数学建模如何进行人员分配问题
人员分工数学问题
人员分工数学问题在许多实际场景中,人员分工是一个重要的考虑因素,需要运用数学方法和理论进行优化。
以下就人员数量、工作量分配、时间安排、资源分配、成本预算、风险评估、沟通协调和监督与反馈等方面进行探讨。
1.人员数量人员数量的确定是依据任务的特点和要求,以及可投入的人力资源情况来进行的。
数学模型可以根据任务的复杂程度、工作强度和时间要求等,对人员进行合理的配置。
对于不确定的情况,可以通过建立概率模型,预测可能的人员需求。
2.工作量分配工作量的分配需要根据每个人的能力、经验和专长来进行。
数学模型可以依据每个人的工作能力以及工作的复杂程度,通过最优化算法,将工作量合理地分配给不同的人员,以确保整体工作效率最大化。
3.时间安排时间安排需要考虑任务的紧急程度、人员的工作效率和任务的先后顺序等因素。
数学模型可以运用项目管理和时间管理的方法,对任务进行合理的时间规划,并预测可能的时间延误。
同时,可以通过模拟和优化,确定最佳的时间安排方案。
4.资源分配资源分配需要依据任务的性质和要求,对人力、物力、财力等资源进行合理的配置。
数学模型可以依据任务的资源需求和现有资源的状况,通过最优化算法,实现资源的合理分配,以确保任务的高效完成。
5.成本预算成本预算需要对任务所需的各项成本进行预测和管理。
数学模型可以依据任务的性质、规模和复杂程度等因素,通过成本分析和预算方法,对任务进行合理的成本预算,并制定相应的成本控制措施。
6.风险评估风险评估需要对任务中可能出现的风险进行预测和管理。
数学模型可以依据风险的特点和历史数据等信息,通过概率统计等方法,对任务进行全面的风险评估,并制定相应的风险应对措施。
7.沟通协调沟通协调是确保任务顺利进行的重要环节。
数学模型可以依据任务的特点和团队的结构等因素,通过制定沟通计划和建立信息共享平台等方式,促进团队成员之间的有效沟通。
席位分配问题数学建模
席位分配问题是一个常见的实际问题,涉及到资源的分配和管理。
为了解决这个问题,我们可以使用数学建模的方法,通过建立数学模型来分析和优化席位的分配方案。
一、问题描述假设有一个大型会议,需要分配给不同的参与者席位。
每个参与者可能有不同的资格和需求,我们需要根据一定的规则来分配席位。
具体问题包括:1. 参与者数量和席位数量2. 参与者的资格和需求3. 席位分配的规则和标准二、数学建模为了解决席位分配问题,我们可以使用以下数学模型:1. 参与者集合P:表示所有的参与者。
2. 席位集合S:表示所有的席位。
3. 资格矩阵A:表示每个参与者的资格情况,每一行表示一个参与者,每一列表示一个资格类型(例如,专业、身份等)。
4. 需求矩阵D:表示每个参与者对席位的需求情况,每一行表示一个参与者,每一列表示一个席位类型(例如,地点、时间等)。
5. 分配规则R:表示席位的分配规则和标准,如按照资格优先、按照需求优先、按照公平分配等。
根据以上描述,我们可以建立如下的数学模型:目标函数:最小化席位浪费(即席位数与参与者需求之差)约束条件:1. 资格约束:每个参与者的资格必须满足分配规则的要求。
2. 需求约束:每个参与者所需席位类型必须得到满足。
3. 数量约束:总的席位数必须不超过总席位数量。
4. 可行性约束:分配的席位必须是有效的,即不存在冲突和重复的情况。
三、求解方法根据上述数学模型,我们可以使用以下方法进行求解:1. 枚举法:逐个尝试所有可能的席位分配方案,找到满足约束条件的方案。
这种方法需要大量的计算时间和空间,但在某些情况下可能找到最优解。
2. 优化算法:使用优化算法如遗传算法、粒子群算法等,通过不断迭代找到最优解。
这种方法需要一定的编程知识和技能,但通常能够快速找到满意的解。
3. 启发式算法:使用启发式算法如模拟退火、蚁群算法等,通过不断尝试找到满意解。
这种方法相对简单易行,但可能无法找到最优解。
4. 数学软件求解:使用专门的数学软件如Matlab、Python等,通过编程求解上述数学模型。
数学建模 名额分配问题
名额公平分配问题问题的提出名额分配问题是西方所谓的民主政治问题,美国宪法在第一条第二条款指出:‘众议院议员名额……将根据各州的人口比例分配。
’美国宪法从1788年生效以来200多年间,关于公平和人力的实现宪法中所规定的分配原则,美国的政治家和科学家们展开了激烈的讨论。
并提出了多种方法,但没有一种方法能够得到普遍的认可。
下面就日常生活中的实际问题,考虑合理的分配方案问题。
设某高校有5个系共2500名学生,各系学生人数见表格。
现有25个学生代表名额,赢如何分配较为合理。
5个系的学生人数系别一二三四五总和人数11056483622481372500模型假设1、要将名额尽可能的公平的分配,首先考虑的是公平量化,所谓公平,就是学生代表的名额占有率都相等,这样,基于名额占有率相等的分配的方案就是最公平的,在名额占有率不相等时,应要求差距尽可能的小,才能使分配方案更加公平。
2、在计算各个系别的名额分配占有量,这样就确定了公平的分配方案。
3、通常计算的名额占有量是小数,而名额只能整数的分配,这就需要将小数变成整数,解决小数变整数的问题通常采用四舍五入法。
名额占有率=总名额数÷总人数名额占有量=名额占有率×学生数模型建立模型一名额占有率分配=1%,即每一百人才有一个名额。
