超声波测距技术综述
超声波测距之文献综述
文献综述一、引言伴随着时代的发展我国经济水平的提高,对于先进的技术的需求也越来越多。
超声波测距技术在越来越多的领域发挥着作用。
如今的石油勘测技术、汽车的倒车报警技术、汽车的维修与检测技术、现代植保机械与施药技术、物体识别、海洋测量等等。
由此可见超声波测距的前景还是十分广阔的,这也是选择超声波测距作为我的毕业课题的一个原因。
二、超声波测距原理超声波是超过人类听力范围的一种特殊的波,同样具有声波传输的最基本的物理特性。
超声波测距是一种非接触式的检测方式,与激光测距、红外线测距相比,超声波对外界光线、色彩和电磁场不敏感,对于被测物体处于黑暗、有灰尘、烟雾、电磁干扰大或者有毒等恶劣的环境下有一定的适应能力,同时超声波还具有指向性强,能量消耗缓慢以及在介质中传播距离远等优点。
超声波的工作原理是通过反射来实现的。
通过测量发射超声波和遭遇物体反射回来的反射波的时间间隔t,就可以通过公式计算出超声波发射点和观测点之间的距离S,如图1所示。
公式如下:S = 1/2vt式中v:超声波音速(声速)340m/s t:超声波的时间间隔。
S三、主要设计根据罗兆纬的《超声波测距系统设计》、王占选的《具有温度补偿功能的超声波测距系统设计》文章中所采取的系统整体结构设计,结合实际我的系统由为四部分组成,如图1所示。
分别是:数码管显示模块、TMS320F28027DSP芯片、超声波传感器模块、温度传感器模块。
TMS320F28027芯片用作控制单元,超声波传感器HC- SR04 用于超声波的发送以及回波信号的接收,温度传感器DS18B20 用于对外界环境温度的采集,数码管用于对目标与障碍物的距离进行显示。
1.超声波传感器模块王占选的《具有温度补偿功能的超声波测距系统设计》文章中超声波传感器HC - SR04 集超声波的发送和接收功能于一体,可以非常方便地提供 5 ~400 cm范围的非接触式距离感测功能。
引脚由上而下依次为电源引脚、超声波发送的触发引脚、回波信号的响应引脚以及接地引脚。
简述超声波测距的原理。
简述超声波测距的原理。
《超声波测距原理》超声波测距是一种常用的测距技术,广泛应用于工业、医疗、科学研究等领域。
它利用超声波的特性,通过测量声波传播时间,来计算目标物体与测距设备之间的距离。
超声波是一种频率高于人耳可听到的声波,它的频率一般在20kHz到200kHz之间。
超声波在空气、液体和固体中的传播速度不同,一般为340米/秒至1500米/秒之间。
这些特点使超声波成为一种适合测距的工具。
超声波测距的原理非常简单。
首先,发送器会发出一个短暂的超声波信号,这个信号会被目标物体反射回来。
接收器会接收到反射的信号,并记录下信号从发送到接收所经过的时间。
通常情况下,超声波测距设备会有一个内置的计时器来测量这段时间。
根据声波传播的速度和时间,可以使用基本的物理公式来计算目标物体与测距设备之间的距离。
公式如下:距离 = (声波传播速度 ×传播时间)/ 2其中,传播速度是超声波在特定介质中的传播速度,传播时间是信号从发送到接收所经过的时间。
由于声波在不同介质中的传播速度不同,测距设备需要根据具体的应用场景来选择适当的传播速度。
超声波测距具有准确性高、测量范围广的优点。
它可以测量离测距设备几个毫米到几十米的距离,而且误差一般在几个毫米左右。
此外,超声波测距设备的结构简单,体积小型,重量轻,易于携带和安装。
超声波测距技术广泛应用于工业领域,用于测量物体的距离、位置和速度。
在自动控制和导航系统中,超声波测距设备可以用于避障和目标定位。
在医疗领域,超声波测距设备被用于医学影像学,如超声心动图和超声造影等。
总之,超声波测距通过测量声波传播时间,利用声波传播的速度,来计算目标物体与测距设备之间的距离。
它具有准确性高、测量范围广的优点,广泛应用于工业、医疗和科学研究等领域,为人们的生活和工作提供了更多便利。
超声测距毕业论文
超声测距毕业论文超声测距技术在近年来得到了广泛的应用和研究,其在工业、医疗、交通等领域都有着重要的作用。
本文将从超声测距技术的原理、应用以及未来发展方向等方面进行探讨。
一、超声测距技术的原理超声测距技术是利用超声波在介质中传播的特性来实现距离测量。
其原理是通过发射超声波信号并接收回波信号,根据信号的时间差来计算出被测物体与测量仪器之间的距离。
超声波在空气中的传播速度约为340米/秒,而在固体、液体等介质中的传播速度则有所不同,因此可以根据超声波的传播时间来计算距离。
二、超声测距技术的应用1. 工业领域超声测距技术在工业领域中有着广泛的应用。
例如,在物流仓储中,可以利用超声测距技术来实现货物的自动堆垛和搬运。
此外,在制造业中,超声测距技术也可以用于机器人的定位和导航,提高生产效率和产品质量。
2. 医疗领域超声测距技术在医疗领域中有着重要的应用。
例如,超声测距技术可以用于医学影像的获取,如超声心动图和超声造影。
此外,超声测距技术还可以用于医疗器械的导航和定位,如手术导航系统和超声引导下的穿刺操作。
3. 交通领域超声测距技术在交通领域中也有着广泛的应用。
例如,在停车场中,可以利用超声测距技术来实现车位的自动检测和导航,提高停车效率。
此外,超声测距技术还可以用于智能交通系统中的车辆检测和跟踪,提高交通安全性和交通流畅度。
三、超声测距技术的未来发展方向随着科技的不断进步,超声测距技术也在不断发展和创新。
未来,超声测距技术有望在以下方面取得更大的突破和应用。
