测量误差和数据处理

合集下载

测量误差和数据处理

测量误差和数据处理

δ
福建工程学院--建筑环境测试技术
σ =1 σ =2


③σ 愈小,正态分布曲线愈尖锐,σ 愈 大,正态分布曲线愈平缓。说明σ 反映 了测量的精密度。
1.数学期望 对被测量 x 进行等精度 n 次测量,得到 n 个测量值 x1 , x2 , x3 , … , xn 。则 n 个 测得值的算术平均值为:
x
1 n
x
i 1
n
i
当测量次数 n 时,样本平均值的 极限定义为测得值的数学期望。
1 E x lim n xi n i 1
1为定值系差,2 为线性系统 误差,3为周期系统误差,4 为按复杂规律变化的系统误 差。
系统误差示意图
福建工程学院--建筑环境测试技术
二、随机误差
当对某一物理量进行多次重复测量时,若误差出现的 大小和符号均以不可预知的方式变化,则该误差为随机误 差(random error)。随机误差产生的原因比较复杂,虽然

lim
n
1 n
2 i i 1
n
σ反映了测量的精密度,σ小表示精密度 高,测得值集中,σ大,表示精密度底, 测得值分散。
福建工程学院--建筑环境测试技术
二.随机误差的正态分布分析
1.正态分布
随机误差
f ( )
1
2
标准误差
e
2 2 2
f(δ )
福建工程学院--建筑环境测试技术
f ( )d p( a b )


f ( )d p( ) 1
福建工程学院--建筑环境测试技术
f ( )d p( ) 68.3%
f(δ )

第二章测量数据处理及测量误差分析

第二章测量数据处理及测量误差分析

第二章测量数据处理及测量误差分析测量数据处理及测量误差分析是科学实验中非常重要的一个环节,它涉及到对实验数据进行整理、处理以及对测量误差进行分析、评估的过程。

本章主要包括数据的整理、数据处理的常用方法、误差分析和误差处理方法等内容。

一、数据的整理在进行数据整理之前,首先要明确实验的目的和要求,明确需要获得的数据类型和数据量,有针对性地进行数据测量和记录。

数据整理主要包括:1.数据记录:将实验过程中获得的原始数据按照一定的格式记录下来,包括数据名称、数据值、测量单位等。

2.数据清洗:对记录下来的数据进行初步的筛选和清理,去除明显的异常值和错误数据,保留有效和可靠的数据。

同时,要注意将数据转换为适当的统计量,如平均值、中位数、标准差等。

二、数据处理常用方法数据处理是对记录下来的数据进行统计、分析和加工的过程,常用的数据处理方法有:1.统计分析:包括计算数据的平均值、中位数、众数等统计量,分析数据的分布特征,进行图表的绘制和描述。