根据名额占有率可以算出全校名额占有率=252500分配:系别一二三四五总和人数11056483622481372500名额数11.05 6.48 3.62 2.48 1.3725取整11642124显然看出,这种方法出现了缺陷,分的总名额数多出一个,而这一个又无法可分,无论是四舍五入法,还是直接取整,分给二,四其中一个必定对另一个不公平。
所以需要改进。
模型二Hamilton 方法1790年,美国乔治·华盛顿时代的财政部长亚历山大·哈密尔顿(Hamilton)提出了一种解决名额分配的办法,并于1792年被美国国会通过。
人员值班分配数学建模,运筹学
三、问题ห้องสมุดไป่ตู้析
分析该问题,可以得出该问题是一个线性规划问题,求解需雇佣的最少员 工人数,所以应该,建立目标函数以及对应的约束条件。根据每班的人数列出 目标函数,根据六个时间段所需要的最少员工数建立约束条件。检查值班的负 责人都有不能值班的时间段,但可以保证每个值班时间段都有人去检查。可以 用 0,1 算法求每个负责人所检查的时间段。
一、问题描述
(1)每日每部门至少需要下列数量的员工: 部门 a1 a2 a3 a4 a5 a6 (1) 时间 08 时—10 时 10 时—12 时 12 时—14 时 14 时—16 时 16 时—18 时 18 时—20 时 最少员工数 60 70 60 50 20 30
每班员工,连续工作 2 小时,为满足每班所需要的员工数,最少 需雇佣多少员工?
18 时—20 时
95% 88% 90% 81% 91% 94%
a1 a2 a3 a4 a5 a6
如何分配部门值班情况,才能让工作效率最大?
二、问题假设
1.每名值班员工都正常工作,没有请假现象,查班负责人也是不缺勤。 2.不存在大的人员变动。 3.每名部门员工都可以连续工作 2 小时。 4.假设各个部门工作效率是一样的,如何安排值班分配。 5.假设各个部门之间工作效率不同,如何安排才能使效率得到最大。
四、模型建立
(1)根据题意判断出该问题属于求解最优化问题,需要确定目标函数和约束条 件,具体模型如下: Z 为需要雇佣的最少员工数量,Xi 为第 i 次加入值班的人数(i=1~6)。
min Z x 1 x 2 x 3 x 4 x 5 x 6 x 1 x 6 60 x 1 x 2 70 x 2 x 3 60 t x 3 x 4 50 x x 20 5 4 x 5 x 6 30 x i 0,i 1, 2, , 6
篮球队球员位置分配问题数学建模
篮球队球员位置分配问题数学建模1、小前锋小前锋(Small Forward)乃是球队中最重要的得分者。
所谓的小前锋,最根本的要求就是要能得分,而且是较远距离的得分。
小前锋一接到球,第一个想到的就是要如何把球往篮子里塞。
小前锋的基本工作,就是得分、得分、再得分。
在进攻中,小前锋能够在力量对抗和投篮得分中取得平衡,在防守的时候,小前锋通常负责抢断和篮板球。
许多小前锋球员都可以兼任得分后卫,能够同时打这两个位置的球员通常被称为“锋卫摇摆人”(swingman或者wing)。
2、大前锋篮球比赛中的一个球员位置。
大前锋(Power Forward)在队上担任的任务几乎都是以苦工为主,要抢篮板、防守、卡位都少不了他,但是要投篮、得分,他却经常是最后一个。
所以说,大前锋可以算是篮球场上最不起眼的角色。
大前锋,有时称作强力前锋,篮球比赛阵容中的一个位置,在中国也有二中锋的说法。
如今现代篮球的大前锋与过往的苦工角色完全不同,许多大前锋变得更加全面,越来越多的大前锋变得擅长于三分球,组织控球,在比赛中的地位也变得越发高上。
3、控球后卫控球后卫(Point Guard)又称组织后卫,是篮球比赛阵容中的一个固定位置。
控球后卫往往是全队进攻的组织者,并通过对球的控制来决定在恰当的时间传球给适合的球员,是球场上拿球机会最多的人。
他要把球从后场安全地带到前场,再把球传给其他队友,这才有让其他人得分的机会。
一个合格的控球后卫必须要能够在只有一个人防守他的情况下,毫无问题地将球带过半场。
然后,他还要有很好的传球能力,能够在大多数的时间里,将球传到球应该要到的地方:有时候是一个可以投篮的空档,有时候是一个更好的导球位置。
4、得分后卫一个得分后卫经常要做的有两件事,第一是有很好的持球单打能力,或是作为一个极为稳定的接球跳投手。
因此不管是外线准投和突破上篮的稳定性一定要好;第二则是要在缝隙中找出空档来投外线,所以他出手的速度要快。
一个好的得分后卫应该能在很短的时间内找机会出手,而命中率也要有一定的水准,这样才能让敌方的防守有所顾忌,必须拉开防守圈,而更利于队友在禁区内的攻势。
数学建模B题:人员安排问题
数学建模B 题:人员安排问题问题综述:该问题主要是为了求解在客户的要求下公司每天收益的最大化,属于优化问题;我们在对这个问题建模时,主要是基于客户的两个要求来建立的: (1)客户对员工的人数要求; (这个要求是本来题目有的) (2)客户对工期的要求; (这个要求是我们进一步假设的)对于第一个要求我们建立了基本模型,而对于第二个要求,我们在第一个要求的基础上,进一步改进了基本模型,从而建立了某个项目先完工的模型。
具体的解题思路如下图所示:一.模型基本假设:1.假设客户对项目的工期没有限制,项目的工期由公司决定,且四个项目同时开工,同时完工,中间也不停工。
2. 假设所有人员总能在岗位上工作,不考虑由于生病或是其他意外事件而造成人员的缺席。
3.假设四个项目同时需要的最多人数不超过现有公司工作人员的人数,即使超过,也只分配公司现有的工作人员。
4.假设C 、D 两个项目的管理费由公司支付;5.假设所有工作人员都安排完毕,即每个人都有工作。