1. 精度提升目前的超声测距技术已经可以实现较高的测量精度,但仍有进一步提升的空间。
未来,可以通过改进传感器设计、优化信号处理算法等方式来提高测量精度,满足更高精度要求的应用场景。
2. 多功能化除了测距功能外,超声测距技术还可以结合其他传感技术实现更多功能。
例如,可以结合温度传感器实现温度测量,结合气体传感器实现气体浓度监测等。
未来,超声测距技术有望实现多功能化,满足不同领域的需求。
超声波测距的原理
超声波测距的原理超声波测距是一种常用的距离测量方法,其原理是利用超声波在空气介质中的传播速度进行测量。
下面将详细介绍超声波测距的原理。
超声波是指频率大于20kHz的声波,其在空气中的传播速度约为343m/s。
超声波测距利用超声波的特性实现距离测量。
超声波测距一般由测距传感器和控制电路两部分组成。
首先,超声波测距传感器发射一段持续时间很短的超声波脉冲。
当超声波遇到物体时,部分声能会被物体反射回传感器。
接收到反射信号后,传感器会将其转换为电信号并送入控制电路。
控制电路通过计算从超声波发射到接收所经过的时间,即超声波的回传时间,来计算测量距离。
这里需要注意的是测距传感器发射的超声波是沿直线传播的,而物体可能位于传感器发射超声波的路径上的任意位置。
因此,控制电路需要考虑超声波的传播时间和传感器离物体的实际距离之间的关系。
控制电路会根据声波的回传时间来计算物体与传感器的距离。
具体计算公式是:距离= 回传时间x 速度其中,速度指的是超声波在空气中传播的速度。
由于声波在空气中的传播速度几乎是一个固定值,所以只要计算超声波回传时间,就可以准确地测量距离。
为了提高测量的精度,超声波测距通常会对回传时间进行多次测量,并取平均值以减小误差。
此外,还可以通过调整超声波发射的持续时间或频率,以及增加传感器的发射和接收角度,进一步提高测量精度。
超声波测距的原理基于声波在空气中的传播速度和超声波的回传时间的关系。
通过测量超声波的回传时间,可以计算出物体与测距传感器之间的距离。
这种测距方法具有测量范围广、精度高、稳定性好等优点,在工业、测量等领域有着广泛的应用。
超声波 测距 原理
超声波测距原理
超声波测距是一种利用超声波的特性来测量距离的技术。
其原理基于超声波在空气中传播的速度固定,并且当超声波遇到物体表面时会发生反射。
利用超声波发射器发出的超声波经过发射器和物体之间距离的时间差可以计算出物体与发射器之间的距离。
超声波测距装置主要由超声波传感器、脉冲发生器、计时器和显示器等组成。
首先,脉冲发生器会生成一个短脉冲信号,这个信号会被超声波传感器转化为超声波信号并发射出去。
当超声波遇到物体时,一部分被物体吸收,一部分被物体反射回来,被超声波传感器接收到。
超声波传感器会将接收到的超声波信号转化为电信号,并传送给计时器。
计时器记录下发射超声波和接收到反射超声波之间的时间差,然后根据超声波在空气中的传播速度来计算出物体与传感器之间的距离。
最后,测量结果会通过显示器显示出来。
超声波测距技术广泛应用于工业领域中,如测量物体的距离、液位、宽度等。
其优点包括测距精度高、测量范围广、无需直接接触被测物体等。
然而,超声波测距也存在一些局限性,比如受到物体表面形状和材料的影响,对于某些特殊材料的测量可能不太准确。
因此,在具体应用中需要根据实际情况选择合适的测距技术。
超声波测距综述
I.超声波传感器测距的意义:随着社会的发展和科技的进步,人们对于科学的探索领域已经大大的扩大和延伸了。
其中对于距离的测量是很多领域研究过程中必不可少的一个实践步骤。
而对于距离测量方面的问题,也早不是用尺子和一些大型测量工具就能解决的了的问题。
受对距离的长度和精度的要求、测量的环境天气等非人为因素、人们对测量时间和消耗人力物力的要求等众多因素的影响,在距离的测量方面有产生了各种各样的测量仪器。
于是,一种新的测距方法诞生了——非接触测距。
超声波可用于非接触测量,具有不受光、电磁波以及粉尘等外界因素的干扰的优点,而且超声波传播速度在相当大范围内与频率无关。
总之,由以上分析可看出:利用超声波测距,在许多方面有很多优势。
II.超声波传感器测距的方法及原理:1、方法:相位检测法、声波幅值检测法和渡越时间检测法等。
2、原理:(1)相位检测法:相位检测法是通过测量返回波与发射波间相差多少相位,判断距离;(2)声波幅值检测法:是看回波的幅度大小,判断距离;(3)渡越时间检测法:是通过回波的返回时延判断距离。
III.目前超声波距离测量的现状a.相位检测法最精确,但是测量距离也较短,电路复杂;b.幅度法最简单最廉价,也最不精确;c.时间检测法是居中的,也不太复杂,测量距离、精度也都不错,所以应用比较广泛。
IV.超声波距离测量原理和方法对比2. 幅度法测距:幅度法超声波测距是利用发射波和被目标发射的接收回波之间声波的幅度差所包含的距离信息来实现对被测目标距离的测量。
并根据一定的公式算出其距离。
缺点是幅度法最简单最廉价,也最不精确。
大多数不用其进行测量。
3.时间检测法测距:事件检测法超声波测距是利用发射波和被目标发射的接收回波之间声波的返回时延差所包含的距离信息来实现对被测目标距离的测量。
并根据一定的公式算出其距离。
时间检测法不复杂,测量距离、精度都很好,所以得到广泛应用。
结论总的来说,三种测距方法想比之下可以发现:相位检测法最精确,但是测量距离也较短,电路复杂;幅度法最简单最廉价,也最不精确;时间检测法是居中的,也不太复杂,测量距离、精度也都不错,所以应用比较广泛。