2.走势分析:通过时间序列数据的走势分析,观察数据的变化规律,判断数据是否存在趋势性、周期性等特征。

3.相关分析:用于研究两组或多组数据之间的相关性,包括相关系数的计算和相关关系的绘图等。

4.假设检验:通过已知的数据样本对一些假设的合理性进行检验,判断假设是否成立并进行统计推断。

三、误差分析误差是指测量结果与真实值之间的差异,它是不可避免的,但可以通过分析和处理来减小误差的影响。

误差分为系统误差和随机误差两种。

1.系统误差:主要源于测量仪器、测量方法和实验设计的不确定性,它会导致测量结果的整体偏移,常常是可检测和可纠正的。

调整测量仪器的零点、校正仪器的偏差、改进实验设计等方法可以减小系统误差的影响。

2.随机误差:主要源于测量过程中的各种随机因素,如环境的变化、测量操作的不精确等。

随机误差是不可避免的,通过多次重复测量可以获得多组数据,然后进行数据的平均处理和统计分析,可以减小随机误差的影响。

测量误差与数据处理

测量误差与数据处理

ε=n lim ∞
∑(x −m)
i=1 i
n
2
t
sx =
x
(xi − x)2 ∑
i=1
n

n
n −1
实验中先用贝塞尔公式计算测量列的标准偏差,然后,用t分布因 子对标准偏差进行修正,从而获得测量列的标准偏差.实验中常用 的t因子如表: 当n>6时,ε≈s 证明见后 ε=sχT0.683统误差大
准确度高
正确度好但精密度差 正确度好但精密度
不确定度(uncertainty) 不确定度
不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性.不确定度提
供了测量分散范围的一个量度,它以很大的可能性包含了真值.它包含有A类不确定 度分量(随机误差统计分析所获)和B类不确定度分量(非统计方法所获).
δ仪
-δ仪 δ
Δ仪
均匀分布
对于正态分布:仪器不确定度 对于正态分布 仪器不确定度 u仪与仪器误差限的关系为 与仪器误差限的关系为:u 仪=kp×δ仪/C 为置信因子, kp为置信因子,在一倍标准偏 差下的置信概率0.683,C=3, 差下的置信概率0.683,C=3, 故uB=δ仪/3.
综上所述,所谓 类不确定度应由贝塞尔公式 算出有限次测量的标准偏差,然后 综上所述 所谓A类不确定度应由贝塞尔公式 算出有限次测量的标准偏差 然后 所谓 类不确定度应由贝塞尔公式S算出有限次测量的标准偏差 用平均标准偏差S 作为A类不确定度 类不确定度u 再由u 乘以因子t 用平均标准偏差 X作为 类不确定度 A = S X 再由 A乘以因子 p来求得扩展不 n 确定度UA.所以 确定度 所以: UA=uA×tP 所以 B类不确定度的评估 类不确定度的评估: 类不确定度的评估

20第2章测量误差及数据处理

20第2章测量误差及数据处理
• 仪表的精度等级(精确度等级)是指仪表在规定的工作条 件下允许的最大相对百分误差。
• 按国家标准规定,用最大引用误差来定义和划分仪器仪表 的精度等级,将仪器仪表的精度等级分为: …… , 0.05, 0.1,0.25,0.35,0.5,1.0,1.5,2.5,4.0,5.0……(以前 只有七种)
• 当计算所得的与仪表精度等级的分档不等时,应取比稍大 的精度等级值。仪表的精度等级通常以S来表示。例如, S=1.0,说明该表的最大引用误差不超过±1.0%。

最大满度相对误差是仪表基本误差最大值 程之比的百分数,即:
xm与基 仪器仪表量
om量 xm基 程10% 0
• 最大引用误差是仪表的绝对误差最大值 xm与绝仪器仪表量程 之比的百分数,即:
量xm程 绝100%
• 当仪表是在标准条件下使用的,则:
最大满度相对误差=大 最引用误差
仪表精度等级的确定
即:
Axc
c) 可见,用修正值可以减小测量误差,得到更接近于被 测量真值的实际值。
d) 应该指出,使用修正值必须在仪表检定的有效期内。 修正值本身也有误差。
实际值相对误差
例 测量两个电压,实际值U1 100V,U2 5V,仪表的 示值分别为Ux1 101V,Ux2 6V。其绝对误差分别为:
c) 随机误差表征了测量结果的精密度,随机误差小,精 密度高,反之,精密度低。
服从正态分布规律的随机误差
d) 当测量次数足够多时,大多数随机误差是服从正态分布的。服从 正态分布规律的随机误差具有下列特点(如 图所示): ① 单峰性 绝对值小的误差比绝对值大的误差出现的概率大,
在误差 0处,出现的概率最大。
• 掌握随机误差、粗大误差和系统误差的估算、判断和减小方法