6.假设同等级别的工作人员的技术水平是相同的,即他们可以接受任意等同的任务。
二.符号说明:i :用i =1,2,3,4分别表示高级工程师,工程师,助理工程师和技术员。
j :用j =1,2,3,4分别表示项目A,B,C 和D 。
ij X :公司分配第i 级别工作人员到第j 个项目上的人数。
例如23X 表示公司分配工程师到项目C 上的人数。
ij a :第i 级别工作人员分配到第j 个项目上的收费。
ij b : 第i 级别工作人员分配到第j 个项目上时公司的开支(包括工资和管理费)。
ij A : 表示到项目j 工作的第i 级别工作人员为公司贡献的纯利润收入。
j : 表示第j 个项目的总工时(即项目j 的总工作量)。
j T : 表示第j 个项目客户所要求的工期(即项目j 所需要的完工时间)。
j M : 表示客户要求第j 个项目一天所必须完成的工作量。
j m : 表示公司分配给第j 个项目的所有工作人员一天能够完成的工作量。
数学建模队员分配问题模型
数学建模队员分配问题模型
数学建模队员分配问题可以建立如下模型:
1. 确定目标:确定需要完成的任务以及任务的优先级,以此确定需要分配的队员数量和能力要求。
2. 确定约束条件:确定队员的能力水平,以及每个队员能够承担的任务数量的限制。
3. 建立数学模型:将任务分配问题抽象为一个图论问题,其中每个节点表示一个任务,边表示任务间的关系或依赖关系。
根据任务的优先级和队员的能力水平,为每个任务分配一个权重值。
然后使用图论算法,如最小匹配算法或最大流算法,来确定最优的任务分配方案。
4. 求解最优解:根据建立的数学模型,使用相应的算法求解最优的任务分配方案。
可以通过编程实现算法,或使用专业的优化软件来求解。
5. 验证和评估:对求解的结果进行验证,确保分配方案满足任务的要求和约束条件。
同时,评估分配方案的效果和可行性,可以根据实际情况进行调整和优化。
以上是一个基本的数学建模队员分配问题的模型,具体的实现方式和求解方法可以根据具体的情况进行调整和优化。
数学建模选课分班问题
数学建模选课分班问题
数学建模选课分班问题是指在学校的数学建模选修课程中,需要将学生分配到不同的班级中。
这个问题涉及到多个因素,包括学生的兴趣、能力水平、性别等,以及班级的容量和教师资源等。
在解决数学建模选课分班问题时,可以采用以下几种方法:
1.基于规则的分班方法:根据一些规则和标准,将学生分配到班级中。
例如,可以根据学生的兴趣和能力水平将他们分为不同的班级,以便更好地满足他们的学习需求。
2.基于优化算法的分班方法:利用数学建模中的优化算法,通过最小化某个目标函数来确定最佳的分班方案。
例如,可以将学生的分班问题建模为一个最小化总班级差异的问题,然后使用遗传算法或线性规划等方法求解最优解。
3.基于机器学习的分班方法:利用机器学习算法,通过学习历史数据和模式来预测学生在数学建模中的表现,并根据预测结果将学生分配到适合他们的班级。
这种方法可以根据学生的个性化需求和特点来进行分班。
在实际应用中,数学建模选课分班问题需要综合考虑多个因素,并进
行权衡和平衡。
例如,要避免班级之间的差异过大,同时也要注意班级容量和教师资源的合理分配。
为了更好地解决数学建模选课分班问题,可以采用多种方法的组合,例如先利用基于规则的方法进行初步分班,然后利用优化算法和机器学习算法进行微调和优化。
总之,数学建模选课分班问题是一个复杂的问题,需要综合考虑多个因素,并运用合适的方法进行求解。
通过合理的分班方案,可以更好地满足学生的学习需求,并提高数学建模课程的教学效果。
数学建模分配问题模型
数学建模分配问题模型数学建模是一种通过数学方法解决实际问题的方法。
在实际生活中,我们经常会遇到分配问题,即将一定数量的资源分配给不同的需求方。
这些资源可以是金钱、人力、材料等,需求方可以是个人、企业、机构等。
为了合理地分配资源,我们可以使用数学建模的方法进行分析和优化。
一般来说,分配问题可以分为两类:最优化问题和约束问题。
最优化问题的目标是使得某个指标达到最大或最小值,比如最大化利润、最小化成本等。
约束问题则是在一定的条件下寻找满足需求的最优解。
下面我们将分别介绍这两类问题的数学建模方法。
对于最优化问题,我们首先需要确定一个目标函数。
目标函数描述了我们希望优化的指标,可以是一个或多个变量之间的函数关系。
然后,我们需要确定一组约束条件。
约束条件反映了资源的限制以及需求方的限制,可以是等式或不等式。
最后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案。
以货物运输为例,假设有一批货物需要从仓库分配给不同的销售点,我们希望通过最优化分配来降低运输成本。
我们可以将每个销售点的需求量作为约束条件,将货物的运输成本作为目标函数。
然后,我们需要确定每个销售点的分配量作为决策变量,通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案,从而降低运输成本。
对于约束问题,我们需要确定一组约束条件,这些条件可能是资源的限制、需求方的限制或其他限制。
然后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过在约束条件下寻找满足需求的最优解,就可以得到合理的分配方案。
以人力资源分配为例,假设有一定数量的员工需要分配到不同的项目中,每个项目对员工的技能要求不同。
我们希望通过合理的分配来最大化项目的效益。