超声波检测的文献综述
超声波检测的文献综述第一篇:超声波检测的文献综述文献综述—基于超声波的包覆层固化深度的检测方法一、本课题的研究背景及意义对材料表面保护、装饰形成的覆盖层,如涂层、镀层、敷层、贴层、化学式成膜等,统称为包覆层[1]。
实际上,材料表面的包覆层厚度对产品的使用性能和使用寿命影响极大,因而,包覆层厚度的检测对所有表面技术要求较高的产品都是必须的。
由于众多包覆层的厚度范围很大,从纳米尺度的气象沉积、离子注入层到毫米级的热喷涂层、堆焊层、渗碳层等,故不同厚度的测量也有许多不同的方法,这些方法均是利用不同的原理测出不同尺度范围的表面包覆层的厚度[3]。
包覆层厚度的测量,根据被测包覆层是否损坏可分为有损测厚和无损测厚两大类。
有损测厚主要有:阳极溶解库仑法、光学法、化学溶解法、轮廓法等;无损测厚有:磁性法、涡流法、射线法、电容法、超声波法、光学法等[3]。
这些方法各有其特点、适用性及局限性,在实际测量时,我们应考虑到包覆层厚度、零件形状与尺寸、覆层成分和测量环境等多种因素,选择适合的测量方法才能获取最可靠的结果。
现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法,而超声波检测作为无损检测的方法之一,最早开始于1930年,是利用进入被检材料的超声波对材料表面或内部缺陷进行检测,而利用超声波进行材料包覆层厚度的测量也是常规超声波检测的一个重要方面[5]。
超声波被用于无损检测,主要是因为有以下几个特性:①超声波的波束能集中在特定的方向上,在介质中沿直线传播,具有良好的指向性;②超声波在介质中传播过程中,会发生衰减和散射;③超声波在异种介质的界面上将产生反射、折射和波型转换,可以获得从缺陷界面反射回来的反射波,从而达到探测缺陷的目的;④超声波的能量比声波大得多,对各种材料的穿透性较强;⑤超声波在固体中的传输损失很小,探测深度大。
超声波测距仪原理
超声波测距仪原理
超声波测距仪是一种利用超声波的特性来测量距离的仪器。
它的测量原理基于声波在不同介质中传播速度不同的特点。
超声波是一种高频声波,其频率通常在20kHz到1GHz之间。
超声波测距仪通过发射超声波并接收其反射信号,来计算测量物体与测距仪之间的距离。
超声波测距仪由发射器和接收器两部分组成。
发射器发射出超声波脉冲,然后接收器接收到脉冲的反射信号。
测距仪通过计算脉冲信号的往返时间,并结合声波在空气中的传播速度,来确定物体与测距仪之间的距离。
具体测量过程如下:
1. 发射器发出一个超声波脉冲。
2. 超声波脉冲在空气中迅速传播,当遇到物体时会发生一部分反射。
3. 接收器接收到反射的超声波信号。
4. 通过计算脉冲的往返时间,即从发射到接收的时间间隔,可以得到声波在空气中行进的时间。
5. 根据声波在空气中的传播速度(通常为343米/秒),可以
利用时间和速度的关系来计算出物体与测距仪之间的距离。
超声波测距仪的精确度取决于发射器和接收器的性能,以及环境的影响。
例如,超声波在不同介质中的传播速度会有所不同,因此在不同介质中测量距离时需要进行相应的校正。
总的来说,超声波测距仪利用声波的传播速度和往返时间的关系来测量距离。
它被广泛应用于工业领域中的测量和控制系统中,常见的应用包括距离测量、物体检测和障碍物避免等。
超声波测距的应用价值和原理
超声波测距的应用价值和原理超声波测距作为一种先进的距离测量技术,具有广泛的应用价值和实用前景。
其原理主要是利用超声波在空气中的传播特性,通过发送和接收超声波的时间差来计算距离。
以下是超声波测距的应用价值和原理详细介绍:应用价值:1. 工业领域:超声波测距广泛应用于工业生产中,如测量机器人的距离、位置和速度,从而实现自动化控制和精确定位。
2. 汽车行业:超声波雷达应用于汽车倒车雷达、自动驾驶等领域,有助于提高驾驶安全性和驾驶便利性。
3. 无人机领域:超声波测距可用于无人机导航、避障、着陆等操作,提高无人机飞行安全性。
4. 智能家居:超声波测距可用于智能家居设备的定位和监控,如智能机器人、智能门锁等。
5. 医疗领域:超声波测距技术在医疗设备中也有广泛应用,如超声波成像、测量胎儿发育等。
6. 农业领域:超声波测距可用于农业自动化,如无人驾驶拖拉机、智能灌溉系统等。
7. 环境监测:超声波测距技术可应用于大气、水质等环境监测领域,实时掌握环境变化。
8. 军事领域:超声波测距在军事上有重要应用,如雷达探测、导航定位等。
原理:超声波测距原理主要包括以下几个步骤:1. 超声波发生:通过压电式超声波发生器产生超声波,该发生器利用压电晶体的谐振来工作。
2. 超声波发射:将产生的超声波发射到空气中,使其传播。
3. 超声波接收:接收器接收从物体表面反射回来的超声波。
4. 计算距离:根据发送和接收超声波的时间差,结合超声波在空气中的传播速度,计算出物体与测量设备之间的距离。
综上所述,超声波测距技术具有广泛的应用价值和实用前景,其在各个领域的应用不断拓展,为人们的生活带来诸多便利。
同时,随着科技的进步,超声波测距技术也将不断完善,提高测距精度和可靠性。
超声波测距原理解读
超声波测距原理解读超声波测距是一种常用的测量技术,通过发射超声波并接收其反射波来确定物体与传感器之间的距离。
超声波测距具有精度高、反应速度快等优点,广泛应用于工业自动化、智能交通和安防监控等领域。
本文将解读超声波测距的原理和工作过程。
一、原理概述超声波测距利用声波在空气中传播的速度很快的特点,通过发射超声波并测量其传播时间来计算距离。
