一个技巧,要好好总结其运用规律.学2018-2019学年高一数学上学期期中试题(含解析)一、选择题(共12道小题,每道题5分,共60分.请将正确答案填在答题卡上)1. 已知集合A={3,4,5},B={1,3,6},则A B等于()A. {4,5}B. {3}C. {1,6}D. {1,3,4,5,6}【答案】D【解析】【分析】利用集合的并集的定义计算即可.【详解】集合A={3,4,5},B={1,3,6},则故选:D【点睛】本题考查集合的交并补运算,属于基础题.2. 已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(CUB)等于()A. {4,5}B. {2,4,5,7}C. {1,6}D. {3}【答案】A【解析】试题分析:根据题意,由于全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6}那么可知,CUB={2,4,5,7},则A∩(CUB)= {4,5},故选A.考点:交、并、补的定义点评:本题考查利用交、并、补的定义进行集合间的混合运算,属于基础题3. 函数的定义域为()A. RB.C.D.【答案】D【解析】须满足3x-1>0,即其定义域为.4. 如果二次函数的图象的对称轴是,并且通过点,则()A. a=2,b=4B. a=2,b=-4C. a=-2,b=4D. a=-2,b=-4【答案】B【解析】【分析】由题得且,解方程组即得解.【详解】由题得,解之得a=2,b=-4.故选:B【点睛】本题主要考查二次函数的解析式的求法,意在考查学生对这些知识的理解掌握水平.5. 函数y=2|x|的图象是()A. B.C. D.【答案】B【解析】【分析】将函数写成分段函数,再结合指数函数的图象,即可容易判断.【详解】y=2|x|=,故当时,函数图象同单调递增;当时,函数图象同单调递减,且时,.满足以上条件的只有.故选:B.【点睛】本题考查指数型函数的图象,属简单题.6. 如果(且),则()A. B.C. D.【答案】A【解析】【详解】因为即,所以,即,故选A.考点:指数式与对数式.7. 已知,,,则的大小关系是()A. B. C. D.【答案】C【解析】【分析】根据指数函数,幂函数,和对数的单调性,即可得出结论.【详解】,.故选:.【点睛】本题主要考查指数、对数、幂的运算及性质等基础知识,注意与特殊数的对比,如“0”“1”等等,属于基础题.8. 下列说法中,正确的是A. 对任意,都有B. =是上的增函数C. 若且,则D. 在同一坐标系中,与的图象关于直线对称.【答案】D【解析】令,则,排除A;=是上的减函数,排除B;当时,成立,当时,不成立,排除C.选D.9. 如果函数在区间]上是减函数,那么实数a的取值范围是()A. B. C. D.【答案】A【解析】因为二次函数开口向上,对称轴为,所以其减区间为,又函数在上是减函数,故,所以,解得,故选A.10. 已知f(x)=log x,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数为()A. 0B. 1C. 2D. 不确定【答案】B【解析】【分析】利用函数的单调性结合零点存在性定理求解.【详解】函数在上单调递减,且当时,;当时,则函数的零点个数为故选:B【点睛】本题考查函数的零点存在性定理,考查指对函数的单调性,属于基础题.11. 若函数为定义在R上的奇函数,且在内是增函数,又,则不等式的解集为()A. B.C. D.【答案】B【解析】【分析】利用奇函数的单调性的性质,可以知道函数在上的单调性,结合的值可以知道的值,分类讨论求出的解集.【详解】奇函数在内是增函数,所以函数在内是增函数,当时,则有,当时, 则有,所以的解集为.故选:B.【点睛】本题考查了利用函数奇偶性和单调性求解不等式解集问题,属于基础题型.12. 已知函数的定义域是,则的定义域为()A. B.C. D.【答案】D【解析】【分析】由定义域为,求得,进而得出,即可求得函数的定义域.【详解】因为定义域为,即,可得,故函数满足,解得,即的定义域是.故选D.【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记函数的定义域的定义,以及抽象函数的定义域的求法是解答的关键,着重考查推理与运算能力.二、填空题(共5道小题,每道题5分,共20分.)13. 已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+ .则f(3)=____________.【答案】18【解析】【分析】根据递推关系式依次求f(2) ,f(3).【详解】因为f(n+1)=3f(n),所以【点睛】本题考查根据递推关系求函数值,考查基本求解能力.14. 函数的值域为_______________.【答案】【解析】【分析】令,,首先求出取值范围,再根据对数函数的性质求出的范围,即可得解;【详解】解:因为,令,则,则,,所以,故故答案为:【点睛】本题考查对数型复合函数的值域,属于中档题.15. 计算:______________.【答案】【解析】【分析】利用指数、对数的运算性质以及对数恒等式可计算得出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数式与代数式的混合运算,考查指数、对数的运算性质以及对数恒等式的应用,考查计算能力,属于基础题.16. 函数,则的值为_______________.【答案】【解析】【分析】由题意先求出的值,即可得到的值.【详解】解:函数,,,故答案为:.【点睛】本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,分类讨论是解题的关键,属于基础题.三、解答题(6道题,共70分)17. 已知函数,,求函数的最大值和最小值.【答案】最大值是,最小值是.【解析】【分析】利用函数单调性的定义证明出函数在区间上为减函数,由此可求得函数在区间上的最大值和最小值.【详解】设、,且,即,则,,,,,,即,所以,函数在区间上为减函数,所以,,.因此,函数在区间上的最大值为,最小值为.【点睛】本题考查函数在区间上最值的求解,考查函数单调性的应用,属于中等题.18. 当时,幂函数为减函数,求实数的值.【答案】【解析】【分析】本题先得到且,再求解即可得到答案.【详解】解:因为当时,幂函数为减函数,所以且,解得,【点睛】本题考查利用幂函数的定义与性质求参数,是基础题.19. 已知函数,试解答下列问题:(1)求的值;(2)求方程=的解.【答案】(1);(2)或【解析】【分析】(1)已知为分段函数,把代入相对应函数值,然后再进行代入,从而求解;(2)分成两种情况:;,从而代入求方程的解;【详解】解:(1)函数,所以所以(2)当时,即,解得或(舍去);当时,即,解得;综上所述,或.【点睛】此题主要考查分段函数的性质,利用了分类讨论的思想,属于基础题;20. 已知函数f(x)=是定义在(-1,1)上的奇函数,且.(1)求函数f(x)的解析式;(2)已知f(x)在定义域上是增函数,解不等式f(t-1)+f(t)<0.【答案】(1);(2).【解析】【分析】(1)由奇函数及条件即可得解;(2)由函数为奇函数可得,进而由函数为增函数可得,解不等式组即可得解.【详解】(1)∵为奇函数∴∴,经检验为奇函数.(2)∴∵为奇函数.又∵为增函数∴∴.∴t的范围是.【点睛】本题主要考查利用函数的奇偶性和单调性解不等式,属于常考题型.解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成后再利用单调性和定义域列不等式组.21. 已知全集,集合或,,(1)求、;(2)若集合是集合A子集,求实数k的取值范围.【答案】(1),或;(2)或.【解析】(1)先求出,,,再求,即可;(2)先分类讨论①当时,不存在;②当时,解得或,最后写出实数k的取值范围即可.【详解】解:(1)因为全集,集合或,,所以,,或,所以,或,(2)因为集合是集合A的子集,所以①当时,,不存在;②当时,或,解得:或,综上所述:实数k的取值范围是或.【点睛】本题考查集合的运算、根据集合的基本关系求参数范围,是基础题.22. 已知函数且(1)若函数图象经过P(3,4)点,求a的值;(2)若,求a的值【答案】(1);(2)或【解析】【分析】(1)函数的图象经过点,可得,由此求出;(2)由知,,对此类指对结合的不等式不能用常规解法求解,需要借助相关的公式求解,本题这种类型的一般采取两边取对数的方式将其转化为一元二次函数型的方程求解,两边取以10为底的对数可得,解此方程先求,再求.【详解】解:(1)函数的图象经过,即.又,所以.(2)由知,.所以,..,或,所以,或.【点睛】本题考点是指数函数单调性的应用,考查了求指数函数解析式,解指数与对数方程,本题涉及到的基础知识较多,综合性较强,在本题中解指数与对数方程时用到了两边取对数将指数方程转化为一元二次方程求解,这是此类方程求解时专用的一个技巧,要好好总结其运用规律.。