我们可以将每个项目的效益作为约束条件,将员工的技能水平作为决策变量。
通过在约束条件下寻找满足需求的最优解,就可以得到最佳的分配方案,从而最大化项目的效益。
数学建模代表名额分配
p2 (n1 + 1) 1 rB (n1 + 1, n2 ) = p1n2
p1 (n2 + 1) 1 rA (n1 , n2 + 1) = p2 n1
2 p2 p12 p2 ( n1 + 1) p1 ( n2 + 1) < < n2 ( n2 + 1) n1 ( n1 + 1) p1n2 p2 n1
数学模型
数学建模就是应用数学理论,根据实际问题的内在 规律,做出必要的简化假设,得到一个数学结构。
代表名额的分配 利益的合理分配
代表名额的分配
美国宪法第一条第二款指出:“众议院议员 名额。。。。。。。将根据各州的人口比例分配”。 假设众议院名额数为 N , 共有 s 个州, 各州的人口数 pi , i = 1, 2, , N , 分配合理?
现在的问题是当名额再增加一个时,又如何分配? 若p1 / n1 = p2 / n2 , 则可以直接利用相对不公平度
若再增加一个名额 若 p1 / n1 > p2 / n2 , 对 A 不公平, i) 若 p1 /(n1 + 1) > p2 / n2 , 名额显然应该分配给 A
p2 (n1 + 1) 1 ii) 若 p1 /(n1 + 1) < p2 / n2 , rB (n1 + 1, n2 ) = p n 1 2 p1 (n2 + 1) iii) 若 p1 / n1 > p2 /( n2 + 1), rA (n1 , n2 + 1) = p n 1 2 1 rB ( n1 + 1, n2 ) < rA ( n1 , n2 + 1) 则这时应该把名额分配给 A
数学建模员工分配
正文问题重述A公司为了节约成本,和B劳务公司签订劳务合同,提出“最省用工方案准则”,即同时满足多个节省方案时,以节省最多为准则。
目前B劳务公司提供,1种主管职位,5种装配工职位,7种维修工职位。
B劳务公司提供用工促销方案如下(计价为月工资):1). 主模式1:1个主管+任选1个装配工或维修工优惠200元2). 主模式2:1个主管+任选2个装配工或维修工(可以1个装配工,1个维修工)优惠400元注:优惠的意思是:如单聘任,总价为各单项的和,参加模式后,付款为总价减去优惠款。
3). 700元两人:付700元可以聘任参加“700元两人活动职位”中的两人4). 1000元两人:付1000元可以聘任参加“1000元两人活动职位”中的两人5). 维修工第二人半价:第一人原价,第二人半价(两人价格不一样时,只能价格低的享受半价,高的是原价,两人可以相同)。
举例如下:如A公司聘任了1个主管职位(1900元),1个维修工“职位6”(600元),1个装配工“职位1”(450元)。
不优惠的总价:1900+600+450=2950(元)1)组合1:主模式1(含维修工“职位6”)+1个装配工“职位1”,付款:(1900+450)-200+600=2750(元)2)组合2:主模式1(含维修工“职位1”)+1个装配工“职位6”,付款:(1900+600)-200+450=2750(元)3)组合3:主模式2(含维修工“职位6”,装配工“职位1”),付款:(1900+450+600)-400=2550(元)4)组合4:主管职位+700元两人(含维修工“职位6”,装配工“职位1”),付款:1900+700=2600(元)根据“最省用工方案准则”,A公司只需按最优组合“组合3”付款,付2550元,获得所有方案中的最省用工方案。
表一职位情况和A公司聘任人员数量职位单价(月工资)属性主模式700元两人1000元两人维修工第二人半价聘任数量(人)职位1 450 装配工1Y Y 6职位2 600 装配工2Y Y Y 5职位3 800 装配工3Y Y 3职位4 1100 装配工4Y 1职位5 800 装配工5Y 1职位6 600 维修工1Y Y Y 2职位7 500 维修工2Y Y Y 2职位8 900 维修工3Y Y Y 1职位9 800 维修工4Y Y Y 1职位10 1000 维修工5Y Y 1职位11 1000 维修工6Y Y 1职位12 1200 维修工7Y 1职位13 1900 主管职位Y 10注:表中“Y”表示参加该模式或优惠方案问题1为了帮助B公司实现“最省用工方案准则”,请你给出解决该问题的一般数学模型,在A公司提出聘任数量时,就能按要求给出最优组合方案。
数学建模论文:席位分配问题例题
席位分配问题例题:有一个学校要召开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。
如何分配最为恰当?问题:(1)问20席该如何分配,如果有三名学生转系该怎样分配?(2)若增加21席又如何分配?问题的分析:一、20席分配情况:系名甲乙丙总数学生数100 60 40 200学生人数比例100/200 60/200 40/200席位分配10 6 4 20如果有三名学生转系,分配情况:系名甲乙丙总数学生数103 63 34 200学生人数比例103/200 63/200 34/200按比例分配席位10.3 6.3 3.4 20按惯例席位分配10 6 4 20二、21席位分配情况:系名甲乙丙总数学生数103 63 34 200学生人数比例103/200 63/200 34/200按比例分配席位10.815 6.615 3.57 21按惯例席位分配11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。