其原理基于声波的发射、传播和接收。
二、工作过程1. 超声波发射:传感器会发射一束超声波脉冲。
超声波脉冲的频率通常在20 kHz到200 kHz之间,人耳无法听到。
发射的超声波脉冲会在空气中传播。
2. 超声波传播:超声波脉冲在空气中以声速传播,当遇到物体时,部分能量被物体吸收,另一部分能量通过反射返回传感器。
3. 超声波接收:传感器接收到反射波,并将其转化为电信号。
传感器通常由超声波发射器和接收器组成,可以同时发射与接收超声波信号。
4. 信号处理:接收到的反射波经信号处理后,可以通过计算发射和接收之间的时间差来确定物体与传感器的距离。
根据声波在空气中的传播速度,可以使用速度乘以时间差的方法计算出物体的距离。
三、应用领域超声波测距技术由于其精度高、反应速度快的特点,被广泛应用于各个领域。
以下是几个常见的应用领域:1. 工业自动化:超声波测距可用于测量物体的距离、检测物体的位置和尺寸,广泛应用于自动化生产线上的物体检测与定位。
2. 智能交通:超声波测距可以用于车辆与障碍物之间的距离测量,帮助驾驶员避免碰撞事故。
在停车辅助系统中也有广泛应用。
3. 安防监控:超声波测距可用于检测入侵者的接近,结合其他传感器设备,可以构建智能安防系统,提升安全性能。
4. 医疗领域:超声波测距技术在医疗设备中有广泛应用,如超声波图像仪、超声波测量仪器等,用于诊断、检测和治疗等方面。
四、优缺点超声波测距技术具有以下优点:1. 测量精度高,一般可以达到毫米级别。
2. 反应速度快,测量时间通常在纳秒或微秒级别。
超声波测距技术的研究及应用
超声波测距技术的研究及应用超声波测距技术是一种常见的非接触距离测量技术,其原理是基于超声波在空气中传播的速度和反射的特性来测量距离。
随着科技的不断发展和应用领域的不断扩展,超声波测距技术已经被广泛应用于多个领域,例如工业、医学、环保等。
一、超声波测距技术的原理及发展历程超声波是一种机械波,其频率通常在20kHz至1MHz之间,比人耳可听到的声波高得多。
当超声波在一定媒介中传播时,会受到媒介物理性质的影响。
在空气中传播时,超声波的速度、频率以及幅度都会发生变化。
超声波测距技术基本原理是:将一个特定频率的超声波发送到目标物体,当超声波到达物体表面时,一部分超声波会被反射回来;接收器接收返回的超声波,并计算其传输的时间。
根据超声波在空气中传播的速度,可以通过计算传输时间来计算测量距离。
该技术的发展历程可以追溯到20世纪初。
当时,在海洋探测和工业测量方面,超声波测距技术已经得到了广泛的应用。
20世纪50年代,由于人们对工作环境和条件的要求越来越高,超声波测距技术逐渐从海洋和工业领域扩展到其他领域。
二、超声波测距技术在医学领域的应用在医学领域,超声波测距技术被广泛应用于诊断和治疗过程中。
例如,常用的B超检查技术就是使用超声波测距技术来获取人体内部组织和器官的图像。
另一个重要的应用是超声波在产科检查中的应用。
通过超声波测距技术,医生可以记录孕妇和胎儿的生理数据,为及时和准确地诊断胎儿异常和处理并发症提供了帮助。
此外,超声波测距技术还可以在治疗过程中发挥作用。
例如,通过使用高强度聚焦超声波测距技术,可以精确控制焦点,将能量集中在目标部位的任何深度和大小的肿瘤上,有效抑制肿瘤生长。
三、超声波测距技术在环保领域的应用超声波测距技术还被广泛应用于环境保护,如用于水污染治理和大气环境监测等方面。
在水污染治理方面,超声波测距技术被用于监测水质以及水体中的微量污染物。
通过分析水中污染物的反射信号,可以确定其精确位置和浓度,进而采取针对性的处理措施。
【文献综述】超声波测距系统
文献综述电子信息工程超声波测距系统前言:人能听到的声音频率为20Hz~20kHz,即为可听声波,超出此频率范围的声音,即20Hz 以下的声音称为次声波,20kHz以上的声音称为超声波。
由于超声波具有较强的指向性,且在传播中能量消耗较慢,所以在介质中传播较远,因此超声波经常被用在距离的测量上,如物位测量仪和测距仪等都可以由超声波进行实现。
超声波在空气中的传播速度为340米/秒(因温度大小会有规律变化),因此,如果能测出超声波在空气中的传播时间,就能算出其传播的距离。
超声波测距是一种利用声波特性、电子计数、光电开关相结合来实现非接触式距离测量的方法,不受光线、被测对象颜色等的影响,相比较与其它仪器而言更为卫生,更耐潮湿、粉尘、高温、腐蚀气体等恶劣环境,并且具有维护简单、无污染、可靠性高、寿命长等特点,可应用于纸业、矿业、电厂、化工业、水处理厂、污水处理厂、农业用水、环保检测、食品(酒业、饮料业、添加剂、食用油、奶制品)、防汛、水文、明渠、空间定位、公路限高等行业中。
且可在不同环境中进行距离准确度在线标定,可直接用于水、酒、糖、饮料等液位控制,可进行差值设定,可直接显示各种液位罐的液位、料位高度等【12】。
主题:现在认为,超声波最先是从1876年F.Galton的气哨实验开始,这是人类首次产生高频声波。
在以后30年内,人们对超声波仍然了解的比较少,发展较为缓慢,没有重视对超声波的研究。
在第一次世界大战中,超声波的研究才慢慢的受到各国的重视。
这时期法国人Langevin使用了一种晶体传感器,并使其在水下接收一些相对低频率的超声波,并且提出是否可以使用超声波来对水中的潜艇进行检测或者在水下利用超声波进行通信【16】。
在1929年,前苏联科学家Sokolov最先提出了利用超声波探进行检查金属物内部是否存在缺陷的想法【17】。