3.2测量误差和数据处理

3.2测量误差和数据处理

若误差落在区间(-∞,+ ∞ )之中,则其概率 p=1; 若误差落在(-δ,+δ )之中,则上式可改写为:
将上式进行变量置换,设: 则: =2Φ(t)
在实践中常认为δ=±3σ的概率约等于1, 从而将±3σ 称为随机误差的极限误差 随机误差的极限误差。 随机误差的极限误差 即:
δlim=±3σ
算术平均值的极限误差: 算术平均值的极限误差:δlimL=±3σ L
——若某一|υi|>3σ ,则该残余误差为粗大误差,应剔除。 该准则主要适有用于服从正态分布的误差,且重复测量 次数又比较多的情况。
(2)狄克逊准则 ) (3)格罗布斯准则 ) (4)t检验法等 ) 检验法等
§3.2.6 等精度测量结果的处理
步骤如下: (1)判断有无系统误差存在 (2)求算术平均值 (3)计算残余误差 (4)计算标准偏差 σ (5)判断粗大误差并将其剔除 |υ ∣≤3σ (6)求算术平均值的标准偏差 测量结果的表达式: (7)测量结果的表达式: 单次测量时: 单次测量时: L= li±3σ 多次测量时: 多次测量时: 例:(见书P.60)
二、随机误差的评定指标 1.算术平均值 .
对某量进行等精度测量时,由于随机误差的存在,其 获得的测量值不完全相同,此时应以其算术平均值作为最 后的测量结果。即:
由正态分布的性质④可知,当测量次数n增大时,算术平均 值愈趋近于真值。因此——用算术平均值作为最后的测
量结果比用其它任一测量值作为测量结果更可靠。
1、测量器具误差 、 2、方法误差 、 3、标准件误差 、 4、环境误差 、 5、人为误差 、
§ 3.2.2
1.误差分类 .
误差的分类
(1)系统误差 系统误差 在相同条件下,多次测量同一量值时,误差的绝对值和符号 保持不变或按一定规律变化着的误差。 系统误差可分为定值系统误差 变值系统误差 定值系统误差和变值系统误差 定值系统误差 变值系统误差。 (2)随机误差 随机误差 在相同条件下,多次测量同一量值时,绝对值和符号以不可 预定的方式变化着的误差。误差的出现是无规律可循的。 (3)粗大误差 粗大误差 由于测量不正确等原因引起的大大超出规定条件下预计误差 限的那种误差。

测量误差及数据处理

测量误差及数据处理

x0
x
相对误差ε是一个无量纲的数据,通常以百分数的形式表
示。相对误差比绝对误差能更好地说明测量的精确程度。例如,
在上面的例子中,ε1=0.002/20×100%=0.01%,ε2= 0.02/250×100%=0.008%,可以看出,后者的测量精度更高。
1.2 测量误差的来源
计量器具 误差
计量器具误差是指计量器具本身在设计、制造和使用
(2)随机误差的评定指标
① 算术平均值 。对同一被测量进行n次等精度测量,测
量结果为x1、x2、…、xn,则算术平均值x 为:
x
x1 x2 xn n
1 n
n i1
xi
测量次数n越大,算术平均值 越趋近于真值x0。因此,用
算术平均值 x 作为最后测量结果是可靠的、合理的。
② 标准偏差σ。
用算术平均值 x 表示测量结果虽然可靠,但不能全面反
映测量精度。例如,有两组测得值: 第一组:12.005,11.996,12.003,11.994,12.002; 第二组:11.90,12.10,11.95,12.05,12.00。
两组测得值的算术平均值 x1= x2=12,但第一组测得
值比较集中,第二组测得值比较分散,也就是说,第一组的 每一个测得值比第二组的更接近于算术平均值,第一组测得 值的测量精度比第二组高。此时,算术平均值就不能准确地 反映测量精度了,而常用标准偏差σ来反映测量精度的高低。

误差
所引起的误差。环境条件主要包括温度、湿度、气压、振
动和灰尘等,其中,温度对测量结果的影响最大。
测量人员 误差
测量人员误差是指由测量人员的主观因素所引起的误
差。例如,测量人员技术不熟练、测量瞄准不准确、估读 判断错误和测量习惯等引起的误差。