苏教版2018-2019学年高一上学期期中联考数学试卷(答案解析)
五校联盟18-19年度第一学期期中考试高一数学试卷一.选择题1.下列集合中表示同一集合的是( )A. B.C. D.【答案】B 【解析】A 选项点集中元素点的坐标不同,C 选项中前一个是点集,后一个是数集,D 选项中前一个是数集,后一个是点集,故选B 2.如图所示,是全集,是的子集,则阴影部分所表示的集合是( )A. B. C. D.【答案】C 【解析】试题分析:由图象可知阴影部分是集合B 与集合A 在全集U 中的补集的公共元素,因此答案选C. 考点:集合的运算3.下列哪组中的两个函数是同一函数( )A. 与B.与y=x+1C.与D. y=x 与【答案】D 【解析】 【分析】首先利用同一函数的定义,对各个选项逐个分析,分别从定义域、值域和对应法则几个角度去区分,从而确定出正确结果. 【详解】对于A ,,两个函数的值域不同,所以不是同一函数;对于B ,函数与的定义域不同,所以不是同一函数;对于C,与的定义域不相同,所以不是同一函数;对于D,,与是同一函数;故选D.【点睛】该题考查的是有关选择同一函数的问题,涉及到的知识点有同一函数的定义,以及相关式子的化简公式,必须保证三要素都是完全一样的,才能保证是同一函数.4.函数的定义域是()A. B.C. D.【答案】C【解析】试题分析:分母不等于零,对数真数大于零,所以,解得.考点:定义域.5.函数的图象关于( )A. 原点对称B. 轴对称C. 轴对称D. 直线对称【答案】A【解析】【分析】利用奇偶性的定义,判断函数为奇函数,故图像关于原点对称.【详解】函数的定义域为,即.,所以函数为奇函数,图像关于原点对称,故选A.【点睛】本小题主要考查函数的奇偶性.务必记住,要判断一个函数是奇函数还是偶函数,需要先求函数的定义域.属于基础题.6.当时,函数和的图象只能是A.B.C.D.【答案】B【解析】略7.设,,,则的大小关系是( )A.B.C.D.【答案】A【解析】【分析】先得到最小的,然后利用,求得的大小关系.【详解】由于,而,所以,故选A.【点睛】本小题主要考查利用指数函数、对数函数、幂函数的性质比较大小.属于基础题.8.已知函数,则f(1)- f(9)=()A. ﹣1B. ﹣2C. 6D. 7【答案】A【解析】【分析】利用分段函数,分别求出和的值,然后作差得到结果.【详解】依题意得,,所以,故选.【点睛】本小题主要考查利用分段函数求函数值,只需要将自变量代入对应的函数段,来求得相应的函数值.属于基础题.9.已知幂函数的图象过,若,则值为()A. 1B.C. 3D. 9【答案】B【解析】【分析】由函数的图象过点,先求出幂函数,再由,能求出的值,最后求的值. 【详解】∵幂函数幂函数的图象过,,解得.则故选:B.【点睛】本题考查幂函数的解析式的求法及应用,考查对数恒等式的应用,解题时要认真审题,注意待定系数法的灵活运用,是基础题.10.已知函数,其中是偶函数,且,则().A. B. C. D.【答案】C【解析】【分析】先将代入,求得的值.然后利用奇偶性,求得的值.【详解】,由于函数为偶函数,故,.【点睛】本小题主要考查函数的奇偶性,考查利用函数的奇偶性来求函数值,属于基础题.注意偶函数的定义.11.若函数是上的减函数,则实数的取值范围是()A. B. C. D.【答案】D【解析】∵函数是上的减函数∴∴故选D点睛:本题考查分段函数的单调性,解决本题的关键是熟悉指数函数,一次函数的单调性,确定了两端函数在区间上单调以外,仍需考虑分界点两侧的单调性,需要列出分界点出的不等关系.12.已知函数是定义在R上的偶函数,且在区间上是单调递增,若实数a满足,则a的取值范围是()A. B. C. D.【答案】D【解析】【分析】根据函数为偶函数可知,函数在上递减,在上递增.利用对数运算,将题目所给不等式转化为,即,由此解得的取值范围.【详解】由于函数为偶函数,且在上递增,属于函数在上递减.原不等式等价于,即,即,所以,,解得.【点睛】本小题考查函数的奇偶性与函数的单调性,考查利用函数的奇偶性来求解不等式.如果一个函数为奇函数,那么它的图像关于原点对称,在轴两侧的单调性是相同的,如果一个函数为偶函数,则图像关于轴对称,在轴两侧的单调性是相反的本小题属于中档题.二 .填空题13.函数恒过定点__________.【答案】【解析】试题分析:定点.考点:函数的定点.14.已知函数,若=10,则=________。
2018-2019年高一上期中考试数学试卷及答案
金川公司二高2018-2019学年度第一学期高一年级期中考试数 学 试 卷第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列表示错误..的是( ). A .0φ∉ B .{}1,2φ⊆ C .{}{}(3,4)3,4= D .{}211x x ∈=2.集合{}|19,*M x x x N =<<∈,{}1,3,5,7,8N =,则M N ⋂=( ).A .{}1,3,5B .{}1,3,5,7,8C .{}1,3,5,7D . {}3,5,7,83.函数04()()=+-f x x 的定义域为( ). A .[)()2,44,+∞ B .[)2,+∞ C .()(2,4)4,+∞ D .(],2-∞4.下列四组函数中,表示相同函数的一组是( ).A .()()2f xg x ==B .()(),f x x g x ==C .()()21,11x f x g x x x -==+- D .()()f x g x ==5.函数的()3log 82f x x x =-+零点一定位于区间( ).A .(1,2)B .(2,3)C .(3,4)D .(5,6)6.设21()3a =,123b =,13log 2c = 则( ).A .a b c >>B . b c a >>C . b a c >>D . c b a >>7.函数212log (6)=+-y x x 的单调增.区间是( ). A .1(,]2-∞ B .1(2,]2- C .1[,)2+∞ D .1[,3)28.()log a f x x = (01)a <<在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( ).A .42 B . 22 C . 41 D . 219.函数2xy -=的大致图象是( ).A .B .C .D .10.已知函数1()(2)()2(1)(2)xx f x f x x ⎧≥⎪=⎨⎪+<⎩,则2(log 3)f =( ).A .6B .16 C .13D .3 11.()f x 是定义在(2,2)-上递减的奇函数,当(2)(23)0f a f a -+-<时,a 的取值范围是( ).A .(0,4)B .5(0,)2 C .15(,)22 D .5(1,)212. 若函数()21()log 3xf x x =-,实数0x 是函数()f x 的零点,且100x x <<,则()1f x 的值( ).A .恒为正值B .等于0C .恒为负值D .不大于0第Ⅱ卷二.填空题:(本大题共4小题,每小题5分,满分20分。
2018-2019学年高一上学期期中数学试卷含答案
4 ,则实数 a
(
)
A. 4, 2,2
B. 4, 2
C. 4,2
D. 2,2
6. 若偶函数 f ( x) 在 , 1 上是增函数,则下列关系式中成立的是(
)
A. f ( 1.5) f ( 1) f (2)
B. f ( 1) f ( 1.5) f (2)
C. f (2) f ( 1) f ( 1.5)
A. 奇函数
B. 偶函数
C. 既是奇函数又是偶函数
D. 非奇非偶函数。
4. 若全集 U
2
{ x | x 10x 9
0} , M
{1,9} , N
{x| x 1
2} , 则 CU M
N(
)
A. 1,3 B. 1,9 C. (1,3)
D.