在间隔两年后,德国人Mulhauser获准一项关于超声检测方法的德国专利,但是他却没有在这方面进行深入的探索研究。
超声波测距 原理
超声波测距原理
超声波测距是一种利用超声波的回波时间来计算物体与传感器之间距离的测量方法。
其原理基于声波在不同介质中传播速度不同的特性。
超声波是一种高频的机械波,具有频率大于20kHz的特点。
测距过程中,传感器会发出一束超声波,并测量超声波从发射到接收的时间间隔,即往返时间(Time of Flight,TOF)。
根据声波在空气中的传播速度约为343m/s,可以通过TOF乘以传播速度来计算出物体与传感器的距离。
当超声波到达物体后,一部分能量会被物体表面反射,形成回波。
传感器接收到回波后,会记录下接收时间。
通过测量超声波的发射时间和接收时间之间的差值,可以得到声波在往返过程中所需的时间。
物体与传感器之间的距离可通过以下公式计算:
距离 = 发射-接收时间差(TOF) * 传播速度
其中传播速度取决于超声波在介质中的传播速度。
需要注意的是,超声波测距的精度受到多种因素的影响,包括超声波的频率、传感器的精度、环境噪声等。
为了提高测距精度,常常采取多次测量取平均值的方法或者使用多个传感器进行测量,以减小误差。
超声波测距工作原理
超声波测距工作原理
超声波测距是一种常见的非接触式距离测量方法,其工作原理是利用声波在空气或其他介质中传播的特性。
具体而言,超声波测距利用了声波在传输过程中的发射和接收时间差来计算被测物体与发射器之间的距离。
在超声波测距的过程中,首先会有一个超声波发射器产生高频的声波信号。
这些声波信号会以一定的速度传播,当遇到一个物体时会发生反射。
然后,超声波接收器会接收到反射回来的声波信号。
接下来,根据声波的传播速度以及发射和接收的时间差,可以通过简单的计算来确定被测物体与发射器之间的距离。
由于声波在空气中的传播速度是已知的,所以只需要测量时间差即可得到准确的距离值。
需要注意的是,超声波测距的精确度受到多种因素的影响。
首先是发射器和接收器之间的位置摆放,要确保它们在同一直线上且距离合适。
其次是环境因素,如温度、湿度等变化会对声波的传播速度产生影响。
此外,被测物体的形状、材料等也会影响反射信号的强度和形态,进而影响测距的准确性。
综上所述,超声波测距工作原理是基于声波的发射和接收时间差进行距离计算。
通过合理设置发射器和接收器的位置以及考虑环境和被测物体的因素,可以实现准确的距离测量。
超声波测距装置设计文献综述
超声波测距装置的设计摘要:为了使移动机器人能够自动避障行走,需要配备测距系统,使其能够及时获得距离障碍物的距离信息(距离和方向)。
本文介绍的三向(前、左、右)超声波测距系统是为了给机器人提供一个运动距离信息,使其了解自己的前、左、右环境。
分析了汽车倒车防撞系统的基本设计原理和目前国外此类防撞系统存在的问题,详细介绍了超声波测距系统和根据该系统的设计原理、方法和步骤开发的汽车倒车防撞报警器。
这种报警器可以自动检测车后障碍物的距离,并在倒车过程中汽车到达极限位置时发出声光报警,提醒驾驶员刹车。
本设计采用超声波传感器发射和接收信号,包括发射、接收和报警电路。
超声波传感器的主要元件是锆钛酸铅,这是一种压电元件,具有很强的方向性。
报警电路部分采用声光报警,信号传输后可实现声音报警。
本设计采用国产假通用元件,成本低,性能可靠。
有利于推广。
关键词:超声波,防撞,倒车,报警器,传感器1.序超声波因其指向性强、耗能慢、在介质中距离远等特点,常被用于测距,如测距仪、物位计等,都可以通过超声波来实现。
超声波检测往往快捷方便,计算简单,易于实现实时控制,在测量精度上能够满足工业和实际的要求,因此在移动机器人的发展中得到了广泛的应用。
2.发展历史随着机器人技术在其诞生后短短几十年内的飞速发展,其应用也逐渐从工业生产走向人们的生活。
如此广泛的应用使得提高人们对机器人的认识显得尤为重要。
机器人通过其感知系统感知前方障碍物与周围环境的距离,可以实现避障、自动寻线、测距等功能。
与其他测距技术相比,超声波测距具有成本低、测量精度高、不受环境限制、应用方便等优点。
结合红外线和灰色传感器,机器人可以找到线路并绕过障碍物。
超声波因其指向性强、耗能慢、在介质中传播距离远等优点,常被用于测距。
主要用于倒车雷达、测距仪、物位测量仪、移动机器人、建筑工地和一些工业现场的研究,如距离、液位、井深、管道长度、流量等。
超声波检测往往快捷方便,计算简单,易于实现实时控制,在测量精度方面能够满足工业应用的要求,因此得到了广泛的应用。
超声波测距的原理
超声波测距的原理超声波测距是一种常见的测距方法,它利用超声波在空气中的传播速度来测量距离。
超声波是一种频率高于人类听觉范围的声波,通常在20kHz以上。
它在测距领域有着广泛的应用,包括工业自动化、车辆倒车雷达、无人机避障等领域。
超声波测距的原理非常简单,它利用声波在空气中传播的速度和时间的关系来计算距离。
当发射超声波的传感器发送一个超声波脉冲时,超声波会以声速在空气中传播,当它遇到障碍物时会被反射回来。
接收超声波的传感器会记录下超声波发射和接收的时间差,通过时间差和声速的关系,就可以计算出超声波传播的距离。
超声波测距的原理主要涉及到声波的传播速度和时间的关系。
声波在空气中的传播速度约为340m/s,这个数值是一个常数。
因此,当超声波发射后,我们可以通过测量超声波发射和接收的时间差来计算出超声波传播的距离。
