(完整)第22章《一元二次方程》单元测试题B卷(含答案),推荐文档
华师大版数学九年级上册第22章一元二次方程单元测试卷(含答案)
第22章学情评估一、选择题(每题3分,共24分)题序12345678答案1.下列方程是一元二次方程的是( )A .-6x +2=0B .2x 2-y +1=0 C.1x 2+x =2 D .x 2+2x =02.一元二次方程x 2+x -2=0根的判别式的值为( )A .-7B .3C .9D .±33.方程(x -3)2=4的根为( )A .x 1=x 2=5B .x 1=5,x 2=1C .x 1=x 2=1D .x 1=7,x 2=-14.关于x 的方程mx 2+2x =1有两个不相等的实数根,则m 的值可以是( )A .1B .0C .-1D .-25.等腰三角形的两条边长分别是方程x 2-8x +12=0的两根,则该等腰三角形的周长是( )A .10B .12C .14D .10或146.以x =4±16+4c 2为根的一元二次方程可能是( )A .x 2-4x -c =0B .x 2+4x -c =0C .x 2-4x +c =0D .x 2+4x +c =07.对于一元二次方程ax 2+bx +c =0(a ≠0),给出下列说法:①若a +b +c =0,则b 2-4ac ≥0;②若方程ax 2+c =0有两个不相等的实数根,则方程ax 2+bx +c =0必有两个不相等的实数根;③若x 0是一元二次方程ax 2+bx +c =0的根,则b 2-4ac =(2ax 0+b )2;④若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立.其中正确的是( )A .①②B .①②④C .①②③④D .①②③8.在△ABC 中,∠ABC =90°,AB =6 cm ,BC =8 cm ,动点P 从点A 沿线段AB向点B运动,动点Q从点B沿线段BC向点C运动,两点同时开始运动,点P的速度为1 cm/s,点Q的速度为2 cm/s,当Q到达点C时两点同时停止运动.若△PBQ的面积为5 cm2,则点P运动的时间为( )A.1 s B.4 s C.5 s或1 s D.4 s或1 s二、填空题(每题3分,共18分)9.一元二次方程3x2+2x-5=0的一次项系数是________.10.已知关于x的一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是________.11.已知x=-1是关于x的方程x2+mx-n=0的一个根,则m+n的值是________.12.定义运算:m&n=m2-mn+2.例如:1&2=12-1×2+2=1,则方程x&3=0的根的情况为____________________.13.如图,从正方形的铁片上沿平行于一条边的直线截去一个3 cm宽的长方形铁片,余下(阴影部分)面积为40 cm2,则原来的正方形铁片的面积是________cm2.(第13题)14.若实数a,b分别满足a2-4a+3=0,b2-4b+3=0,且a≠b,则(a+1)(b+1)的值为________.三、解答题(15题8分,16,17题每题9分,18,19题每题10分,20题12分,共58分)15.解方程:100(1-x)2=81.①你选用的解法是____________;②直接写出该方程的解是____________;③请你结合生活经验,设计一个问题,使它能利用方程“100(1-x)2=81”来解决.你设计的问题是______________________________________.16.已知x1,x2是方程x2-(3+1)x+3=1 的两个根.求:3(1)x 12+x 22; (2)1x 1+1x 2.17.已知关于x 的一元二次方程kx 2-(2k +4)x +k -6=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k =1时,用配方法解方程.18.下面是某月的日历表,在该月日历表上可以用一个方框圈出4个数(如图所示),若圈出的4个数中,最小数与最大数的乘积为48,求这个最小数.(请用方程的知识解答,否则不给分)(第18题)19.在蚌埠花博园附近某盆栽销售处发现:进货价为每盆50元,销售价为每盆80元的某盆栽平均每天可售出20盆.现此销售处决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每盆降价2元,那么平均每天就可多售出3盆.设每盆降价x元.(1)现在每天卖出________盆,每盆盈利________元(用含x的代数式表示);(2)当x为何值时,销售这种盆栽平均每天能盈利700元,同时又可以使顾客得到较多的实惠?(3)该销售处通过销售这种盆栽平均每天能盈利1 000元吗?请说明理由.20. 阅读材料:各类方程及方程组的解法.求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为二元一次方程组来解.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程及方程组的解法不尽相同,但是它们有一个共同的基本数学思想——转化,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过提公因式把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的根.(1)问题:方程x3+x2-2x=0的根是x1=0,x2=________,x3=________;5(2)拓展:用“转化”思想求方程 2x +3=x 的根;(3)应用:如图,已知矩形草坪ABCD 的长AD =8 m ,宽AB =3 m ,小华先把一根长为10 m 的绳子的一端固定在点B ,沿草坪边缘BA ,AD 走到点P 处,把绳子PB 段拉直并固定在点P ,然后沿草坪边缘PD ,DC 走到点C 处,把绳子剩下的一段拉直,绳子的另一端恰好落在点C 处,求AP 的长.(第20题)答案一、1.D 2.C 3.B 4.A 5.C 6.A 7.D 8.A 点拨:设点P 运动的时间为t s ,则BP =(6-t )cm ,BQ =2t cm ,依题意得12(6-t )×2t =5,整理,得t 2-6t +5=0,解得t 1=1,t 2=5.因为当Q 到达点C 时两点同时停止运动,所以0≤2t ≤8,所以0≤t ≤4,所以t =1.故选A.二、9.2 10.x =-3 11.1 12.有两个不相等的实数根13.64 14.8 三、15.①直接开平方法②x 1=0.1,x 2=1.9③某种药品的原价是100元/盒,经过两次降价后的价格是81元/盒,求平均每次降价的百分率(答案不唯一)16.解:原方程可变形为x 2-(3+1)x +3-1=0,由题意得x 1+x 2=3+1,x 1x 2=3-1.(1)x 12+x 22=(x 1+x 2)2-2x 1x 2=(3+1)2-2×(3-1)=6.(2)1x 1+1x 2=x 1+x 2x 1x 2=3+13-1=(3+1)2(3-1)(3+1)=4+2 32=2+ 3.17.解:(1)因为关于x 的一元二次方程kx 2-(2k +4)x +k -6=0有两个不相等的实数根,所以Δ=[-(2k +4)]2-4k (k -6)>0,且k ≠0,解得k >-25且k ≠0.(2)当k =1时,原方程为x 2-(2×1+4)x +1-6=0,即x 2-6x -5=0.