1,3
x, x 0
5.设函数 f ( x)
x2, x
,若 f ( a) 0
17.(本题满分 12 分):
(I) 计算: 4 4 x( 34 x ) (
3y
6) x 3 y2
(II) 计算: (log 3 4 log 3 8)(log 2 3 log 2 9)
2
18.(本题满分 12 分): 已知 y f ( x) 是一次函数,且 f (2) 4, f ( 1) 5 ,
(I) 求函数 f ( x) 的解析式 . (II) 若 2x f (x ) 2 ,求实数 x 的值 .
D. f (2) f ( 1.5) f ( 1)
7. 已知 a 0.80.7 , b 0.80.9, c 1.20.7 ,则 a 、 b 、 c 的关系为:
A. c a b B.
c b a C.
a c b D.
江苏省徐州市2018-2019高一上学期期中考试数学试卷(扫描版)
2018~2019学年度第一学期期中考试高一数学试题参考答案与评分标准二、填空题(本大题共4小题,每小题5分,计20分)13.(0,1﹞ 14. 3()f x x = 15. 60 16 . ①②③ 三、解答题:本大题共6小题共计70分,请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:(1)原式1132322564119274--⎛⎫⎛⎫⎛⎫=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132322325411332--⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦531834=--+ 9512=(或写成11712). ………………………………………………5分 (2)原式2log 311lg522lg2(lg2lg5)2-=++⋅++11(lg5lg2)322=+++⨯ 13122=++ 3=. ……………………………………………10分18.(本小题满分12分) 解:(1){}|16A x x =-≤≤,当3m =时,{}|48B x x =≤≤, …………………………………………2分{}|46A B x x =≤≤. ……………………………………………5分 (2)当B =∅时,131m m +>-,所以1m <满足题意 ;………………………………7分 当B =∅时,由题意13111316m m m m +-⎧⎪+-⎨⎪-⎩≤≥≤,解得713m ≤≤.………………………………… 10分综上知:实数m 的取集合7|3C m m ⎧⎫=⎨⎬⎩⎭≤. ………………………………… 12分19.(本小题满分12分)解(1)当0x <时,0x ->,则22()()4()242f x x x x x -=--+--=---, ∵()f x 为奇函数,∴2()()42f x f x x x -=-=---, ∴2()42f x x x =++,∴当0x <时,函数()f x 的解析式为2()42f x x x =++.…………………………………4分 (2)7…………………………………………8分由图得()g x 单调增区间为(2,6)-,单调减区间(4,2)--,……………………………… 10分 值域为[2,2]-. ……………………………… 12分 20.(本小题满分12分)解:(1)()f x 是奇函数, …………………………………… 1分 证明如下:()f x 的定义域为R ,关于原点对称,21()21x x f x -=+,∴211221()()211221x x x xx x f x f x ------===-=-+++, 所以()f x 为奇函数. …………………………………… 4分 (2)()f x 在(,)-∞+∞上为增函数. …………………………………… 5分 证明:任取1x ,2(0,)x ∈+∞,且12x x <, 则12211212222(22)()()2121(21)(21)x x x x x x f x f x --=-=++++, ∵1x ,2(,)x ∈-∞+∞,且12x x <, ∴12220x x -<,1210x +>,2210x +>, ∴12()()0f x f x -<即12()()f x f x <,∴()f x 在(,)-∞+∞上为增函数, …………………………………… 8分 ∵()f x 在(,)-∞+∞上为增函数且2(3)(22)f x x f x +<+,∴2322x x x +<+, …………………………………… 10分 ∴21x -<<,即2(3)(22)f x x f x +<+的解集为{}|21x x -<<.…………………………………… 12分21.(本小题满分12分) 解:(1)设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元, 由题意知f (x )=k 1x ,, …………………………………… 2分由图可知f (2)=1,,g (4)=4,k 2=2从而……………………………………3分…………………………………… 4分(2)设A 产品投入x 万元,则B 产品投入(10﹣x )万元,设企业利润为y 万元.… 5分 则, ………………………… 7分(无定义域扣1分) 令,则,……………………………… 9分 当t=2时,y max =7,此时x=10﹣4=6(万元) ………………………………11分 所以当A 产品投入6万元,B 产品投入4万元时,企业获得最大利润为7万元……… 12分22.(本小题满分12分)解:(1)1m =时,函数2()24f x x x =--在(2,1)-上是减函数,在(1,2)上是增函数,…………………………………………… 2分所以当2x =-时,()f x 有最大值,且max ()(2)4f x f =-=, …………………………… 3分 当1x =时,()f x 有最小值,且min ()(1)5f x f ==-. …………………………… 4分 (2)不等式()1f x >-,即2(13)30mx m x +-->,当0m =时,解得3x >, …………………………………… 5分 当0m ≠时,(3)(1)0x mx -+=的两根为3和1m-, 当0m >时,13m-<,不等式的解集为:1{|x x m <-或3}x >,………………………… 6分当0m <时,13133m m +⎛⎫--= ⎪⎝⎭,所以当13m <-时,13m -<,不等式的解集为:1|3x x m ⎧⎫-<<⎨⎬⎩⎭, ……………………7分当13m =-时,不等式的解集为:∅, …………………………… 8分当103m -<<时,13m <-,不等式的解集为:1|3x x m ⎧⎫<<-⎨⎬⎩⎭,综上所述:当0m >时,13m-<,不等式的解集为:1{|x x m <-或3}x >;当0m =时,不等式的解集为:{}|3x x >;当103m -<<时,13m <-,不等式的解集为:1|3x x m ⎧⎫<<-⎨⎬⎩⎭;当13m =-时,不等式的解集为:∅;当13m <-时,不等式的解集为:1|3x x m ⎧⎫-<<⎨⎬⎩⎭.…………………………………… 9分(五种情况各一分,最后不进行总结不扣分)(3)0m <时2()(13)4f x mx m x =+--,m ∈R 为开口向下的抛物线, 抛物线的对称轴为13311222m x m m-=-=->, ………………………… 10分 若存在0(1,)x ∈+∞,使得0()0f x >,则2(13)160m m -+>,………………………… 11分 即291010m m ++>,解得1m <-或109m -<<,综上所述:m 的取值范围是1(,1),09⎛⎫-∞-- ⎪⎝⎭. …………………………12分。
【数学解析】统考2018-2019学年高一第一学期期中考试
8 2 log 2 【答案】 (1)证明见解析(2) , 3 3 【难度】中 【考点】函数图象,对数运算
【解析】 (1)由题意得 AC 平行与 y 轴时, x1 x2 ,
y1 y2 f x1 g x2 log 2 4 x log 2 x log 2 4 log 2 x log 2 x 2
) D.