这个时间差乘以声速就是超声波传播的距离。
超声波测距的原理非常简单,但是在实际应用中需要考虑到一些因素。
首先,由于超声波在空气中的传播速度是一个常数,所以测量的精度主要取决于时间测量的精度。
其次,由于超声波在传播过程中会受到空气密度、温度等因素的影响,因此在测距过程中需要对这些因素进行修正。
最后,超声波在传播过程中也会受到障碍物表面的反射和散射影响,这些因素也需要考虑在内。
总的来说,超声波测距的原理是利用声波在空气中的传播速度和时间的关系来计算距离。
它在工业自动化、车辆倒车雷达、无人机避障等领域有着广泛的应用。
在实际应用中,需要考虑到时间测量的精度、环境因素的修正以及障碍物表面的影响。
超声波测距是一种简单而有效的测距方法,它为各种应用提供了可靠的测距解决方案。
超声波测距的原理
超声波测距的原理
超声波测距是利用超声波的特性来测量物体到测距仪的距离。
超声波是一种频率高于人能听到的声波的声波。
超声波测距的原理是通过发射器发出超声波脉冲,并注意到当超声波在物体表面发生反射时,将会返回到接收器。
测距仪计算从发射到接收超声波之间的时间差,并乘以声波在空气中传播的速度,即可得到物体与测距仪的距离。
测距仪中的发射器一般是一个压电晶体,当加上电流时,晶体会产生振动并发出超声波。
接收器通常是另一个晶体,它可以将接收到的超声波转换成电压信号。
超声波的传播速度通常取决于介质的类型和温度。
在大多数情况下,超声波在空气中的传播速度约为每秒340米,而在水中约为每秒1500米。
超声波测距广泛应用于工业自动化、避障传感器、机器人导航、汽车停车辅助等领域。
它具有测量范围广、测量精度高、无需接触目标物体等优点,并且不受光线、尘埃、颜色等物理因素的影响。
超声波测距技术的应用与发展
超声波测距技术的应用与发展近些年来,随着科技的不断进步,超声波测距技术逐渐成为了测量和控制领域中不可或缺的一部分。
它的应用范围极为广泛,从工业生产到医学诊断,从机器人操作到安防监控,都可以看到它的身影。
因此,本文将从超声波测距技术的原理、应用和发展三个方面阐述其重要性和未来的发展前景。
一、超声波测距技术的原理超声波,指的是频率超过20kHz的机械振动波。
超声波不易被物体阻挡,因此被广泛应用于测距。
超声波测距系统一般由发射器和接收器组成。
发射器会发出一个超声波信号,当它遇到一个目标物体时,信号就会被目标物体反射回来,然后由接收器接收。
根据超声波的速度和信号的传播时间,系统可以计算出目标物体与测距器之间的距离。
二、超声波测距技术的应用1. 工业生产超声波测距技术在工业生产中应用广泛。
它可以用来测量物体的距离、位置和速度,有效地控制和管理生产线上的运行。
例如,超声波传感器可以判断机器人是否需要停下来或改变方向,以避免与其他物体相撞,从而保证生产过程的安全性和稳定性。
2. 医学诊断超声波测距技术也被广泛应用于医学诊断中。
医生们可以使用超声波成像技术,观察人体内部器官的结构和任何异常。
例如,它可以用来检测妊娠、肿瘤和其他各种病症。
超声波成像技术不仅安全、无创,而且还可以提供生物组织内部一些难以测量的信息,因此在医学研究和临床医学中,极为重要。
3. 安防监控超声波测距技术也在安防监控中得到广泛应用。
例如,超声波传感器可以被用来安装在建筑物的角落、出入口,以便在侵入者进入时发出警报。
此外,它还可以用于测量车辆或人群的密度,从而确保公共场所的安全性。
三、超声波测距技术的发展随着科技的不断进步,超声波测距技术也得到了越来越多的关注。
虽然目前已经取得了很大的进步,但是随着人们对精度和可靠性的要求越来越高,超声波测距技术仍然面临许多挑战。
1. 技术的改进目前,超声波测距技术主要依靠数字处理器和高频振动传感器来实现,但这些设备依然存在精度和运行速度方面的缺点。
测距综述
超声波测距与激光测距一、超声波测距:超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。
因此,深入研究超声的测距理论和方法具有重要的实践意义。
原理:超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。
这就是所谓的时间差测距法。
超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。
由此可见,超声波测距原理与雷达原理是一样的。
测距的公式表示为:L=C×T式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。
超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。
由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。
在精密的液位测量中需要达到毫米级的测量精度,但是目前国内的超声波测距专用集成电路都是只有厘米级的测量精度。
通过分析超声波测距误差产生的原因,提高测量时间差到微秒级,以及用LM92温度传感器进行声波传播速度的补偿后,我们设计的高精度超声波测距仪能达到毫米级的测量精度。
超声波测距误差分析:根据超声波测距公式L=C×T,可知测距的误差是由超声波的传播速度误差和测量距离传播的时间误差引起的。