移项,得x 2-6x =5.配方,得x2-6x+9=5+9,即(x-3)2=14.直接开平方,得x-3=±14,所以x1=3+14,x2=3-14.18.解:设这个最小数为x,则最大数为x+8,依题意得x(x+8)=48,整理,得x2+8x-48=0,解得x1=4,x2=-12(不合题意,舍去).答:这个最小数为4.19.解:(1)(20+3x2);(30-x)(2)由题意得(30-x)(20+3x2)=700,解得x1=10,x2=203.因为要使顾客得到较多的实惠,所以x=10.(3)不能.理由:若销售这种盆栽平均每天能盈利1 000元,则(30-x)(20+3x)=1 000,整理,得3x2-50x+800=0,因为Δ=(-50)2-4×3×800=-7 100 2<0,所以原方程无实数根,所以该销售处通过销售这种盆栽平均每天不能盈利1 000元.20.解:(1)-2;1(2)方程的两边平方,得2x+3=x2,即x2-2x-3=0,所以(x-3)(x+1)=0,解得x1=3,x2=-1.当x=-1时,2x+3=1=1≠-1,舍去;当x=3时,2x+3=3=x,所以方程2x+3=x的根是x=3.(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3 m.设AP=xm,则PD=(8-x)m,因为BP+CP=10 m,BP=AB2+AP2,CP=PD2+CD2,所以9+x2+(8-x)2+9=10,所以(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-209+x2+9+x2,整理,得5x2+9=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,解得x1=x2=4.经检验,x=4是方程的根.答:AP的长为4 m.7。
华东师大版九年级数学上册第22章一元二次方程单元测试卷-带参考答案
华东师大版九年级数学上册第22章一元二次方程单元测试卷-带参考答案一、单选题1.若一元二次方程22(36)40a x a -+-=的常数项是0,则a 的值是( )A .2或-2B .2C .-2D .42.若关于x 的方程mx 2-2x+1=0是一元二次方程,则( )A .m>0B .m≥0C .m=1D .m≠03.已知一元二次方程的一般式为 20(0)ax bx c a ++=≠ ,则一元二次方程x 2-5=0中b 的值为( )A .1B .0C .-5D .54.某产品成本价为100万元,由于改进技术,成本连续降低,每次降低 x %,连续两次降低后成本为64万元,则 x 的值为( )A .10B .15C .18D .205.给出以下方程的解题过程,其中正确的有( )①解方程12(x ﹣2)2=16,两边同时开方得x ﹣2=±4,移项得x 1=6,x 2=﹣2;②解方程x (x ﹣ 12 )=(x ﹣ 12 ),两边同时除以(x ﹣ 12 )得x =1,所以原方程的根为x 1=x 2=1;③解方程(x ﹣2)(x ﹣1)=5,由题得x ﹣2=1,x ﹣1=5,解得x 1=3,x 2=6;④方程(x ﹣m )2=n 的解是x 1=m + n ,x 2=m ﹣n . A .0个 B .2个 C .3个 D .4个6.一种商品原价100元,经过两次降价后的售价是60元,设平均每次降价的百分率为 x ,那么所列方程正确的是( )A .()2601100x +=B .()6012100x +=C .()2100160x -= D .()1001260x -= 7.用配方法解一元二次方程x 2-4x+3=0时可配方得( )A .(x -2)2=7B .(x -2)2=1C .(x+2)2=1D .(x+2)2=28.如图,学校课外生物小组试验园地的形状是长40米、宽34米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为960平方米.则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .()()40234960x x --=B .2403440342960x x x ⨯--+=C .()()40342960x x --=D .403440234960x x ⨯--⨯=9.一元二次方程 220x x c ++= 有两个相等的实数根,那么实数 c 的取值为( ).A .1c >B .1c ≥C .1c =D .1c <10.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=二、填空题11.方程 (2)4310m m x x m ++++= 是关于x 的一元二次方程,则m= .12.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在 一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“┛”带,鲜花带一边宽1m.另一边宽2m ,剩余空地的面积为18m 2,求原正方形空地的边长 x m ,可列方程为 .13.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有 人. 14.若x 1、x 2是一元二次方程x 2-3x-3=0的两个根,则,x 1+x 2的值是三、计算题15.(1)x 2﹣3x=10 (2)3x 22x ﹣4=0.四、解答题16.夏津某一企业2014年完成工业总产值100万元,如果要在2016年达到169万元,那么2014年到2016年的工业总产值年平均增长率是多少?计划2018年工业总产值要达到280万元,若继续保持上面的增长率,该目标是否可以完成?17.解方程:x 2+4x ﹣2=018.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。
2020年华师大版九年级数学上册第22章 一元二次方程 单元测试题及答案
一元二次方程 单元测试卷时间:120分钟 满分;120分一、选择题(每题3分,共30分)1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是()A .1B .0C .0或1D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为()(A )-7 (B )0 (C )7 (D )113.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A.B. C.6.18 6.19x << D.6.19 6.20x << 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为()A.8B.10C.8或10D.不能确定5.某城市2007年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2009年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=3006.