A.
1,1,5
B.
5, 1
C.
1
1,1
【答案】C 【难度】易 【考点】一元二次方程,集合运算 4. 已知函数 f x log 2 x ,且 f a 2 ,则 a ( A. 4 【答案】A 【难度】易 【考点】对数运算 5. 已知集合 A 0,1 ,若 B A A ,则满足该条件的集合 B 的个数是( A. 1 B. 2 C. 3 ) D. 4 B. 2 ) C.
1 1 ,解之得 a 1 ,得 f x x ; 3 x2 2 1 ,则函数 g x 在区间上的值域为 y 3, 1 . x x
(2)由题意得 g x
20. (本小题满分 10 分)说明:请同学们在(A) 、 (B)两个小题中任选一题作答. (A)已知函数 f x x 2 2ax a 在区间 , 2 上有最小值, (1)求实数 a 的取值范围; (2)当 a 1 时,设函数 g x ,证明 g x 在区间 1, 为增函数. x 【答案】 (1) a 2 (2)证明见解析 【难度】中 【考点】二次函数单调性,函数单调性的证明 b 2a a ,而函数在区间 , 2 上有最小值,意味着函数 【解析】 (1)由题意得函数对称轴为 2a 2 的对称轴在区间内部可得 a 2 ; ( 2) a 1 g x
中学18—19学年上学期高一期中考试数学试题(附答案)
2018——2019学年度第一学期期中考试高一学年 数学试卷分值:150分 时间:120分钟一、选择题(本题共12个小题,每小题5分,共60分,每小题只有一项符合题意) 1、下列能组成集合的是( )A. 著名的运动健儿B.26个英文字母C.非常接近0的数D.勇敢的人 2、若集合{}4,3,2,1=M ,{}2,1=N 则=N M ( )A.{}2,1 B.{}4,3 C.{}1 D.{}2 3、已知集合}21{},0{≤≤-=>=x x B x x A ,则B A 等于( )A.{}1-≥x xB.{}2≤x xC.{}20≤<x xD.{}21≤≤-x x4、已知集合{}92<=x x U ,则=R C U ( )A. {}3≥x xB.{}3≤x x C.{}33≥-≤x x x 或 D. {}33>-<x x x 或 5. 120角所在象限为( )A.第一象限B.第二象限C.第三象限D.第四象限 6、函数11)(+=x x f 的定义域为( ) A.),1[+∞- B.]1,(--∞ C.()),1(1,+∞--∞- D.R 7、下列各组函数中,表示同一个函数的是( )A.x x x x g x x f +=+=22)(12)(与B.1112+-=-=x x y x y 与C.392--=x x y 与3+=x y D.1)(1)(==x g x f 与8、150化为弧度制表示为( ) A.π32 B.π43 C.π65 D.π67 9、当10<<a 时,在同一坐标系中,函数xy a -=与log a y x =的图象是( )10、令0.760.76,0.7,log 6a b c ===,则三个数c b a ,,的大小顺序是 ( ) A.a c b << B.c a b << C.b a c << D.a b c <<11、设2()328f x x x =+-,用二分法求方程23280x x +-=在(1,2)x ∈内近似解的过程 中得0)1(<f ,0)25.1(<f ,0)5.1(>f ,则方程的根在区间 ( ) A. )5.1,25.1( B .)25.1,1( C .)2,5.1( D .不能确定12、函数)32(log )(22--=x x x f 的单调增区间为( )A. ),3(+∞B.),3[+∞C.)1,(--∞D.]1,(--∞ 二、填空题(本大题共4小题,每小题5分,共20分。
2018-2019学年高一上学期期中考试数学试题(附解析)(20190907123243)
2018-2019学年度第一学期高一年级期中考试试题数学注意事项:1.本次考试的试卷分为试题卷和答题卷,本卷为试题卷,请将答案和解答写在答题卷指定的位置,在试题卷和其它位置解答无效.2.本试卷满分150分,考试时间120分钟.一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关系正确..的是()A. B. C. D.【答案】A【解析】由集合与元素的关系可得:,由集合与集合的关系可得:,结合所给选项可知只有A选项正确.本题选择A选项.2.集合的子集中,含有元素的子集共有A. 2个B. 4个C. 6个D. 8个【答案】B【解析】试题分析:中含有元素的子集有:,共四个,故选 B.考点:集合的子集.3.已知则=()A. 3B. 13C. 8D. 18【答案】C【解析】.4.若则当取最小值时,此时x,y分别为( )A. 4,3B. 3,3C. 3,4D. 4,4【答案】C【解析】【分析】根据题意,分析可得y=x(x﹣2)2,由基本不等式的性质可得y=(x﹣2)2≥22=4,同时可得x的值,即可得答案.【详解】根据题意,y=x(x﹣2)2,又由x>2,则y=(x﹣2)2≥22=4,当且仅当x﹣2=1时,即x=3时等号成立,即x=3,y=4;故选:C.【点睛】本题考查了基本不等式的性质,关键是掌握基本不等式的形式.5.不等式对于恒成立,那么的取值范围是( )A. B. C. D.【答案】B【解析】【分析】分当a=2时,符合题意与a≠2时,则a需满足:,解得a的范围即可.【详解】当a=2时,﹣4<0,∴符合题意;a≠2时,则a需满足:,解得﹣2<a<2;∴﹣2<a≤2;故选 B.【点睛】考查二次函数的最大值的计算公式,注意讨论二次项的系数是否为0的情况,注意结合二次函数图象,属于中等题.。
学18—19学年上学期高一期中考试数学试题(附答案)
石家庄市第一中学2018—2019 学年度第一学期期中考试高一年级期中试题第 I 卷(选择题,共 60 分)一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,请填涂在答题卡上.1.设集合M x | ( x 3)( x 2) 0, x R, N x | 1 x 3, x R ,则M NA.1, 2B.[1, 2] C.2, 3D.[2, 3]2.已知元素 ( x,y) 在映射f 下的原象是 ( x 2 y,2 x y) ,则元素 (4,3) 在f 下的象是A.10,5B.2,1C. (2, 1)), D . (11 2 5 53.函数 y a x 2 a 0, 且a 1 的图象经过定点A . 0,14.若f 10x x ,则f 33 10 A. log3 10 B. lg 3 C.10 D. 35.设a log3 2, b log5 2, c log 2 3 ,则A.a c bB.b c aC.c b aD.c a b6.函数y a x 1(a 0, a 1) 的图象可能是a2x 1 1, x1,7.已知函数 fxlog2若f (a) 1 ,则f (1a)3 x , x 1,A. 2 B. 2C.1 D. 18.已知f ( x) 是定义在 R 上的偶函数,且在区间 (,0) 上单调递增,若实数a 满足f (2|a 1| )f (2 ) ,则 a 的取值范围是A . (, 1 )B . (, 1 ) U ( 3 , )2 2 2( ) x2 2219.已知函数 f x21 log2 x ,若 x 0 是方程 f x 0 的根,则 x 012 A . 0,2B . ,12C . 1,4 x b2 D . , 210.函数 f ( x ) lg(10 x 1) ax 是偶函数, g ( x )是奇函数,则 a b 2 xA .1B . 1C.1D.12 211.偶函数f ( x) log a x b 在 (, 0) 上单调递增,则f (a 1) 与f (b 2) 的大小关系是A.f (a 1)C.f (a 1)f (b 2) f (b 2)B.f (a 1) D.f (a 1)f (b 2) f (b 2)12.