要怎样才能公平呢?模型的建立:假设由两个单位公平分配席位的情况,设单位人数席位数单位A p1 n1单位B p2 n2要公平,应该有p1/n1 = p2/n2,但这一般不成立。
注意到等式不成立时有若p1/n1 >p2/n2 ,则说明单位A吃亏(即对单位A不公平)若p1/n1 <p2/n2 ,则说明单位B 吃亏(即对单位B不公平)因此可以考虑用算式p=|p1/n1-p2/n2|来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为n1 =n2 =10 ,p1 =120,p2=100,算得p=2另两个单位的人数和席位为n1 =n2 =10 ,p1 =1020,p2=1000, 算得p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。
公平分配席位数学建模
公平分配席位数学建模
公平分配席位数学建模是指基于数学模型,通过分析选民分布、政党得票率等因素,确定选举中各政党应该获得的议席数,从而实现选举结果的公正和公平。
在公平分配席位数学建模中,主要运用了几种方法,包括杜哈美—贝勒多尼定理、圆整法、最大余数法、谢泼德方法等。
这些方法都能够根据选民分布和政党得票率等因素,计算出每个政党应该获得的议席数,并且保证在分配过程中不会出现偏差和不公平现象。
公平分配席位数学建模不仅在政治选举中有着广泛的应用,还可以用于企业、学校等组织内部的决策和分配问题。
通过数学建模,可以实现公正合理的决策和资源分配,提高组织的效率和公信力。
总之,公平分配席位数学建模是一种重要的数学工具,可以帮助我们实现公正公平的选举和决策,具有广泛的应用前景和社会价值。
- 1 -。
数学建模游泳队员分配问题和钢筋切割问题详细解答
数学建模游泳队员分配问题和钢筋切割问题详细解答1.游泳队员分配问题某游泳队拟选用甲,乙,丙,丁四名游泳队员组成一个4*100m混合泳接力队,参加今年的锦标赛。
他们的100m 自由泳,蛙泳,蝶泳,仰泳的成绩如下表所示。
问甲,乙,丙,丁四名队员各自游什么姿势,才最有可能取得最好成绩。
表:四名队员的成绩请建立数学模型,并写出用Lingo软件的求解程序。
解:引入0-1变量Xij,若选择队员i参加泳姿j的比赛,记Xij=1,否则记Xij=0根据组成接力队的要求,Xij应该满足两个约束条件:第一,每人最多且只能入选4种泳姿之一,即对于i=1234;应有Xij=1;第二,每种泳姿必须有一人且只能有一人入选,即对于j=1234;应有Xij=1当队员i 入选泳姿j 是,CijXij 表示他的成绩,否则CijXij=0。
于是接力赛成绩可表示为Z=∑∑==4141j i CijXij ,这就是改问题的目标函数。
综上,这个问题的0-1规划模型可写作Min Z= Z=∑∑==4141j i CijXij ;S .t .∑=41j Xjy =1,i=1,2,3,4; ∑=41i Xjy =1,i=1,2,3,4将题目给数据代入这一模型,并输入LIGDO : Min =56*x11+74*x12+61*x13+63*x14 +63*x21+69*x22+65*x23+71*x24 +57*x31+77*x32+63*x33+67*x34 +55*x41+76*x42+62*x43+62*x44; x11+x12+x13+x14=1; x21+x22+x23+x24=1; x31+x32+x33+x34=1; x41+x42+x43+x44=1; x11+x21+x31+x41=1; x12+x22+x32+x42=1; x13+x23+x33+x43=1; x14+x24+x34+x44=1;@bin (x11); @bin (x12); @bin (x13);@bin(x14);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x41);@bin(x42);@bin(x43);@bin(x44);求解可以得到最优解如下:2.钢筋切割问题设某种规格的钢筋原材料每根长10m,求解如下优化问题:1) 现需要该种钢筋长度为4m的28根,长度为1.8m的33根,问至少需要购买原材料几根?如何切割2) 如需要该种钢筋长度为4m的28根,长度为1.8m的33根,长度为3.6m的79根,长度为2.4m的46根,问至少需要购买原材料几根?如何切割(可以考虑切割模式不超过3种)?请建立数学模型,对上述问题进行求解并写出用Lingo软件的求解程序。
数学建模 宿舍人员分配的问题
数学建模作业题摘要:我们遇到人员分配的问题,我们很自然就会想到人多一方分的多,人少一方分的少。
但粗略的分配到底是否公平,我们必须好好考虑一下,本题就是讨论人员分配的公平性问题。
依据题中给出的信息、条件,讨论一下到底怎么分配是公平的,本题是关于10个名额的分配问题,分别使用了比例模型、Q值法、d’Hondt 法。
然后,将名额增至15人后代回上述模型进行检验,发现结论相差不大。
得出应将三个模型综合考虑较为合理。
即:先用比例法确定基础,然后用d’Hondt法分配,再用Q值法调整。
而且我们通过d’Hondt法得出自己的一种方法,即调整其除数以获取合理的分配方案。
一、问题的重述有这样一个关于选学生委员的问题。