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是()(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-7、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b a a b+的值是()A .22n +B .22n -+C .22n -D .22n --8、用配方法将代数式a 2+4a -5变形,结果正确的是( )A.(a +2)2-1B. (a +2)2-5C. (a +2)2+4D. (a +2)2-99、关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是()A .1 BC..10、某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x ,则下列方程中正确的是( )A .55 (1+x )2=35B .35(1+x )2=55C .55 (1-x )2=35D .35(1-x )2=55二、填空题(每题3分,共30分)11.已知一元二次方程有一个根是2,那么这个方程可以是(填上你认为正确的一个方程即可).12.已知实数x 满足4x 2-4x+l=0,则代数式2x+x21的值为________. 13.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________。
九年级上第22章一元二次方程测试题及答案
一元二次方程 单元测试卷时间:120分钟 满分;120分一、选择题(每题3分;共30分)1.已知x=1是一元二次方程x 2-2mx+1=0的一个解;则m 的值是( )A .1B .0C .0或1D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根;那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值;判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A. B.C.6.18 6.19x << D.6.19 6.20x <<4.等腰三角形的底和腰是方程x 2-6x+8=0的两根;则这个三角形的周长为( )A.8B.10C.8或10D.不能确定5.某城市2007年底已有绿化面积300公顷;经过两年绿化;绿化面积逐年增加;到底增加到363公顷.设绿化面积平均每年的增长率为x ;由题意;所列方程正确的是A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=3006.现定义某种运算()a b a a b ⊗=>;若2(2)2x x x +⊗=+;那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x > (D )1x <-7、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根;则式子b a a b +的值是( )A .22n +B .22n -+C .22n -D .22n -- 8、用配方法将代数式a 2+4a -5变形;结果正确的是( )A.(a +2)2-1B. (a +2)2-5C. (a +2)2+4D. (a +2)2-99、关于x 的一元二次方程222310x x a --+=的一个根为2;则a 的值是( )A .1BC .D .10、某商品经过两次连续降价;每件售价由原来的55元降到了35元.设平均每次降价的百分率为x ;则下列方程中正确的是( )A .55 (1+x )2=35B .35(1+x )2=55C .55 (1-x )2=35D .35(1-x )2=55二、填空题(每题3分;共30分)11.已知一元二次方程有一个根是2;那么这个方程可以是 (填上你认为正确的一个方程即可).12.已知实数x 满足4x 2-4x+l=0;则代数式2x+x21的值为________. 13.如果αβ、是一元二次方程23 1 0x x +-=的两个根;那么2+2ααβ-的值是___________。
华师大版九年级上册数学第22章 一元二次方程含答案
华师大版九年级上册数学第22章一元二次方程含答案一、单选题(共15题,共计45分)1、一元二次方程配方后化为,则a的值为()A.18B.10C.6D.42、下列方程中,满足两个实数根的和等于3的方程是()A.2x 2+6x﹣5=0B.2x 2﹣3x﹣5=0C.2x 2﹣6x+5=0D.2x 2﹣6x ﹣5=03、下列关于x的方程中一定没有实数根的是()A. B. C. D.4、已知方程的两个解分别为、,则的值为()A. B. C.7 D.35、关于x的方程ax2+bx+c=3的解与(x﹣1)(x﹣4)=0的解相同,则a+b+c 的值为()A.2B.3C.1D.46、方程x2-9=0的解是( )A.x=3B.x=9C.x=±3D.x=±97、已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A.6B.3C.﹣3D.08、对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2﹣1;③不等式组的解集为:﹣1<x<4;④点(1,﹣2)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③④C.①②④D.①②③9、关于的方程的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根10、下列方程是关于x的一元二次方程的是()A.x 2+ =1B.ax 2+bx+c=0C.(x+1)(x+2)=1D.3x 2﹣2xy﹣5y=011、用配方法解关于x的一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A. B. C.D.12、关于的方程有两个不相等的实数根,则实数的取值范围是()A. B. C. 且 D. 且13、关于x的一元二次方程有实数根,则的取值范围是()A. B. 且 C. D. 且14、已知是一元二次方程较大的根,则下列对值估计正确的是( )A. B. C. D.15、已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法判断二、填空题(共10题,共计30分)16、某种商品原价是100元,经两次降价后的价格是64元,则平均每次降价的百分率为________17、把一元二次方程:化成一般形式是________.18、若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2﹣b2+5的最小值为________.19、从下面3个方程中选择一个有解的方程,并求出你选择的方程的解.①x2+1=0 ②(3x+2)2﹣4x2=0 ③3x2﹣6x+4=0,你选择的方程是________(填相应方程的序号)20、方程(x-3)2=x-3的根是________.21、已知关于x的一元二次方程x2+mx-6=0的一个根是2,则方程的另一个根是________。
华师大版九年级上册数学第22章 一元二次方程含答案