集合A 如果满足:①A为非空数集;② 0 A ;③若对任意x A 有1A ,则称xA 是“互倒集”.给出以下数集:①x R | x 2 ax 1 0, a R;②x3 1 x⎨ ⎨ 3 12 x 2 ,x0,1 y | y③x1, x 1, 2.其中一定是“互倒集”的个数是xA .0B .1C .2D .3第 II 卷(非选择题,共 90 分)二、选择题:本题共 4 小题,每小题 5 分,共 20 分,答案填在答题纸相应的位置.13.已知幂函数y f ( x) 的图象过点,则它的解析式为.214.计算 3 log 2 (log 2 16) (5log 15 3) 2= .15. 若函数f ( x) log 2 (1 ax) 在 (,1) 上单调递减,则实数a 的取值范围是.2x 1, x 016.已知函数fx,若方程f x log x 2(0 a 1) 有且仅f x 1, x 0a有两个不同的实数根,则实数a 的取值范围为.三、解答题:本大题共 6 小题,共 70 分.请将解答过程书写在答题纸上,并写出文字说明、证明过程或演算步骤.17.(本题满分 10 分)已知A {x | a x 2a 3} ,B {x | x 1, 或x 6}(Ⅰ)若A B x 1 x 3,求a 的值;(Ⅱ)若A U B B ,求a 的取值范围.18.(本题满分 12 分)1 x已知函数f ( x) log a (a 0 , a 1) .1 x(Ⅰ)求函数的定义域;(Ⅱ)若a (lg 2)2 lg 2 lg 50 lg 25 ,求使的f ( x) 0 的x 的取值范围.19.(本题满分 12 分)已知定义域为 R 的函数 fx2x b x 1是奇函数.(Ⅰ)求a ,b 的值;2 a(Ⅱ)证明:函数在 R 上是减函数.20.(本题满分 12 分)如图,已知底角为 45的等腰梯形ABCD ,底边BC 长为12 ,腰长为 4 2 ,当一条垂直于底边BC (垂足为l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分.(Ⅰ)令BF x 0 x 12,试写出直线右边部分的面积y 与x 的函数解析式;f x , 0 x 4,(Ⅱ)在(Ⅰ)的条件下,令y f x .构造函数g x(6 x) f ( x), 4 x 8.①判断函数g x在4, 8上的单调性;②判断函数g x在定义域内是否具有单调性,并说明理由.21.(本题满分 12 分)x a 1 (a 0 且a 1) ,恒过定点 (2, 2) .已知函数f ( x) a(Ⅰ)求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,将函数f ( x) 的图象向下平移 1 个单位,再向左平移a 个单位后得到函数g ( x) ,设函数g ( x) 的反函数为h( x) ,直接写出h( x) 的解析式;(Ⅲ)对于定义在(0, 4) 上的函数y h( x) ,若在其定义域内,不等式[h( x) 2]2 h( x)m 1 恒成立,求实数m 的取值范围.22.(本题满分 12 分)2 bx c 的图像经过点 (1,13 ) ,且满足f ( 2) 已知二次函数f ( x ) x(Ⅰ)求f ( x ) 的解析式;f (1) ,(Ⅱ)已知t 2, g ( x ) [ f ( x ) x 2 13 ] | x | ,求函数g ( x ) 在[t ,2 ] 的最大值和最小值;(Ⅲ)函数yf ( x ) 的图像上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.石家庄市第一中学2018—2019学年度第一学期期中考试高一年级期中试题命题人: 胡娜 审核人:左广兰,胡雪莎第I 卷(选择题,共60分)一、选择题:ABCBD DBCBD DB二、选择题: 13.21x y = 14.14 15.(]0,1 16.11,32⎡⎫⎪⎢⎣⎭三、解答题:17. 0332)1(=⇒=+a a 令,经检验符合题意. …………5分分或分或分当10.139;163232132,7;332,)2(⋅⋅⋅⋅⋅⋅>-<∴⋅⋅⋅⋅⋅⋅>⇒⎩⎨⎧-<++≤⎩⎨⎧>+≤≠⋅⋅⋅⋅⋅⋅-<⇒+>=a a a a a a a a a A a a a A φφ 18.(1)由101x x+>-解得11x -<<,所以函数的定义域为{}|11x x -<<.……4分 (2)2(lg2)lg2lg50lg25a =+⋅+222(lg 2)lg 2lg(25)lg5=+⨯+22(lg 2)2lg 2lg52lg52=++=,……8分()0f x >,即221log 0log 11x x+>=-,111x x+>-,解这个不等式得0 1.x <<……12分19.(1)∵()f x 是R 上的奇函数,∴()00f =,即-102b a+=+,解得1b =,……2分 从而有()1212xx f x a +-+=+,又()()11f f =--知1121241a a -+-+=-++,解得2a =.……4分 当2a =,1=b 时,12221)(++-=x xx f 12121++-=x ,。
2018-2019学年高一上学期期中考试数学试题Word版含答案
2018-2019学年高一上学期期中考试数学试题试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,共计150分。
考试时间:120分钟。
卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分1. 如果A=(-1,+∞),那么正确的结论是( )A. 0⊆AB. {0}∈AC. {0}⊂≠AD. A ∈Φ 2. 函数f (x )=22-x ,则)21(f =( ) A. 0 B. -2 C. 22 D. -22 3. 与函数y=lg (x-1)的定义域相同的函数是( )A. y=x-1B. y=|x-1|C. y=11-xD. y=1-x 4. 若函数f (x )=x x -+33与g (x )= x x --33的定义域均为R ,则( )A. f (x )与g (x )均为偶函数B. f (x )为奇函数,g (x )为偶函数C. f (x )与g (x )均为奇函数D. f (x )为偶函数,g (x )为奇函数5. 设a=lg 0.2,b=2log 3,c=215,则( )A. a<b<cB. b<c<aC. c<a<bD. c<b<a 6. 若指数函数y=x a )1(+在(-∞,+∞)上是减函数,那么( )A. 0<a<1B. -1<a<0C. a=-1D. a<-1 7. 设函数y=x 3与y=x )21(的图象的交点为(x 0,y 0),则x 0所在的区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)8. 已知函数f (x )是R 上的偶函数,当x ≥0时f (x )=2x -2,则f (x )<0的解集是( )A. (-1,0)B. (0,1)C. (-1,1)D. (-∞,-1)⋃(1,+∞)9. 某商店卖出两套不同品牌的西服,售价均为1680元。
以成本计算,一套盈利20%,另一套亏损20%,此时商店( )A. 不亏不盈B. 盈利372元C. 亏损140元D. 盈利140元10. 设函数f (x )在(-∞,+∞)上是减函数,则( )A. )2()(a f a f >B. )()(2a f a f <C. )()(2a f a a f <+D. )()1(2a f a f <+二、填空题:本大题共4小题,每小题5分,共20分 11. 326689log 4log -+=_______。
2018-2019学年高一数学上学期期中联考试题(扫描版)(2)
又
的取值范围为 。……………………………………………………12分
(其它方法得到此答案酌情给分)
高一数学试卷答案
一、选择题:本大题共12个小题,每小题5分,共60分.