学校有1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,怎样公平合理的分配各宿舍的委员数。
再进一步讨论验证:如果人数增至15人,用之前使用的方法还公不公平。
二、问题分析首先建立一个比例加惯例模型,然后因为A,B,C宿舍的人数都不是整百,是无规律不成比例的,所以在题(2)中用Q值法进一步讨论分析,最后用d’Hondt 进行比较。
三、模型假设(1)各个宿舍相互独立互不影响,且始终人数保持不变(无搬入搬出现象);(2)分配时严格遵循制定的方案;(3)几个委员无等级差别四、模型的建立与求解(1)模型Ⅰ:比例加惯例方案由题意可知,取整数的名额后,A宿舍2人,B宿舍3人,C宿舍4人。
由于小数部分,A是0.35,B是0.33,C是0.32,则剩下的一个名额应该分配给A 宿舍,故而最后的结果是3,3,4。
由Q值法,先由比例计算结果将整数部分的9个名额分配完毕,有n A=2,n B =3,n C =4,然后可用Q 值法分配第10个名额。
利用公式()mi n n p Q i i i i ,,2,1,12 =+=计算,Q A =2352/(2*3)=9204.2,Q B =3332/(3*4)=9240.8,Q C =4322/(4*5)=9331.2,Q C 最大,于是这一名额应分给C 宿舍。
数学建模“如何进行人员分配”问题
数学建模竞赛试题B 题:如何进行人员分配“A 公司”是一家从事建筑工程的公司,现有41个专业技术人员,其结构和相应的工资水平分布如表1所示:表1 人员结构及工资情况目前,公司承接4个工程项目,其中2项是现场施工,分别在A 地和B于4个项目来源于不同客户,并且工作的难易程度不同,因此,各项目的合同对有关技术人员的收费标准不同,具体情况如表2:表2 不同项目和各种人员的收费标准为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,具体情况如表3所示:表3 各项目对专业技术人员结构的要求(1)项目D ,由于技术要求较高,人员配备必须是助理工程师以上,技术员不能参加; (2)高级工程师相对稀少,而且是保证质量的关键,因此,各项目客户对高级工程师的配备要求不能少于一定数目的限制。
各项目对其他专业人员也有不同的限制或要求;(3)各项目客户对总人数都有限制;(4)由于C,D两项目是在办公室完成,所以每人每天有50元的管理费开支;由于收费是按人工计算的,而且4个项目总共同时最多需要的人数是10+16+11+18=55,多于公司现有人数41,应如何合理地分配现有的人员力量,使公司每天的直接受益最大?题目如何进行人员分配目录一、问题重述二、问题分析三、问题假设四、模型建立五、模型求解六、结果分析七、模型评价八、模型改进一、问题重述企业的人力资源管理是一门科学,而人力资源管理最主要的任务是如何把企业现有的人力资源安排到合适的工作岗位,以使企业能够获得更高的经济效益。
尤其是在人力资源稀缺的情况下,合理的安排各人员的任务更是显得至关重要。
接下来我们将要解决的就是一个企业人员分配的问题。
在这个问题中,A建筑工程公司有高级工程师、工程师、助理工程师、技术员等四种不同级别的工作人员,并且公司同时承接了A、B、C、D四个不同的工程项目。
公司不同级别的技术人员的工资是固定不变的,各级别技术人员的数量也是一定的,为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,在各项目的收费标准也是一定的情况下,合理的安排现有的技术人员的任务,将使公司获得一个最大的利润。
数学建模解决基本人力资源分配问题
数学建模解决基本人力资源分配问题091001000摘要中国是一个典型的多人口国家,人口基数大是我国的一个显着特点,但与此同时也给我国带来了一个很大并且很难解决的问题,那就是就业问题。
说到就业问题就不能不谈到人力资源分配问题,多人口也就意味着多劳动力•但劳动力分配不均反而给社会带来了负担。
因此不仅仅是知识型人才的分配,就算是社会基层的工作人员的分配也是很重要的问题。
与此对应的是企业公司的收益问题,收益最大化是每个企业的最终目标这是不可否认的,这样的话,人员分配与收益最大的平衡将成为一个很值得考虎的问题。
本文就针对某中型百货商场如何对售货员的分配使得商场需要的人数最少■支付工资最少这一问题进行建模。
本文建模主要从售货员的人数,售货员的交接及岗位需要的人数与时间来着手分析问题•以配备售货员人数最少为目标来解决问题。
丄•问题的重述_家中型的百货商场对售货员的需求经过统计分析如下表所为了保证售货员充分休息,要求售货员每周工作五天,休息两天•并要求休息的两天是连续的,应如何安排售货员的休息日期•既满足工作需要,又要使配备的售货员的人数最少?2 •问题的分析在本模型中,要解决售货员分配人数最少的问题,最先要明白的是售货员的人员分配方式及每天所需的售货员人数,其次要注意的是对售货员连续两天休息时间的安排。
从题中可看出,售货员的时间安排都应该是5天工作2天休息接着再是5天工作2天休息,为使配备人员最少就要使得各售货员之间的工作与休息时间衔接好。
因为每个售货员都工作5天■休息2天.所以只要计算出连续休息2 天的售货员人数■也就计算出了售货员的总数。
把连续休息2天的售货员按照开始休息的时间分成7类勒昭每天所需的售货员的人数写出约束条件,即可建立模型•求出最优方案。
3假设与符号X^X厶…汎7分别表示从星期一■二日开始休息的人数Min=Xi+X2+X3+X4+X5+X6+X7为所要求的目标函数4•模型的建立与求解目标函数为:X1+X2+X3+X4+X5+X6+X7.再按照每天所需售货员的人数写出约束条件。