华师大版九年级上册数学第22章一元二次方程含答案一、单选题(共15题,共计45分)1、m是方程的一个根,且,则的值为()A. B.1 C. D.2、一元二次方程x2-5x+6=0的两根分别是x1、x2,则x1+x2等于( )A.5B.6C.-5D.-63、一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定4、一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2B.k<2C.k<2且k≠1D.k>2且k≠15、下列方程中,有两个不相等的实数根的是()A. B. C. D.6、今年“十一”长假某湿地公园迎来旅游高峰,第一天的游客人数是1.2万人,第三天的游客人数为2.3万人,假设每天游客增加的百分率相同且设为x,则根据题意可列方程为()A.2.3 (1+x)2=1.2B.1.2(1+x)2=2.3C.1.2(1﹣x)2=2.3 D.1.2+1.2(1+x)+1.2(1+x)2=2.37、一元二次方程(x-1)2=9的解为()A.4B.-2C.4或-2D.3或-38、方程x2=-4的解是()A.x=-2B.x=C.x=±2D.没有实数根9、下列关于x的方程有实数根的是()A. x2- x+1 =0B. x2+ x+1 =0C.( x-1)( x+2) =0D.( x -1) 2+1 =010、下列方程中,无论a取何值时,总是关于x的一元二次方程的是()A. B. C.D.11、方程:2x2=5x+3的根是()A. x1=-6, x2=1 B. x1=3, x2=-1 C. x1=1, x2=D. x1= - , x2=312、某网店在“双11”促销活动中对一件原价500元的商品进行了“折上折”优惠活动(即两次打折数相同),优惠后实际仅售320元,设该店打x折,则可列方程().A. B. C.D.13、关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1B.m>﹣1C.m≤﹣1D.m<﹣114、某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108B.168(1﹣x2)=108C.168(1﹣2 x)=108D.168(1+ x)2=10815、下列方程有实数根的是()A.x 2+x+1=0B.x 2-x-1=0C.x 2-2x+3=0D.x 2- x +1=0二、填空题(共10题,共计30分)16、一元二次方程x2-ax+6=0, 配方后为(x-3)2=3, 则a=________.17、如果=81 ,那么 y = ________18、小王的月工资由固定工资与浮动工资两部分组成,固定工资每月2000元,浮动工资逐月增长,每月增长的百分率相同,已知他1月份浮动工资为1000元,3月份的月工资为3440元,则小王2月份的月工资为________元。
第22章《一元二次方程》单元测试
第22章 一元二次方程班级: 姓名: 得分:一、选择题(每小题3分,共30分)1.关于x 的方程2320a x x -+=是一元二次方程,则( )A 、0a >;B 、0a ≠;C 、1a =;D 、a ≥0.2.用配方法解下列方程,其中应在左右两边同时加上4的是( )A 、225x x -=;B 、2245x x -=;C 、245x x +=;D 、225x x +=.3.方程(1)x x x -=的根是( )A 、2x =;B 、2x =-;C 、12x =-,20x =;D 、12x =,20x =.4.县化肥厂第一季度生产a 吨化肥,以后每季度比上一季度增产x %,则第三季度化肥增产的吨数为( )A 、2(1)a x +;B 、2(1)a x +%;C 、2(1%)x +;D 、2(%)a a x +. 5.一个多边形有9条对角线,则这个多边形有多少条边( )A 、6;B 、7;C 、8;D 、9.6、下列方程是关于x 的一元二次方程的是( )A 、02=++c bx axB 、2112=+x xC 、1222-=+x x xD 、)1(2)1(32+=+x x7、解下面方程:(1)x 2+2x -3=0; (2)x 2-3x -2=0; (3)(x +1)2=2(x +1),较适当的方法分别为( )A 、(1)公式法;(2)因式分解法;(3)配方法B 、(1)因式分解法;(2)公式法;(3)配方法C 、(1)公式法;(2)配方法;(3)因式分解法D 、(1)配方法;(2)公式法;(3)因式分解法8、一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A 、6-B 、1C 、6-或1D 、29、以3和1-为两根的一元二次方程是 ( );A 、0322=-+x xB 、0322=++x xC 、0322=--x xD 、0322=+-x x10、某厂一月份的总产量为500吨,三月份的总产量达到为720吨。
华师大版九年级上册数学第22章 一元二次方程含答案
华师大版九年级上册数学第22章一元二次方程含答案一、单选题(共15题,共计45分)1、方程x2+2x=3的根是()A.x1=1,x2=﹣3 B.x1=﹣1,x2=3 C.x1=﹣1+ ,x2=﹣1﹣D.x1=1+ ,x2=1﹣2、下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x 2+1=0B.x 2-2x+1=0C.x 2+x-2=0D.x 2+2x+1=03、下列关于x的方程,一定是一元二次方程的是()A.ax 2﹣5x+3=0B.2x 4=5x 2C.D.4、某超市1月份的营业额为200万元,到三月底营业额累计为1000万元.如果设平均每月的增长率为x,依题意得,可列出方程为()A.200(1+x)2=1000B.200(1+x)3=1000C.200(1+x)2=800D.200+200(1+x)+200(1+x)2=10005、一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有两个相等的实数根,则m等于()A.﹣6或1B.1C.﹣6D.26、下列方程中,是一元二次方程的是()A.x 2﹣5x=0B.x+1=0C.y﹣2x=0D.2x 3﹣2=07、若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C.D.8、方程ax(x-b)+(b-x)=0的根是( )A.x1=b,x2=a B.x1=b,x2= C.x1=a,x2= D.x1=a2, x2=b 29、已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解 D.x是8的算术平方根10、已知函数y=3-(x-m)(x-n),并且a,b是方程3-(x-m)(x-n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<aB.m<a<n<bC.a<m<b<nD.a<m<n<b11、下列方程中属于一元二次方程的是()A. B. C. D.12、下列一元二次方程中,有两个不相等实数根的是()A. B. C. D.13、已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为( )A.-2B.0C.2D.2.514、用公式法解方程x2-2=-3x时,a , b , c的值依次是()A.0,-2,-3B.1,3,-2C.1,-3,-2D.1,-2,-315、下列方程中,关于的一元二次方程是()A. B. C. D.二、填空题(共10题,共计30分)16、定义运算:,若,是方程的两个根,则的值为________.17、如图,在一个长为40 m,宽为26m的矩形花园中修建小道(图中阴影部分),其中,每段小道的两边缘平行,剩余的地方种植花草,要使种植花草的面积为,那么________m.18、近年来我市大力发展旅游产业,旅游总收入从的150亿元上升到的200亿元,设这两年旅游总收入的年平均增长率为x,则可列方程________.19、某学校去年对实验器材的投资为2万元,预计今年和明年的投资总额为12万元,求该学校这两年在实验器材投资上的平均增长率是________ 。