测量误差和数据处理

测量误差和数据处理

测量误差和数据处理(一) 测量与误差1. 测量在科学实验中,一切物理量都是通过测量得到的。

所谓测量就是将待测物理量与规定作为标准单位的标准物理量通过一定的比较,其倍数即为待测物理量的测量值。

测量按测量方式的不同分为直接测量和间接测量两类: ①直接测量(简单测量)运用量具或仪表能直接得到物理量的数值,称为直接测量。

例如,用米尺、游标卡尺、千分尺测量长度;用秒表测时间;用电流表测电路中的电流强度等。

它的特点是:测量结果直接得到。

②间接测量(复合测量)多数物理量,不便或不能直接测量。

但是我们可以先对可直接测量的相关物理量进行测量,然后依据一定的函数关系,计算出待测的物理量,这称为间接测量。

例如,要测量一圆柱体的体积V,可以先用米尺(或卡尺)对直径d 和高度h 进行直接测量,然后根据公式h d V 241π=计算出它的体积。

当然一个物理量应直接测量还是间接测力测量,不使绝对的。

要根据所有的仪器和测量方法来定。

如上例中的圆柱体投入盛有一定量水的量筒中,从液面的上升即可直接得到体积。

2. 真值和近似真值物质是客观存在的,有各种特性。

反映物质特性的物理量在一定条件下,对应有一个确定的客观真实值。

这个数值就称为真值。

从测量者的主观愿望来说,总想测出物理量的真值。

然而任何实际测量中是在一定环境下,用一定的仪器、一定的方法,由一定的人员完成的,由于周围环境不理想、测量方法不完善、仪器设备不精密,而且受到测量人员技术经验和能力等因素的限制,使任何测量都不会绝对精确。

测量值与真值之间的差别,称为误差。

任何测量都有误差,误差贯穿于测量的全过程。

某一物理量的误差,定义为该量的测量值x 与真值μ之差,即: μδ-=x由于真值测不出来,误差又不可避免,所以测量的目的硬是:在给定的条件下,求出被测量的最可信赖值,并对它的精确程度给予正确的估计。

在我们的实验中,最可信赖值取多次测量的算术平均值,它是真值得最好近似,也称近似真值。

用公式表示为 ∑==ni i x n x 11 3. 误差测量数据的精确程度我们使用误差来描述。

测量误差分析及数据处理

测量误差分析及数据处理
明显地偏离被测量真值的测量值所对应的误差,称为粗大误差 。
2. 基本误差和附加误差
任何测量装置都有一个正常的使用环境要求,这就是测量装置的规 定使用条件。根据测量装置实际工作的条件,可将测量所产生的误差分 为基本误差和附加误差。测量装置在规定使用条件下工作时所产生的误 差,称为基本误差。而在实际工作中,由于外界条件变动,使测量装置 不在规定使用条件下工作,这将产生额外的误差,这个额外的误差称为 附加误差。
3.投标阶段。投标人取得招标书之后,经过仔细的研究,可以 根据自己的意愿决定进入投标阶段。
4.评标阶段。招标方收到投标书后,只有在招标会那天,投标 人到达会场,才将投标书邮件交招标人检查,签封完好后,由招 标人当面打开,并宣布各投标人的标的,按招标文件中确定的程 序由全体评标人员进行分析评比,最后通过投票或打分方式选出 中标人。
5
(二)采购分类及方法
1.招标采购 2.询价采购 3.比价采购 4.议价采购 5.定价收购 6.公开市场采购
6
二、企业采购部门的建立、工作目标与工 作事项描述
(一)采购部门的建立 1.按物品类别建立 2.按采购地区建立 3.按采购价值或重要性建立 4.按采购过程建立 5.混合式的建立
29
七、采购绩效管理
(一)采购绩效的构成 由采购行为所产生的业绩和效果以及效率的
综合程度就是采购绩效。 (二)采购绩效的考核与评估的指标体系 1.采购绩效考核与评估的指标 2.采购绩效考核与评估方式 (1)定期绩效考核与评估 (2)不定期绩效考核与评估
(一)质量管理的方法 1.PDCA循环 (二)提高采购商品质量的途径 1.选择合适的供应商 2.正确评审供应商资格 3.制定并执行联合质量计划,建立良好供需