题序
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
A
B
B
D
B
A
B
C
A
C
二、填空题(本大题共4小题,每小题5分,共20分)
13.{5,6,7}14.15. 16. 3.75(或 )
三.解答题:共70分。
17.解析:(1) 时, 的对称轴为 , 在[5,10]上单调递增,……………2分
, ………………………………8分
(3)由(2)知, 时, ,
租金为4150元时收益最大
当每辆车的月租金定为4150元时,租赁公司的月收益最大,最大月收益是323050元。
……………………………………………………………………12分
21解析:(1) 的定义域为(-1,1)……………………………………2分
因为 ,所以 为奇函数……………………………………4分
(2) 为减函数。证明如下:
任取两个实数 ,且 ,
= =
=
<0
<0,所以 在(-1,1)上为单调减函数…………………………8分
(3)由题意: ,
由(1)、(2)知 是定义域内单调递减的奇函数
即不等式的解集为( ,)………………………………………………12分
22解析
(1) 时, 得 ,
不等式的解集为(0, )…………………………………………………………3分
2018-2019学年高一数学上学期期中试题(含解析)
2018-2019学年高一数学上学期期中试题(含解析)一、填空题1.已知集合,则()A. B. C. D.【答案】B【解析】【分析】利用指数函数的单调性化简集合,利用列举法表示集合,结合交集定义求解即可.【详解】集合,,,故选B.【点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提;(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决;(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和图.2.下列函数中,是偶函数,且在区间上为增函数是()A. B. C. D.【答案】A【解析】【分析】对给出的四个选项分别进行分析、判断即可.【详解】选项A中,函数y=|x|为偶函数,且在区间(0,1)上为增函数,故A正确.选项B中,函数y=3﹣x为非奇非偶函数,且在区间(0,1)上为减函数,故B不正确.选项C中,函数y=为奇函数,且在区间(0,1)上为增函数,故C不正确.选项D中,函数y=﹣x2+4为偶函数,且在区间(0,1)上为减函数,故D不正确.故选A.【点睛】本题考查函数奇偶性和单调性的判断,解题的关键是熟记一些常见函数的性质,属于简单题.3.函数的定义域是A. B. C. D. [0,+∞)【答案】B【解析】分析】本题考察函数的定义域,既要考虑到对数函数的真数大于等于0,也要考虑到分母不能为0.【详解】由题意可知解得,故选B.【点睛】在计算复合函数的定义域的时候,一定要考虑到组合成复合函数的每一个基本初等函数的性质.4.已知幂函数的图象经过点,则幂函数具有的性质是()A. 在其定义域上为增函数B. 在其定义域上为减函数C. 奇函数D. 定义域为【答案】A【解析】【分析】设幂函数,将代入解析式即可的结果.【详解】设幂函数,幂函数图象过点,,,由的性质知,是非奇非偶函数,值域为,在定义域内无最大值,在定义域内单调递增.故选A.【点睛】本题主要考查幂函数的解析式以及幂函数的单调性、奇偶性与定义域,意在考查对基础知识掌握的熟练程度,属于中档题.5.函数的图象关于()A. 轴对称B. 直线对称C. 坐标原点对称D. 直线对称【答案】C【解析】是奇函数,所以图象关于原点对称.6.若函数,则()A. B. e C. D.【答案】A【解析】【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可.【详解】因为函数,因为,所以,又因为,所以,即,故选A.【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.7.若xlog34=1,则4x+4–x=A. 1B. 2C.D.【答案】D【解析】【分析】条件可化为x=log43,运用对数恒等式,即可.【详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D.【点睛】本题考查对数性质的简单应用,属于基础题目.8.函数的零点所在区间为()A. B. C. D.【答案】C【解析】很明显函数在定义域内单调递增,函数在定义域内为连续函数,且:,利用函数零点存在定理可得:函数的零点所在区间为.本题选择C选项.点睛:三个防范一是严格把握零点存在性定理的条件,;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在[a,b]上单调且f(a)f(b)<0,则f(x)在[a,b]上只有一个零点.9.已知函数g(x)=3x+t的图象不经过第二象限,则t的取值范围为A. t≤–1B. t<–1C. t≤–3D. t≥–3【答案】A【解析】【分析】由指数函数的性质,可得函数恒过点坐标为,且函数是增函数,图象不经过第二象限,得到关于的不等式,即可求解.【详解】由指数函数的性质,可得函数g(x)=3x+t恒过点坐标为(0,1+t),函数g(x)是增函数,图象不经过第二象限,∴1+t≤0,解得t≤–1.故选A.【点睛】本题主要考查了指数函数的图象与性质的应用,其中熟记指数函数的图象与性质,特别是指数函数的图象恒过定点是解答本题的关键,着重考查了推理与运算能力,属于基础题.10.已知函数是定义在上偶函数,且在上是减函数,若,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】分析:利用函数的单调性即可判断.详解:因为函数为偶函数且在(−∞,0)上单调递减,所以函数在(0,+∞)上单调递增,由于,所以.故选B.点睛:对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.11.函数的定义域为,值域为,则的取值范围是A. [0,4]B. [4,6]C. [2,6]D. [2,4]【答案】D【解析】【分析】因为函数的图象开口朝上,由,结合二次函数的图象和性质可得的取值范围.【详解】函数的图象是开口朝上,且以直线为对称轴的抛物线,故,函数的定义域为,值域为,所以,即的取值范围是,故选D.【点睛】本题主要考查二次函数的图象和性质,以及函数的定义域与值域,意在考查灵活应用所学知识解答问题的能力.12.函数 y=()的单调递增区间为( )A. (1,+∞)B. (﹣∞,]C. (,+∞)D. [,+∞)【答案】B【解析】【分析】利用指数函数的单调性,通过二次函数的性质可得结论.【详解】令u=2x2-3x+1=22-.因为u=22-在上单调递减,函数y=u在R上单调递减.所以y=2x2-3x+1在上单调递增,即该函数的单调递增区间为..故选B【点睛】本题主要考查复合函数的单调性,指数函数、二次函数的性质,体现了转化的数学思想,属于基础题.二、填空题13.若是函数的反函数,且,则=________.【答案】【解析】【分析】由是函数的反函数,可得解【详解】,则点在的函数图像上,又互为反函数的图像关于直线对称,所以关于直线的对称点在函数上,所以,所以=【点睛】利用互为反函数的图形关于直线对称性解决问题.14.