数学建模论文(分配问题)精品
【关键字】政治、方案、情况、方法、问题、有效、深入、充分、合理、公平、召开、建立、提出、研究、关键、理想、工程、资源、任务、分析、推广、规划、管理公平席位的分配系别:机电工程系模具班学号: 1号摘要:分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中。
分配问题涉及的内容十分广泛,例如:大到召开全国人民代表大会,小到某学校召开学生代表大会,均涉及到将代表名额分配到各个下属部门的问题。
代表名额的分配(亦称为席位分配问题)是数学在人类政治生活中的一个重要应用,应归属于政治模型。
而当代表的人数在总和没有发生变化的情况下,所占比例却发生了变化时,一个如何分配才能使分配公平的问题就摆在了我们的面前。
因此,我们要通过建立数学模型来确定一种能够使分配公平的方法来分配关键字:理想化原则; 整数规划; 席位公平分配问题的提出:某学院有3个系共200名学生,其中甲系100人,乙系60人,丙系40人,现要选出20名学生代表组成学生会。
如果按学生人数的比例分配席位,那么甲乙丙系分别占10、6、4个席位,这当然没有什么问题(即公平)。
但是若按学生人数的比例分配的席位数不是整数,就会带来一些麻烦。
比如甲系103人,乙系63人,丙系34人,怎么分?问题重述学院的最初人数见下表,此系设20个席位代表。
甲乙丙总人数1006040200学生人数比例:100/200 60/200 40/200按比例分配方法:分配人数=学生人数比例初按比例分配席位:甲乙丙共10 6 4 20若出现学生转系情况:甲乙丙总人数103 63 34200学生人数比例:103/200 63/200 34/200按例分配方法:比例分配出现最小数时,先按整数分配席位,余下的按小数的大小分配席位按比例分配席位:甲乙丙10.815 6.615 3.57按比例分配席位,丙系却缺少一席的情况,按比例分配席位的方法有缺陷,试建立更合理的分配方法.模型假设分配席位的情况单位人数席位数A单位 X n mB单位 Y n。
数学建模学生分配问题题目
一.问题重述城市各城区小学学校的布局结构和学生的分配是否科学合理,直接关系到教育资源的利用效率和学校的教育教学质量。
下面就某城区的学校和学生信息根据要求对学生进行适当合理的分配。
由于城区旧城改造、新居建设以及人口流动等因素,现需将城区的六个街区小学生重新分配至该城区的三所学校A、B、C中去。
经统计已知六个街区的小学生总人数以及低、中、高年级的比例(见表1)。
同时考虑到可能出现跨街区上学的可能,为了保证学生的安全,每个学校将提供一定的上下课接送服务,由此产生的交通成本费用由上学的远近决定。
具体数据见表2,其中0表示不用提供接送服务,短线表示无法提供接送服务。
另一方面,学校为了保证教学质量,规定每个学校的低、中、高年级学生的比例都应在30%-36%之间。
1.如果从校方利益的角度考虑,为了节省接送的交通成本,所有学生应如何分配到各个学校去,同时又必须保证各年级的比例在规定的范围内。
2.另一方面,教育部门从学生管理和安全的角度考虑,希望每个街区的学生应尽可能的就近入学,而且同一个街区的学生能在同一所学校上学,那么在保证学校利益的基础上又应如何分配学生。
3.随着社会公共交通事业的发展,学校考虑是否应降低接送交通成本,分析制定了如下备选策略:(1)取消成本为200元/年的接送范围,其他保持不变;(2)取消成本为300元/年以下的接送范围,其他保持不变;(3)保持原方案。
根据问题1的模型,再次考虑在各个策略下学生如何分配,比较各分配方案的差别。
同时,结合问题2,在考虑学校利益、学生管理和学生安全等因素下,为学校提供一个合理的策略。
4.我国现行的学生入学分配政策基本以学区内入学为主,但很多家长为了让小孩进入教学效应较好的学校,不惜跨学区入学,而且学校也为此提供一定的入学名额,试就目前的入学情况谈谈你的想法,并提出你的建议。
表一学校和学生信息表二学校接送交通成本费用和容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模如何进行人员分配问题Revised by Jack on December 14,2020数学建模竞赛试题B题:如何进行人员分配“A公司”是一家从事建筑工程的公司,现有41个专业技术人员,其结构和相应的工资水平分布如表1所示:表1 人员结构及工资情况前,公司承接4个工程项目,其中2项是现场施工,分别在A地和B地,主要工作在现场完成;另外2项是工程设计,分别在C地和D地,主要工作在办公室完成。
由于4个项目来源于不同客户,并且工作的难易程度不同,因此,各项目的合同对有关技术人员的收费标准不同,具体情况如表2:表2 不同项目和各种人员的收费标准为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,具体情况如表3所示:表3 各项目对专业技术人员结构的要求说明:(1)项目D,由于技术要求较高,人员配备必须是助理工程师以上,技术员不能参加;(2)高级工程师相对稀少,而且是保证质量的关键,因此,各项目客户对高级工程师的配备要求不能少于一定数目的限制。