时间误差:当要求测距误差小于1mm时,假设已知超声波速度C=344m/s (20℃室温),忽略声速的传播误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述题目超声波测距技术综述学生姓名专业班级学号院(系)电气信息工程学院指导教师完成时间2014 年06月01日超声波测距技术综述摘要我们把频率高于20000赫兹的声波称为“超声波”。
超声波具有指向性强,能量消耗缓慢,在介质中传播的距离较远等特点,同时它是一种非接触式的检测方式,不受光线、被测对象颜色等影响,因此经常被用于距离的测量。
超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。
因此,深入研究超声波测距的理论和方法具有重要的实践意义。
关键词超声波超声波测距车辆导航物位测量1 引言1.1 超声波简介一般认为,关于超声的研究最初起始于1876年F1Galton的气哨实验。
当时Galton 在空气中产生的频率达300K Hz,这是人类首次有效产生的高频声。
而科学技术的发展往往与一些偶然的历史事件相联系。
对超声的研究起到极大推动作用的是,1912年豪华客轮Titanic号在首航中碰撞冰山后的沉没,这个当时震惊世界的悲剧促使科学家们提出用声学方法来预测冰山,在随后的第一次世界大战中,对超声的研究得以进一步的促进。
近些年来,随着超声技术研究的不断深入,我们把频率高于20000赫兹的声波称为“超声波”。
再加上其具有的高精度、无损、非接触等优点,超声的应用变得越来越普及。
目前已经广泛的应用在机械制造、电子冶金、航海、航空、宇航、石油化工、交通等工业领域。
此外在材料科学、医学、生物科学等领域中也占据重要地位。
而我国,关于超声波的大规模研究始于1956年。
迄今,在超声的各个领域都开展了研究和应用,其中有少数项目已接近或达到了国际水平。
1.2 超声波测距简介超声测距指的是利用超声波的反射特性进行距离测量,是一种非接触式的检测方式。
与其它方法相比,如电磁的或光学的方法,它不受光线、被测对象颜色等影响。
对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。
特别是应用于空气测距,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息很容易检测出来,具有很高的分辨力,因而其准确度也较其它方法为高。
超声波测距仪,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控和移动机器人的研制上,也可在潮湿高温,多尘等恶劣环境下工作。
例如:液位、厚度、管道长度等场合。
超声波测距作为一种典型的非接触测量方法,在很多场合,诸如工业自动控制,建筑工程测量,机器人视觉识别,倒车防撞雷达,海洋测量,物体识别等方面得到广泛的应用。
超声波具有指向性强、能量消耗缓慢且在介质中传播的距离较远的优点。
与激光测距、红外线测距相比,超声波对外界光线、色彩和电磁场不敏感,更适于黑暗、电磁干扰强、有毒、灰尘或烟雾的恶劣环境,可在潮湿高温,多尘等恶劣环境下工作,例如:液位、厚度、管道长度等场合。
在识别透明及漫反射性差的物体上也更有优势。
由于声波在空气中传播速度远远小于光线和无线电波的传播速度,对于时间测量精度的要求远小于激光测距、微波测距等系统。
相比于其它定位技术而言,超声波定位技术成本低、精度高、操作简单、工作稳定可靠,非常适合于短距离测量定位。
因而超声波测距器电路易实现、结构简单和造价低,而且以声速传播,便于检测和计算。
1.3超声波测距的优缺点随着计算机技术、自动化技术和工业机器人的不断发展和广泛应用,测距问题显得越来越重要。
目前常用的测距方式主要有雷达测距、红外测距、激光测距和超声测距4种。
与其他测距方法相比较,超声测距具有下面的优点:(1)超声波对色彩和光照度不敏感,可用于识别透明及漫反射性差的物体。
(2)超声波对外界光线和电磁场不敏感,可用于黑暗、有灰尘或烟雾、电磁干扰强、有毒等恶劣环境中。
(3)超声波传感器结构简单、体积小、费用低、技术难度小、信息处理简单可靠、易于小型化和集成化。
然而超声波测距在实际应用也有很多局限性,这都影响了超声波测距的精度。
一是超声波在空气中衰减极大,由于测量距离的不同,造成回波信号的起伏,使回波到达时间的测量产生较大的误差;二是超声波脉冲回波在接收过程中被极大地展宽,影响了测距的分辨率,尤其是对近距离的测量造成较大的影响。
其他还有一些因素,诸如环境温度、风速等也会对测量造成一定的影响,这些因素都限制了超声波测距在一些对测量精度要求较高的场合的应用,如何解决这些问题,提高超声波测距的精度,具有较大的现实意义。
相信将来随着科学技术的不断进步,超声波测距也会越来越完善。
2 目前研究状况和发展趋势2.1 目前超声波测距的主要方法超声波测距适用于高精度的中长距离测量。
目前测量距离一般都采用波在介质中的传播速度和时间关系进行测量。
目前常见的测距原理和方法主要有脉冲回波法和相位差法两种。
相位差法与脉冲回波法的不同体现在对回波的处理方式上,由超声波换能器接收端获得调制声波的回波,经放大电路转换后,得到与放大的相位完全相同的电信号,此电信号放大后与光源的驱动电压相比较,测得两个正弦电压的相位差,根据所测相位差就可算得所测距离。
由于采用的是相位比较,使得测距精确度大大提高,但这种方法本身存在明显的缺陷。
由于相位测量存在以2n为周期的多值解,从而容易造成解的不确定性。
为了消除多解,常常需要引入包络检测和采用发射多种不同频率波的方式减小不确定度,这就使得该方法的实现复杂化。