已知函数是定义在上的奇函数,当时,,则__________.【答案】12【解析】【分析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,【点睛】本题主要考查函数的奇偶性,属于基础题型.15.当a>0且a≠1时,函数必过定点____________.【答案】.【解析】【分析】由指数函数恒过(0,1)点,即可得出答案.【详解】由指数函数的图像恒过(0,1)点,可得当时,=1,所以,即函数必过定点(2,-2).故答案为: (2,-2).【点睛】本题考查了指数函数的性质,借助于指数函数的图像的性质求解函数图像过定点的问题,掌握指数函数图像恒过(0,1)点是解题的关键,属于基础题.16.若,则=__________.【答案】【解析】【分析】将指数式化为对数式,结合对数运算,求得值.【详解】,,..故答案为:【点睛】本小题主要考查指数式化为对数式,考查对数运算,属于基础题.三、解答题17.已知集合,.(1)分别求A∩B,A∪B;(2)已知集合,若C⊆A,求实数a的取值范围.【答案】(1) A∩B=[1,2),A∪B=(0,3](2) a≤3【解析】【分析】(1)利用指数函数与对数函数的单调性分别化简A,B,再利用集合的运算性质即可得出;(2)由C⊆A,对集合C分类讨论:当C为空集时,当C为非空集合时,即可得出.【详解】(1)由3≤3x≤27,即3≤3x≤33,∴1≤x≤3,∴A=[1,3].由log2x<1,可得0<x<2,∴B=(0,2).∴A∩B=[1,2).A∪B=(0,3].(2)由C⊆A,当C为空集时,a≤1.当C为非空集合时,可得 1<a≤3.综上所述:a的取值范围是a≤3.【点睛】本题考查了指数函数与对数函数的单调性、集合的运算性质、不等式的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.18.计算下列各式的值:(1);(2).【答案】(1);(2).【解析】【分析】(1)利用对数性质、运算法则、换底公式直接求解(2)利用指数性质、运算法则直接求解..【详解】(1)原式=.(2)原式= =-5 .【点睛】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意指数、对数的性质、运算法则的合理运用.19.已知函数.(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为,求的值.【答案】(1)(2)(3)【解析】【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由,即,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值,得利用对数的定义求出的值.【详解】(1)由已知得, 解得所以函数的定义域为(2),令,得,即,解得,∵,∴函数的零点是(3)由2知,,∵,∴.∵,∴,∴,∴.【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键.20.已知函数,其中.(1)判断并证明函数的奇偶性;(2)判断并证明在上的单调性.【答案】(1)奇函数,证明见解析;(2)减函数,证明见解析.【解析】【分析】(1)通过证明证得是奇函数.(2)根据复合函数单调性同增异减,判断并证得的单调性.【详解】(1),.是奇函数.(2)设.下证明在区间上为增函数:任取,则,所以在区间上为减函数.由于在上为增函数. 根据复合函数单调性同增异减可知在上为减函数.【点睛】本小题主要考查函数奇偶性的证明,考查复合函数单调性,属于基础题.21.已知函数,求该函数的最小值.【答案】2【解析】【分析】利用换元法令,结合二次函数的性质,求得函数的最小值.【详解】设,开口向上,且对称轴.时,函数取得最小值..【点睛】本小题主要考查二次型复合函数最值的求法,属于基础题.22.设函数的定义域为.(1)若,求的取值范围;(2)求的最大值与最小值,并求出最值时对应的的值.【答案】(1);(2),最小值,,最大值 .【解析】试题分析:(1)根据定义域为,利用对数函数的单调性确定函数的取值范围;(2)根据对数的运算法则化简函数利用换元法将函数转化为关于的一元二次函数,利用二次函数的性质求函数的最值.试题解析:(1)的取值范围为区间(2)记.∵在区间是减函数,在区间是增函数∴当即时,有最小值;当即时,有最大值.2018-2019学年高一数学上学期期中试题(含解析)一、填空题1.已知集合,则()A. B. C. D.【答案】B【解析】【分析】利用指数函数的单调性化简集合,利用列举法表示集合,结合交集定义求解即可.【详解】集合,,,故选B.【点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提;(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决;(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和图.2.下列函数中,是偶函数,且在区间上为增函数是()A. B. C. D.【答案】A【解析】【分析】对给出的四个选项分别进行分析、判断即可.【详解】选项A中,函数y=|x|为偶函数,且在区间(0,1)上为增函数,故A正确.选项B中,函数y=3﹣x为非奇非偶函数,且在区间(0,1)上为减函数,故B不正确.选项C中,函数y=为奇函数,且在区间(0,1)上为增函数,故C不正确.选项D中,函数y=﹣x2+4为偶函数,且在区间(0,1)上为减函数,故D不正确.故选A.【点睛】本题考查函数奇偶性和单调性的判断,解题的关键是熟记一些常见函数的性质,属于简单题.3.函数的定义域是A. B. C. D. [0,+∞)【答案】B【解析】分析】本题考察函数的定义域,既要考虑到对数函数的真数大于等于0,也要考虑到分母不能为0.【详解】由题意可知解得,故选B.【点睛】在计算复合函数的定义域的时候,一定要考虑到组合成复合函数的每一个基本初等函数的性质.4.已知幂函数的图象经过点,则幂函数具有的性质是()A. 在其定义域上为增函数B. 在其定义域上为减函数C. 奇函数D. 定义域为【答案】A【解析】【分析】设幂函数,将代入解析式即可的结果.【详解】设幂函数,幂函数图象过点,,,由的性质知,是非奇非偶函数,值域为,在定义域内无最大值,在定义域内单调递增.故选A.【点睛】本题主要考查幂函数的解析式以及幂函数的单调性、奇偶性与定义域,意在考查对基础知识掌握的熟练程度,属于中档题.5.函数的图象关于()A. 轴对称B. 直线对称C. 坐标原点对称D. 直线对称【答案】C【解析】是奇函数,所以图象关于原点对称.6.若函数,则()A. B. e C. D.【答案】A【解析】【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可.【详解】因为函数,因为,所以,又因为,所以,即,故选A.【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.7.若xlog34=1,则4x+4–x=A. 1B. 2C.D.【答案】D【解析】【分析】条件可化为x=log43,运用对数恒等式,即可.【详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D.