第22章 一元二次方程 华东师大版九年级数学上册单元测试卷(含答案)
第22章测试卷一、选择题:本大题共10小题,每小题3分,合计30分.1. 用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b,c依次为( )A.3,﹣4,8B.3,﹣4,﹣8C.3,4,﹣8D.3,4,8【答案】B解:∵3x2﹣4x=8,∴3x2﹣4x﹣8=0,则a=3,b=﹣4,c=﹣8,故选:B.2. (2020秋•内乡县期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是( )A.0B.2020C.4040D.4042【答案】D【分析】根据一元二次方程的解及根与系数的关系可得出a2+a=2021、b2+b=2021、a+b =﹣1,将其代入则a2+b2+a+b中即可求出结论.解:∵a,b是方程x2+x﹣2020=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.3. (2020秋•洛阳新安期中)某食品厂七月份生产面包52万个,第三季度生产面包共196万个,若x满足的方程是52+52(1+x)+52(1+x)2=196,则x表示的意义是( )A.该厂七月份的增长率B.该厂八月份的增长率C.该厂七、八月份平均每月的增长率D.该厂八、九月份平均每月的增长率【答案】D【分析】一般增长后的量=增长前的量×(1+增长率),根据方程结合题意确定x的意义即可.解:依题意得八、九月份的产量为52(1+x)、52(1+x)2,∴52+52(1+x)+52(1+x)2=196中的x表示的意义是该厂八、九月份平均每月的增长率,故选:D.4. (2020秋•宛城区期末)欧几里得的《原本》记载,方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=BC.则该方程的一个正根是( )A.AC的长B.CD的长C.AD的长D.BC的长【答案】C【分析】在Rt△ABC中,由勾股定理可得出AC2+BC2=AB2,结合AB=AD+BD,AC=b,BD=BC=,即可得出AD2+aAD=b2,进而可得出AD的长是方程x2+ax=b2的一个正根.解:在Rt△ABC中,由勾股定理可得AC2+BC2=AB2.∵AC=b,BD=BC=,∴b2+()2=(AD+)2=AD2+aAD+()2,∴AD2+aAD=b2.∵AD2+aAD=b2与方程x2+ax=b2相同,且AD的长度为正数,∴AD的长是方程x2+ax=b2的一个正根.故选:C.5. (2020驻马店新蔡期中)已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是()A. 34B.30C.30或34D.30或36【答案】A.【解析】分两种情况讨论:①若4为等腰三角形底边长,则a,b是两腰,∴方程x2-12x+m+2=0有两个相等实根,∴△=(-12)2-4×1×(m+2)=136-4m=0,∴m=34.此时方程为x2-12x+36=0,解得x1=x2=6.∴三边为6,6,4,满足三边关系,符合题意.②若4为等腰三角形腰长,则a,b中有一条边也为4,∴方程x2-12x+m+2=0有一根为4.∴42-12×4+m+2=0,解得,m=30.此时方程为x2-12x+32=0,解得x1=4,x2=8.∴三边为4,4,8,不满足三边关系,故舍去.综上,m的值为34.6. 如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P在AB上以1cm/s的速度向B点移动,点Q在BC上以2cm/s的速度向C 点移动.当点Q移动到点C后停止,点P也随之停止移动.下列时刻中,能使△PBQ的面积为15cm2的是( )A.2s B.3s C.4s D.5s【答案】B【分析】设当运动时间为t秒时,△PBQ的面积为15cm2,利用三角形面积的计算公式,可得出关于t的一元二次方程,解之即可得出t值,再结合当点Q移动到点C后停止点P 也随之停止移动,即可确定t值.解:设当运动时间为t秒时,△PBQ的面积为15cm2,依题意得:×(8﹣t)×2t=15,整理得:t2﹣8t+15=0,解得:t1=3,t2=5.又∵2t≤6,∴t≤3,∴t=3.故选:B.7.(2020•南阳南召期中)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是( )A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0【答案】A【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2-2y+1=0即可求解.【解析】把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.8.(2020·湖北荆州·中考真题)定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是()A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【答案】B【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,,可得,即可得出答案.【解析】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.9.(2020·洛阳孟津期末)关于x的一元二次方程有两个实数根,,则k的值()A.0或2B.-2或2C.-2D.2【答案】D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D. 10.(2021·驻马店新蔡期末)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为()A.B.C.D.【答案】C【分析】先求得,代入即可得出答案.【解析】∵,∴,,∴=====,∵,且,∴,∴原式=,故选:C.二、填空题:本大题共5小题,每小题3分,合计15分.11. 一元二次方程的根是_____.【答案】【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【解析】解:或,所以.故答案为.12.(2021·南阳邓州期中)已知关于x的一元二次方程有两个相等的实数根,则的值等于_______.【答案】2.【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【解析】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:,则,故答案为2.13. 1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.【答案】x(x﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.14.