大学物理-测量误差与数据处理

大学物理-测量误差与数据处理
n i 1 i
2
n 1
(1) 偶然误差较大时: 仪器误差
可不考虑
Sx
t x x n
x
n i 1
i
x

2
n 1
(2)偶然误差与仪器误差相差不大时:
S Δ2 x源自2 I(3)只测一次或偶然误差很小:
只取仪器误差
ΔI
仪器误差
(1)对仪器准确度未知的
一般取:最小刻度(分度值)的1/10、1/5、1/2 或最小刻度
大学物理实验 误差理论
一、测量误差及数据处理
(一)测量与误差的基本概念
1、测量:
把待测量与作为标准的量(仪器)进行 比较,确定出待测量是标准量的多少倍。
测量可分为:直接测量和间接测量。
2、真值: 物理量客观存在的大小。
3、误差ε: 测量值x与真值a之间的偏差称为(绝对) 误差,即: ε= x – a 由于真值的不可知,误差实际上很难计算
3、测量结果的表达
测量值及 不确定度
x x
Ex
(单位)
相对误差

x
100%
百分误差
E0
x x0 x0
100%
(1)测量值及不确定度
x x
例:算得σ=0.21cm 取σ=0.3cm
σ 只取1位,
下一位0以上的数一律进位
x 的末位与σ所在位对齐,下1位简单采取4舍5入
例:
R=910 2
t=10.13 0.02s
(2)相对误差
L1 80.23 0.04cm 与 L2 200.00 0.05cm
哪个测量误差小?
相对误差
Ex

x

如何进行测量数据处理和误差分析

如何进行测量数据处理和误差分析

如何进行测量数据处理和误差分析测量数据处理和误差分析是科学研究和实验设计中至关重要的一环。

在各个学科领域,准确地测量和分析数据对于取得可靠的研究结果和科学发现至关重要。

本文将介绍测量数据处理和误差分析的基本原理、方法以及应用。

一、测量数据处理的基本原理测量数据处理是对实验数据进行整理和分析的过程,其主要目的是为了获取可靠、准确的测量结果。

测量数据处理的基本原理包括:1. 数据采集:在实验或观测中,通过各种测量装置和方法,获取数据。

数据的正确采集是测量数据处理的第一步。

2. 数据整理:将采集到的数据按照一定的规则进行整理和分类,使其更易于分析和理解。

包括数据的录入、筛选、排序等。

3. 数据分析:对整理好的数据进行统计和分析,包括计算平均值、标准差、相关系数等。

4. 结果展示:将分析后的数据和结果以适当的形式进行展示,如制作图表、表格等,便于读者理解和参考。

二、误差分析的基本原理误差是测量中不可避免的因素,准确地评估和分析误差对于获得可靠的结果至关重要。

误差分析的基本原理包括:1. 系统误差:由于测量仪器、方法或操作等方面的不准确引起,是一种固定的误差。

系统误差可以通过校准仪器、改进测量方法等方式进行减小。

2. 随机误差:由于种种无法控制的因素所引起,是一种无规律的误差。

随机误差可以通过多次测量并取平均值来减小。

3. 误差来源分析:对于实验和测量过程中的误差来源进行分析,包括仪器误差、环境误差、人为误差等,并寻求适当的处理方法。

4. 不确定度评定:通过计算和评估测量结果的不确定度,准确地表示测量结果的可靠程度。

三、测量数据处理和误差分析的方法测量数据处理和误差分析的方法包括:1. 统计分析方法:包括平均值、标准差、相关系数等统计参数的计算和分析,通过统计学方法来处理和分析数据。