2.2 常见超声波测距系统设计方案2.2.1 利用分立模块的超声波测距仪系统一般由超声波测距模组、LED数码显示模组、驱动模组控制模组及电源五部分组成。
超声波测距模块主要由发射部分和接收部分组成,超声波的发射受主控制器控制,超声波换能器谐振在40KHz的频率,模块上带有40KHz方波产生电路。
显示模块是一个8位段数码显示的LCD;测量结果的显示用到三位数字段码,格式为X点XX米,同时还用两位数字段码显示数据的个数。
电源采用9V的DC电源输入,经稳压管后得出5V以及3.3V的电源供系统各部分电路使用。
优点:具有历史数据存储功能、出错管理功能。
缺点:能测的最小距离比较长,不能实现双向测距,电路复杂性能稳定性不高。
2.2.2 基于单片机的超声波测距仪此类超声波测距仪主要以单片机为核心,其发射器是利用压电晶体的谐振带动周围空气振动来工作的。
超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器接收到反射波就立即停止计时。
一般情况下,超声波在空气中的传播速度为340m/ s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离S,即S=340×t/2,这就是常用的时差法测距。
在测距计数电路设计中,采用了相关计数法,其主要原理是:测量时单片机系统先给发射电路提供脉冲信号,单片机计数器处于等待状态,不计数;当信号发射一段时间后,由单片机发出信号使系统关闭发射信号,计数器开始计数,实现起始时的同步;当接收信号的最后一个脉冲到来后,计数器停止计数。
双向超声波测距仪的系统主要有几下部分组成:LED显示模块,单片机(以AT89C51芯片为例),超声波发射模块,超声波接收模块,电源模块等五大模块组成。
优点:双向测距,精度高,功耗低。
在电路中我们采用PIC芯片它的优点是:精简指令使其执行效率大为提高;彻底的保密性;其引脚具有防瞬态能力,通过限流电阻可以接至220V交流电源,可直接与继电器控制电路相连,无须光电耦合器隔离,给应用带来极大方便。
2.3 未来发展趋势随着单片机在全球的普及,方案一因其测量盲区较长,结构复杂且稳定性不高等缺点逐渐被市场淘汰。
而基于单片机的超声波测距已日趋成熟并成为市场的主流。
但值得注意的是,由于超声波也是一种声波,其声速v与温度有关。
超声波在空气中传播速度会随介质温度的升高而增加,气温每上升1℃,声波速度增加0.6m/s,所以在使用时,如果温度变化不大,则可认为声速是基本不变的,如果测距精度要求很高,则应通过增加温度补偿的方法加以校正。
3 结论通过查阅各种超声波测距的文献资料,我初步了解了超声波测距的基本原理和硬件模块。
我发现基于单片机的带温度补偿的超声波测距是目前市场的主流,它能够满足大多数场合的所需要求。
单片机因其体积小、质量轻、价格便宜、易于开发编程等优点使超声波测距更加简洁方便,设计中添加温度传感器对现场温度进行检测,并通过软件计算实现波速的温度补偿,消除了温度对测量结果的影响,使测量误差降低。
此类型的超声波测距系统可广泛应用于各种需要测量距离或物位参数的场合。
而我也通过前辈的文献资料,了解了此次毕业设计的关键问题,寻找到了问题的突破口。
参考文献[1]李为民.基于stc89单片机的超声波测距仪[N].陕西师范大学报,2000,20(1).[2]胡福云.基于单片机的超声波测距仪[J].科技视野,2005,13(4):11-20.[3]袁德庆,肖圣,马晓燕.多通道超声波液体流量测控系统[J].石油仪器,2005(10): 24-26.[4]阮成功,蓝兆辉,陈硕.基于单片机的超声波测距系统[J].应用科技,2004,31(7):22-24.[5]莫树彬.湘江航道工程勘测方法综述[J].湖南交通科技,1994,20(3):41-46.[6]曾德怀,谢存禧,张铁,黄瑞华.行走机器人的超声波测距系统的研究[J].机械科学与技术,2004,23(5 ):613-616.[7]张鹏,张有志.一种新型超生测距系统[N].山东:山东大学学报,2003,33(1).[8]韩枫,姚旺生,刘霞.超声波测距和阈值判断的PROTEL仿真[J].舰船电子工程,2003(2):59-61 .[9]李丽霞.单片机在超声波测距中的应用[R].电子技术,2002(6):7-9.[10]姜道连,宁延一,袁世良.用AT89C2051设计超声波测距仪[J].国外电子元器件,2000(12).[11]马湛.非接触式水位测量技术在美国的发展[J].水利水文自动化,1999(1):49-53.[12]权斌,徐红.水电厂水库水位、水深、泥沙监测系统[J].工业仪表与自动化装置,1998(5):47-49.[13]V.Yu.Teplov,A.V.Anisimov.Thermostatting System Using a Single-Chip Microcomputer and Ther moelectric Modules Based on the Peltier Effect[J] .2002.[14]Yeager Brent.How to troubleshoot your electronic scale[J].Powder and Bulk Engineering. 1995.[15]陈大新,胡学同,周杏鹏.利用FPGA改进超声波测距模块设计[J].传感器技术,2005,24(2): 57-59.。