【点睛】本题考查对数性质的简单应用,属于基础题目.8.函数的零点所在区间为()A. B. C. D.【答案】C【解析】很明显函数在定义域内单调递增,函数在定义域内为连续函数,且:,利用函数零点存在定理可得:函数的零点所在区间为.本题选择C选项.点睛:三个防范一是严格把握零点存在性定理的条件,;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在[a,b]上单调且f(a)f(b)<0,则f(x)在[a,b]上只有一个零点.9.已知函数g(x)=3x+t的图象不经过第二象限,则t的取值范围为A. t≤–1B. t<–1C. t≤–3D. t≥–3【答案】A【解析】【分析】由指数函数的性质,可得函数恒过点坐标为,且函数是增函数,图象不经过第二象限,得到关于的不等式,即可求解.【详解】由指数函数的性质,可得函数g(x)=3x+t恒过点坐标为(0,1+t),函数g(x)是增函数,图象不经过第二象限,∴1+t≤0,解得t≤–1.故选A.【点睛】本题主要考查了指数函数的图象与性质的应用,其中熟记指数函数的图象与性质,特别是指数函数的图象恒过定点是解答本题的关键,着重考查了推理与运算能力,属于基础题.10.已知函数是定义在上偶函数,且在上是减函数,若,,,则,,的大小关系为()A. B. C. D.【答案】B分析:利用函数的单调性即可判断.详解:因为函数为偶函数且在(−∞,0)上单调递减,所以函数在(0,+∞)上单调递增,由于,所以.故选B.点睛:对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.11.函数的定义域为,值域为,则的取值范围是A. [0,4]B. [4,6]C. [2,6]D. [2,4]【答案】D【解析】【分析】因为函数的图象开口朝上,由,结合二次函数的图象和性质可得的取值范围.【详解】函数的图象是开口朝上,且以直线为对称轴的抛物线,故,函数的定义域为,值域为,所以,即的取值范围是,故选D.【点睛】本题主要考查二次函数的图象和性质,以及函数的定义域与值域,意在考查灵活应用所学知识解答问题的能力.12.函数 y=()的单调递增区间为( )A. (1,+∞)B. (﹣∞,]C. (,+∞)D. [,+∞)【解析】【分析】利用指数函数的单调性,通过二次函数的性质可得结论.【详解】令u=2x2-3x+1=22-.因为u=22-在上单调递减,函数y =u在R上单调递减.所以y=2x2-3x+1在上单调递增,即该函数的单调递增区间为..故选B【点睛】本题主要考查复合函数的单调性,指数函数、二次函数的性质,体现了转化的数学思想,属于基础题.二、填空题13.若是函数的反函数,且,则=________.【答案】【解析】【分析】由是函数的反函数,可得解【详解】,则点在的函数图像上,又互为反函数的图像关于直线对称,所以关于直线的对称点在函数上,所以,所以=【点睛】利用互为反函数的图形关于直线对称性解决问题.14.已知函数是定义在上的奇函数,当时,,则__________.【答案】12【解析】【分析】由函数的奇偶性可知,代入函数解析式即可求出结果.【详解】函数是定义在上的奇函数,,则,【点睛】本题主要考查函数的奇偶性,属于基础题型.15.当a>0且a≠1时,函数必过定点____________.【答案】.【解析】【分析】由指数函数恒过(0,1)点,即可得出答案.【详解】由指数函数的图像恒过(0,1)点,可得当时,=1,所以,即函数必过定点(2,-2).故答案为: (2,-2).【点睛】本题考查了指数函数的性质,借助于指数函数的图像的性质求解函数图像过定点的问题,掌握指数函数图像恒过(0,1)点是解题的关键,属于基础题.16.若,则=__________.【答案】【解析】【分析】将指数式化为对数式,结合对数运算,求得值.【详解】,,..故答案为:【点睛】本小题主要考查指数式化为对数式,考查对数运算,属于基础题.三、解答题17.已知集合,.(1)分别求A∩B,A∪B;(2)已知集合,若C⊆A,求实数a的取值范围.【答案】(1) A∩B=[1,2),A∪B=(0,3](2) a≤3【解析】【分析】(1)利用指数函数与对数函数的单调性分别化简A,B,再利用集合的运算性质即可得出;(2)由C⊆A,对集合C分类讨论:当C为空集时,当C为非空集合时,即可得出.【详解】(1)由3≤3x≤27,即3≤3x≤33,∴1≤x≤3,∴A=[1,3].由log2x<1,可得0<x<2,∴B=(0,2).∴A∩B=[1,2).A∪B=(0,3].(2)由C⊆A,当C为空集时,a≤1.当C为非空集合时,可得 1<a≤3.综上所述:a的取值范围是a≤3.【点睛】本题考查了指数函数与对数函数的单调性、集合的运算性质、不等式的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.18.计算下列各式的值:(1);(2).【答案】(1);(2).【解析】【分析】(1)利用对数性质、运算法则、换底公式直接求解(2)利用指数性质、运算法则直接求解..【详解】(1)原式=.(2)原式= =-5 .【点睛】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意指数、对数的性质、运算法则的合理运用.19.已知函数.(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为,求的值.【答案】(1)(2)(3)【解析】【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由,即,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值,得利用对数的定义求出的值.【详解】(1)由已知得, 解得所以函数的定义域为(2),令,得,即,解得,∵,∴函数的零点是(3)由2知,,∵,∴.∵,∴,∴,∴.【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键.20.已知函数,其中.(1)判断并证明函数的奇偶性;(2)判断并证明在上的单调性.【答案】(1)奇函数,证明见解析;(2)减函数,证明见解析.【解析】【分析】(1)通过证明证得是奇函数.(2)根据复合函数单调性同增异减,判断并证得的单调性.【详解】(1),.是奇函数.(2)设.下证明在区间上为增函数:任取,则,所以在区间上为减函数.由于在上为增函数. 根据复合函数单调性同增异减可知在上为减函数.【点睛】本小题主要考查函数奇偶性的证明,考查复合函数单调性,属于基础题.21.已知函数,求该函数的最小值.【答案】2【解析】【分析】利用换元法令,结合二次函数的性质,求得函数的最小值.【详解】设,开口向上,且对称轴.时,函数取得最小值..【点睛】本小题主要考查二次型复合函数最值的求法,属于基础题.22.设函数的定义域为.(1)若,求的取值范围;(2)求的最大值与最小值,并求出最值时对应的的值.【答案】(1);(2),最小值,,最大值 .【解析】试题分析:(1)根据定义域为,利用对数函数的单调性确定函数的取值范围;(2)根据对数的运算法则化简函数利用换元法将函数转化为关于的一元二次函数,利用二次函数的性质求函数的最值.试题解析:(1)的取值范围为区间(2)记.∵在区间是减函数,在区间是增函数∴当即时,有最小值;当即时,有最大值.。