2. 敏感度分析方法:通过改变输入数据或模型参数的数值,评估其对测量结果的影响程度,找出影响结果稳定性的因素。

3. 不确定度评定方法:通过考虑测量装置精度、测量方法可靠性等,对测量结果的不确定度进行计算和评估。

工程测量中的数据处理与误差分析

工程测量中的数据处理与误差分析

工程测量中的数据处理与误差分析工程测量是工程领域中非常重要的一项工作,它涉及到测量数据的采集、处理和分析。

在测量过程中,获取准确的数据,进行合理的数据处理,并对可能出现的误差进行分析,对于工程的设计、施工和质量控制都具有重要意义。

本文将就工程测量中的数据处理与误差分析进行详细讨论。

一、数据处理方法在工程测量中,数据处理通常包括数据采集、数据预处理和数据后处理三个环节。

数据采集是通过测量仪器对被测对象进行测量,得到一系列测量数据。

数据采集的准确性直接影响到后续数据处理的可靠性。

在数据采集之后,需要对原始数据进行预处理。

预处理的目的是对原始数据进行加工和清理,消除或减小数据中的噪音和随机误差。

常用的预处理方法包括滤波、平滑和插值等。

滤波是在信号处理中常用的方法,可以通过去除高频部分来减小数据的噪音干扰。

平滑技术可以用来减少数据的波动,使得数据更加平稳。

插值则是通过已知数据点来推测未知数据点的值,从而填补数据中的空缺部分。

数据预处理完成后,需要进行数据后处理。

数据后处理是对预处理后的数据进行分析、计算和评估,最终得到所需的测量结果。

常用的数据后处理方法有统计分析、回归分析和误差分析等。

统计分析可以从整体上对数据进行描述性分析,包括均值、标准差、方差和偏度等。

回归分析可以通过已知数据点来建立数学模型,并拟合出未知数据点的值,用于预测和估计。

误差分析是对数据误差进行量化和评估,通过计算误差的大小和分布来评估测量结果的可靠性。

二、误差分析方法误差是工程测量中不可避免的问题,它来源于多方面的因素,包括仪器精度、环境条件、人为因素等。

误差的存在会影响到测量结果的准确性和可靠性,因此对误差进行分析和控制是工程测量的关键。

常用的误差分析方法包括误差源分析、误差传递分析和误差评定分析。

误差源分析是对误差产生的原因进行分析和归纳。

误差可以分为系统误差和随机误差两类。

系统误差是由于系统的固有特性而产生的误差,主要影响测量结果的准确性和偏差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2:02 PM
5
误差与测量
测量时首先k置于位置1,调节Rp 时指零仪表指零,这时:
EN IRN
然后将开关置于位置2,此是测
量位置,调节Rx使指零仪表指零,
I
说明整个系统平衡,即:
EX
IRX
EN RN
RX
EN — —标准电池电动势
RN — —标准电阻
电位差计原理图
2:02 PM
6
误差与测量
Ⅲ)微差式测量
2:02 PM
2
误差与测量
1. 直接测量与间接测量
Ⅰ)直接测量 用事先分度或标定好的测量仪表,直接读取被测量测量结果的方法称 为直接测量。例如,用温度计测量温度,用电压表测量电压等。 直接测量是工程技术中大量采用的方法,其优点是直观、简便、迅速, 但不易达到很高的测量精度。 Ⅱ)间接测量 首先,对和被测量有确定函数关系的几个量进行测量,然后,再将测 量值代入函数关系式,经过计算得到所需结果。这种测量方法,属于
RP Rm
Rw
2 PM
8
微差式测量原理图
误差与测量
2.1 误差的来源及分类
2.1.1 测量误差的概念及其表示方法
1. 测量误差:对某一参数进行测量时,由于各种因素的影响,使测量值 与被测参数的真值之间存在一定的差值,此差值就是测量误差。
2.测量误差的来源:
1)测量方法
方法误差是指由于测量方法不合理所引起的误差。如用电压表测量电压 时,没有正确的估计电压表的内阻对测量结果的影响而造成的误差。在 选择测量方法时,应考虑现有的测量设备及测量的精度要求,并根据被 测量本身的特性来确定采用何种测量方法和选择哪些测量设备。正确的 测量方法,可以得到精确的测量结果,否则还可能损坏仪器、设备、元 器件等。
2:02 PM
4
误差与测量
Ⅱ)零位式测量(补偿式或平衡式测量)