(2020·2020·周口商水期末)如图是一张长,宽的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是的有盖的长方体铁盒.则剪去的正方形的边长为______.【答案】【分析】根据题意设出未知数,列出三组等式解出即可.【解析】设底面长为a,宽为b,正方形边长为x,由题意得:,解得a=10-2x,b=6-x,代入ab=24中得:(10-2x)(6-x)=24,整理得:2x2-11x+18=0.解得x=2或x=9(舍去).故答案为2.15. (2021·洛阳偃师期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程x2﹣6x+8=0的根为的x1=2,x2=4,则x1=x2,则称方程x2﹣6x+8=0为“半根方程”.若方程ax2+bx+c=0是“半根方程”,且点P(a,b)是函数y=x图象上的一动点,则的值为 .三、解答题:本大题共8小题,合计75分.第16题8分,第17、18、19、20题每题9分,第21、22题每题10分,第23题11分16. (2020·南阳镇平期中)(1)用配方法解方程;(2)用公式法解方程:.解:(1)移项得:x2-2x=2,配方得:x2-2x+1=2+1,(x-1)2=3,开方得:,,,所以原方程的解为:,;(2)∵a=1,b=2,c=-5,,∴,∴.17. (2020秋•北京期末)已知关于x的方程mx2+nx﹣2=0(m≠0).(1)求证:当n=m﹣2时,方程总有两个实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.【分析】(1)根据根的判别式符号进行判断;(2)根据判别式以及一元二次方程的解法即可求出答案.(1)证明:△=(m﹣2)2﹣4m×(﹣2)=m2+4m+4=(m+2)2≥0,∴方程总有两个实数根;(2)由题意可知,m≠0△=n2﹣4m×(﹣2)=n2+8m=0,即:n2=﹣8m.以下答案不唯一,如:当n=4,m=﹣2时,方程为x2﹣2x+1=0.解得x1=x2=1.18. (2020秋•洛阳偃师期中)如图,某居民小区改造,计划在居民小区的一块长50米,宽20米的矩形空地内修建两块相同的矩形绿地,使得两块矩形绿地之间及周边留有宽度相等的人行通道,且两块矩形绿地的面积之和为原矩形空地面积的,求人行通道的宽度是多少米?【分析】设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据两块矩形绿地的面积之和为原矩形空地面积的,即可得出关于x的一元二次方程,解方程即可.【解答】解:设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据题意得:(50﹣3x)(20﹣2x)=×50×20,整理得:x1=25(舍去),x2=,∴x=.答:人行通道的宽度是米.19. (2020•南阳镇平模拟)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为_______,第五个图中y的值为_______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为_____,当时,对应的______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【答案】(1)10,15;(2),1128;(3)20【分析】(1)观察图形,可以找出第四和第五个图中的y值;(2)根据y值随x值的变化,可找出,再代入可求出当时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵,∴,当时,.故答案为:;1128.(3)依题意,得:,化简,得:,解得:(不合题意,舍去).答:该班共有20名女生.20. (2020秋•南阳市三中校级月考)阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=﹣,x1x2=.∵,∴=a[x2﹣(x1+x2)x+x1x2]=a(x﹣x1)(x﹣x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x﹣x1)(x﹣x2).(1)请用上面的方法将多项式4x2+8x﹣1分解因式.(2)判断二次三项式2x2﹣4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.(3)如果关于x的二次三项式mx2﹣2(m+1)x+(m+1)(1﹣m)能用上面的方法分解因式,试求出m的取值范围.【分析】(1)令多项式等于0,得到一个一元二次方程,利用公式法求出方程的两解,代入ax2+bx+c=a(x﹣x1)(x﹣x2)中即可把多项式分解因式;(2)令二次三项式等于0,找出其中的a,b及c,计算出b2﹣4ac,发现其值小于0,所以此方程无解,故此二次三项式不能利用上面的方法分解因式;(3)因为此二次三项式在实数范围内能利用上面的方法分解因式,所以令此二次三项式等于0,得到的方程有解,即b2﹣4ac大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.解:(1)令4x2+8x﹣1=0,∵a=4,b=8,c=﹣1,b2﹣4ac=64+16=80>0,∴x1=,x2=,则4x2+8x﹣1=4(x﹣)(x﹣);(2)二次三项式2x2﹣4x+7在实数范围内不能利用上面的方法分解因式,理由如下:令2x2﹣4x+7=0,∵b2﹣4ac=(﹣4)2﹣56=﹣40<0,∴此方程无解,则此二次三项式不能用上面的方法分解因式;(3)令mx2﹣2(m+1)x+(m+1)(1﹣m)=0,由此二次三项式能用上面的方法分解因式,即有解,∴b2﹣4ac=4(m+1)2﹣4m(m+1)(1﹣m)≥0,化简得:(m+1)[4(m+1)+4m(m﹣1)]≥0,即4(m+1)(m2+1)≥0,∵m2+1≥1>0,∴m+1≥0,解得m≥﹣1,又m≠0,1﹣m≠0则m≥﹣1且m≠0且m≠1时,此二次三项式能用上面的方法分解因式.21. (2020·南阳镇平期中)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”,例如,一元二次方程x2+x =0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”;(1)通过计算,判断下列方程是否是“邻根方程”.①x2﹣x﹣12=0;②x2﹣9x+20=0;(2)已知关于x的方程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值.解:(1)①分解因式得:(x﹣4)(x+3)=0,解得:x=4或x=﹣3,∵4≠﹣3+1,∴x2﹣x﹣12=0不是“邻根方程”;②分解因式得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,∵5=4+1,∴x2﹣9x+20=0是“邻根方程”;(2)分解因式得:(x+m)(x﹣1)=0,解得:x=﹣m或x=1,∵方程程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程,∴﹣m=1+1或﹣m=1﹣1,∴m=0或﹣2.22. (2020•鹤壁市期末)发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴x==∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+=0,∴x1=,x2=.当为腰时,+<,∴、、不能构成三角形;当为腰时,等腰三角形的三边为、、,此时周长为++=.答:当m=2时,△ABC的周长为.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(﹣)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.23.(2020·内蒙古赤峰·中考真题)阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.问题解决:(1)请你写出三个能构成“和谐三数组”的实数;(2)若,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.【答案】(1),2,3(答案不唯一);(2)见解析;(3)m=﹣4或﹣2或2.【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出,然后再求出,只要满足=即可;(3)先求出三点的纵坐标y1,y2,y3,然后由“和谐三数组”可得y1,y2,y3之间的关系,进而可得关于m的方程,解方程即得结果.解:(1)∵,∴,2,3是“和谐三数组”;故答案为:,2,3(答案不唯一);(2)证明:∵,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,∴,,∴,∵是关于x的方程bx+c=0(b,c均不为0)的解,∴,∴,∴=,∴x1,x2,x3可以构成“和谐三数组”;(3)∵A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,∴,,,∵三点的纵坐标y1,y2,y3恰好构成“和谐三数组”,∴或或,即或或,解得:m=﹣4或﹣2或2.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为( )A.2017B.2020C.2019D.2018B已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.。
初中数学 第22章一元二次方程复习题及答案
第22章 一元二次方程复习题●双基演练一、选择题1.下面关于x 的方程中①ax 2+bx+c=0;②3(x -9)2-(x+1)2=1;③x+3=; ④(a 2+a+1)x 2-a=0-1.一元二次方程的个数是( )A .1B .2C .3D .42.要使方程(a -3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则( )A .a≠0B .a≠3C .a≠1且b≠-1D .a≠3且b≠-1且c≠03.若(x+y )(1-x -y )+6=0,则x+y 的值是( )A .2B .3C .-2或3D .2或-34.若关于x 的一元二次方程3x 2+k=0有实数根,则( )A .k>0B .k<0C .k≥0D .k≤05.下面对于二次三项式-x 2+4x -5的值的判断正确的是( )A .恒大于0B .恒小于0C .不小于0D .可能为06.下面是某同学在中考期中测试中解答的几道填空题:(1)若x 2=a 2,则x= a ;(2)方程2x (x -1)=x -1的根是 x=0 ;(3)若直角三角形的两边长为3和4,则第三边的长为 5 . 其中答案完全正确的题目个数为( )A .0B .1C .2D .37.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元, 而按原定价的九折出售,将赚20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元8.利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%, 则第二季度共生产零件( )A .100万个B .160万个C .180万个D .182万个二、填空题1x9.若ax 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是________.10.已知关于x 的方程x 2+3x+k 2=0的一个根是-1,则k=_______.11.若x=2,则x 2-4x+8=________.12.若(m+1)+2mx -1=0是关于x 的一元二次方程,则m 的值是________.13.若a+b+c=0,且a≠0,则一元二次方程ax 2+bx+c=0必有一个定根,它是_______.14.若矩形的长是6cm ,宽为3cm ,一个正方形的面积等于该矩形的面积,则正方形的边长是_______.15.若两个连续偶数的积是224,则这两个数的和是__________.三、计算题(每题9分,共18分)16.按要求解方程:(1)4x 2-3x -1=0(用配方法); (2)5x 2-6=0(精确到0.1)17.用适当的方法解方程:(1)(2x -1)2-7=3(x+1); (2)(2x+1)(x -4)=5;(3)(x 2-3)2-3(3-x 2)+2=0.能力提升18.若方程x 2-2)=0的两根是a 和b (a>b ),方程x -4=0的正根是c ,试判断以a 、b 、c 为边的三角形是否存在.若存在,求出它的面积;若不存在,说明理由.(2)1m m x +-19.已知关于x的方程(a+c)x2+2bx-(c-a)=0的两根之和为-1,两根之差为1, 其中a,b,c是△ABC的三边长.(1)求方程的根;(2)试判断△ABC的形状.20.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?21.李先生乘出租车去某公司办事,下午时,打出的电子收费单为“里程11 公里,应收29.10元”.出租车司机说:“请付29.10元.”该城市的出租车收费标准按下表计算,请求出起步价N(N<12)是多少元.聚焦中考22.方程的根是( )A B C D23.某种商品零售价经过两次降价后的价格为降价前的,则平均每次降价( ) A . B . C . D .24.关于x 的一元二次方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定25.已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2 + 2cx + (a + b )=0的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 26.关于的一元二次方程的一个根为1,则方程的另一根为 .27.小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=_____.28.在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
1
C
QB
20、已知:关于 x 的一元二次方程 x2 (k 1)x 6 0 ,
(1)求证:对于任意实数 k ,方程有两个不相等的实数根. (2)若方程的一个根是 2,求 k 的值及方程的另一个根.