在测量过程中,用已知的标准量与被测量比较,若有差值,则调整标 准量使差值减小,该差值用指零仪表测量,当指零仪表在零位时,说 明被测量等于标准量。用天平测量物体的质量就是零位式测量的一个 简单例子。用电位差计测量未知电压也属于零位式测量,如下页图所 示的电路是电位差计的原理性示意图。
这是综合零位式测量和偏差式测量的优点而提出的一种测量方法,基 本思路是将被测量x的大部分作用先与已知标准量N的作用相抵消,剩 余部分即两者差值△=x—N,这个差值再用偏差法测量。微差式测量 中,总是设法使差值△很小,因此可选用高灵敏度的偏差式仪表测量 之。即使差值的测量精度不高,但最终结果仍可达到较高的精度。
2:02 PM
3
误差与测量
2. 偏差式测量、零位式测量和微差式测量
Ⅰ)偏差式测量(直读式测量)
在测量过程中,利用测量仪表指针相对于刻度初始点的位移(即偏 差)来决定被测量的测量方法,称为偏差式测量。在使用这种测量 方法的仪表内并没有标准量具。只有经过标准量具校准过的标尺或 刻度盘。测量时,利用仪表指针在标尺上的示值,读取被测量的数 值。它以间接方式实现被测量和标准量的比较。(例如万用表)
间接测量。例如,测量直流电功率时,根据P=IU的关系,分别对I、
U进行直接测量,再计算出功率P。在间接测量中,测量结果y和直接
测量值xi(i=1,2,3…)之间的关系式可用下式表示 y=f(x1x2x3——) (1-3-1)
间接测量手续多,花费时间长,当被测量不便于直接测量或没有相应 直接测量的仪表时才采用。
在零位式测量中,标准量具处于测量系统中,它提供一个可调节的标 准量,被测量能够直接与标准量相比较,测量误差主要取决于标准量 具的误差。因此,可获得比较高的测量精度。另外,示零机构越灵敏, 平衡的判断越准确,愈有利于提高测量精度。但是这种方法需要平衡 操作,测量过程较复杂,花费时间长,即使采用自动平衡操作,反应 速度也受到限制,因此只能适用于变化缓慢的被测量,而不适于变化 较快的被测量。
偏差式测量仪表在进行测量时,一般利用被测量产生的力或力矩, 使仪表的弹性元件变形,从而产生一个相反的作用,并一直增大到 与被测量所产生的力或力矩相平衡时,弹性元件的变形就停止了, 此变形即可通过一定的机构转变成仪表指针相对标尺起点的位移, 指针所指示的标尺刻度值就表示了被测量的数值。(例如体重计)
偏差式测量简单、迅速,但精度不高,这种测量方法广泛应用于工 程测量中。
电气测试技术
第二章 测量误差及数据处理
✓测量误差的来源及分类 ✓测量误差的表示方法 ✓随机误差的估算 ✓粗大误差的判断 ✓系统误差的减小 ✓测量数据的处理
2:02 PM
1
误差与测量
2.0 测量方法
测量方法是实现测量过程所采用的具体方法,应当根据 被测量的性质、特点和测量任务的要求来选择适当的测 量方法。按照测量手续可以将测量方法分为直接测量和 间接测量。按照获得测量值的方式可以分为偏差式测量、 零位式测量和微差式测量。此外,根据传感器是否与被 测对象直接接触,可区分为接触式测量和非接触式测量。 而根据被测对象的变化特点又可分为静态测量和动态测 量等。
2:02 PM
9
误差与测量
2:02 PM
7
误差与测量
图中使用了高灵敏度电压表——毫伏表和电位差计,Rr和E分别表示稳压 电源的内阻和电动势,RL表示稳压电源的负载,E1、R1和Rw表示电位差计的 参数。在测量前调整R1使电位差计工作电流I1为标准值。然后,使稳压电源负 载电阻RL为额定值。调整RP的活动触点,使毫伏表指示为零,这相当于事先用 零位式测量出额定输出电压U。正式测量开始后,只需增加或减小负载电阻RL 的值,负载变动所引起的稳压电源输出电压U0的微小波动值△U,即可由毫伏 表指示出来。根据U0=U+△U,稳压电源输出电压在各种负载下的值都可以准 确地测量出来。微差式测量法的优点是反应速度快,测量精度高,特别适合于 在线控制参数的测量。
例如,测定稳压电源输出电压随负载电阻变化的情况时,输出电压认 可表示为U0可表示U0=U+△U,其中△U是负载电阻变化所引起的输 出电压变化量,相对U来讲为一小量。如果采用偏差法测量,仪表必 须有较大量程以满足U0的要求,因此对△U,这个小量造成的U0的变 化就很难测准。当然,可以改用零位式测量,但最好的方法是如下图 所示的微差式测量。
相关文档
最新文档