21、已知一元二次方程 x2 4x k 0 有两个不相等的实数根.
(1) 求 k 的取值范围;
D、 a b
14、若一个三角形的三边均满足 x2 6x 8 0 ,则此三角形的周长为(
)
A、6
B、12
C、10
D、以上三种情况都有可能
15、关于 x 的一元二次方程 (a 1)x2 x a2 1 0 的一个根是 0 . 则 a 的值为 (
)
A、 1
B、-l
1
C、 1 或-1 D、
(2)
x1
5
2
33
,
x2
5
2
33
已知 x1 ,
x2 是方程 x2
4x 2 0 的两根,求:(1)
1 x1
1 x2
的值;(2) (x1
x2 )2 的值.
四、用心想一想: 23、今年,我国政府为减轻农民负担,决定在 5 年内免去农业税 .某乡今年人均上缴 农业税 25 元,若两年后人均上缴农业税为 16 元,假设这两年降低的百分率相同 .
第 22 章《一元二次方程》测试题
一、认真填一填:
1、把一元二次方程 3(x 2)(x 2) 4x 0 化为一般形式是
2、方程 x2 2x 0 的根是
3、关于 x 的一元二次方程 x2 x m 0 的一个根是-2, 则 m=
ห้องสมุดไป่ตู้
4、当 x=
时,代数式 x2 5x 5 的值为-1.
5、如果二次三项式 x2 2m 1是一个完全平方式,那么 m 的值是 6、关于 x 的方程 (m 2)xm2 2 5x 1 0 是一元二次方程,那么 m=
2
16、如果关于x的一元二次方程 k 2 x2 (2k 1)x 1 0 有两个不相等的实数根,那么 k
的取值
范围是( )
A、 k > 1 4
B、 k > 1 且 k 0 4
C、 k < 1 4
D、 k 1 且 k 0 4
三、细心算一算: 17、用适当的方法解下列方程:
(1) (2x 1)2 3(2x 1)
( 1)求降低的百分率; (2)若小红家有 4 人,明年小红家减少多少农业税? (3)小红所在的乡约有 16000 农民,问该乡农民明年减少多少农业税 .
24、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为 1 米
的正方形后,剩下的部分刚好能围成一个容积为 15 米 3 的无盖长方体箱子,且此长方体箱子 的底面长比宽多 2 米,现已知购买这种铁皮每平方米需 20 元钱,问张大叔购回这张矩形铁皮
(2) 如果 k 是符合条件的最大整数,且一元二次方程 x2 4x k 0 与 x2 mx 1 0 有一
个相同的根,求此时 m 的值.
22、 (08′湘潭)阅读材料:
如果 x1 ,x2 是一元二次方程 ax2 bx c 0 的两根,那么有 x1 x2 b , x1x2 c .
2
参考答案
1、5x2-4x-1=0 , 5x2 , -4 2、x1=3 ,x2=-1 3、1 ,-2 4、 x1 1 2, x2 1 2
5、≤2 6、0 或 3 7、8m 或 6m 8、24 或 8 5 9、3 或-1 10、20%
11、B 12、D 13、D 14、C 15、D 16、A
17、(1) x1 2, x2 1
a
a
这是一元二次方程根与系数的关系,我们利用它可以用来解题,例 x1 , x2 是方程
x2 6x 3 0 的两根,求 x12 x22 的值 .解法可以这样: x1 x2 6 , x1x2 3 , 则
x12 x22 (x1 x2 )2 2x1x2 (6)2 2 (3) 42 . 请你根据以上解法解答下题:
则平均每次降低成本的百分数是
10、某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送 1 件,全组互赠标本
共 182 件,若全组有 x 名学生,则根据题意可列方程
二、精心选一选:
11、方程 (x+1)(x-3) = 5 的解是 (
)
A、x1=1 , x2 = -3 B、x1= 4 , x2 = -2 C、x1 = -1 , x2 = 3
12、下列一元二次方程中,有实数根的是 (
)
D、x1= -4 , x2 = 2
A、x2-x +1= 0
B、x2-2x+3 = 0
C、x2 + x-1= 0
D、x2 + 4 = 0
13、已知方程 x2 bx a 0 有一个根是 a a 0,则下
列代数式的值恒为常数的是(
)
A、 ab
a
B、
b
C、 a b
共花了多少元钱?
1米
1米
25、西瓜经营户以 2 元/千克的价格购进一批小型西瓜,以 3 元/千克的价格出售 ,每 天可售 出 200 千克 .为了促销 ,该经营户决定降价销售 .经调查发现 ,这种 小型西瓜每降价 0.1 元/千克,每天可多售出 40 千克 .另外,每天的房租等固定 成本共 24 元 .该经营户要想 每天盈利 200 元,应将每千克小型西瓜的售价降低多少元 ?
(2) 3x2 3x 1 0
18、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从 以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.
①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.
19、如图,在 Rt△ACB 中,∠C=90°, AC=8cm ,BC=6cm , 点 P、Q 同时由 A、B 两点出发分别沿 AC、BC 向点 C 匀速移动,它们的速度都是 1 米/秒,问:几秒后△PCQ 的面积为 Rt△ACB 面积 的一半?
7、 若关于 x 的一元二次方程 x2 2x k 0 没有实数根,则 k 的取值范围是
.
8、若关于 x 的一元二次方程 x 2 mx n 0 有两个相等的实数根,则符合条件的一组 m,n 的
实数值可以是 m=
,n=
;
9、制造一种商品,原来每件成本为 100 元,由于连续两次降低成本,现在的成本是每件 81 元,