各项目对其他专业人员也有不同的限制或要求;(3)各项目客户对总人数都有限制;(4)由于C,D两项目是在办公室完成,所以每人每天有50元的管理费开支;由于收费是按人工计算的,而且4个项目总共同时最多需要的人数是10+16+11+18=55,多于公司现有人数41,应如何合理地分配现有的人员力量,使公司每天的直接受益最大题目如何进行人员分配目录一、问题重述二、问题分析三、问题假设四、模型建立五、模型求解六、结果分析七、模型评价八、模型改进一、问题重述企业的人力资源管理是一门科学,而人力资源管理最主要的任务是如何把企业现有的人力资源安排到合适的工作岗位,以使企业能够获得更高的经济效益。
尤其是在人力资源稀缺的情况下,合理的安排各人员的任务更是显得至关重要。
接下来我们将要解决的就是一个企业人员分配的问题。
在这个问题中,A建筑工程公司有高级工程师、工程师、助理工程师、技术员等四种不同级别的工作人员,并且公司同时承接了A、B、C、D 四个不同的工程项目。
公司不同级别的技术人员的工资是固定不变的,各级别技术人员的数量也是一定的,为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,在各项目的收费标准也是一定的情况下,合理的安排现有的技术人员的任务,将使公司获得一个最大的利润。
那么,为了获得最大收益,A公司到底应该如何把这四种不同级别的技术人员安排到四个不同的项目中去呢本文中,我们将重点对该问题进行分析。
二、问题分析该问题的任务是,通过合理分配人员,使公司每天的直接收益最大。
公司的主要收入来源是对各项目所收取的费用,支出主要有两项:四种不同级别的技术人员的工资和项目期间的办公费用。
公司的直接收益是总收入减去总支出。
A公司对各个项目的不同技术人员的收费标准都高于对应技术人员的总支出费用。
我们可以得出不同项目对应不同级别技术人员的利润表如下:注:该表中的利润值是已经减去办公费用的值同时,技术人员的分配受到不同项目对技术人员结构要求的约束,由于公司人员有限,各项目的技术人员安排不可能同时达到所需的最大数量,我们要将现有的41名技术人员对最大55个可用岗位进行安排。
从以上分析结果,我们可以确定这是一个线性规划问题,对公司现有的各级别技术人员进行合理的任务安排,可以使公司获得一个最大利润。
接下来,我们就将问题转化到如何将A公司各级别技术人员安排到55个岗位上来,使公司获得最大利润。
三、问题假设1、公司的现有技术人员数量和结构保持不变,即公司不会再临时招聘专业技术人员;2、一旦任务分配好之后,不会再出现人员变动的情况,并且不可能出现同一个技术人员同时担任两个项目的工作;3、对项目的收费标准和专业技术人员的工资水平保持不变;4、排除人员因生病、请假等不能正常工作的情况,排除天气对项目进行的影响;四、模型建立1、决策变量:对各项目分配的技术人员数目设如下变量:2、目标函数:设公司每天的利润为M元,根据利润表和人员分配表,公司每天的总利润可以表示为:M=750*x11+1250*x12+1000*x13+700*x14+600*x21+600*x22+650*x23+550*x24+430*x31+530*x32+480*x33+480*x34+390*x41+490*x42+240*x43+340*x443、约束条件:(1) 各项目的不同技术人员数量约束如下:1≤x11≤32≤x12≤5x13=21≤x14≤2x21≥2x22≥2x23≥22≤x24≤8x31≥2x32≥2x33≥2x34≥1x41≥1x42≥3x43≥1x44=0(2)各项目安排的总人员约束如下:x11+x21+x31+x41≤10x12+x22+x32+x42≤16x13+x23+x33+x43≤11x14+x24+x34+x44≤18(3)各级别技术人员总数约束如下:x11+x12+x13+x14≤9x21+x22+x23+x24≤17x31+x32+x33+x34≤10x41+x42+x43+x44≤5五、模型求解对于这种整数规划类型的问题,可以用分支定界法来进行求解。
但是由于该模型的变量比较多,用分支定界法进行手工求解是比较麻烦的,而lingo软件求解整数规划问题时,正是基于这种方法,所以我们可以借助lingo软件进行求解。
编写lingo程序如下:model:max=750*x11+1250*x12+1000*x13+700*x14+600*x21+600*x22+650*x23+550*x24+430*x31+530*x32+480*x33+480*x34+390*x41+490*x42+240*x43+340*x44;x11+x12+x13+x14<=9;x21+x22+x23+x24<=17;x31+x32+x33+x34<=10;x41+x42+x43+x44<=5;x11+x21+x31+x41<=10;x12+x22+x32+x42<=16;x13+x23+x33+x43<=11;x14+x24+x34+x44<=18;x11>=1;x11<=3;x12>=2;x12<=5;x13=2;x14>=1;x14<=2;x21>=2;x22>=2;x23>=2;x24>=2;x24<=8;x31>=2;x32>=2;x33>=2;x34>=1;x41>=1;x42>=3;x43>=1;x44=0;End运行程序(运行结果见附录一),求得最优解为27150 元,即为公司每天最大直接收益。
各项目的专业技术人员最优分配表如下:六、结果分析从运行结果(详见附录一)可以看出,公司的41名技术人员都能分配到任务,且完全符合各项目对技术人员结构的要求。
而且,从其“影子价格”一栏可得知,在其他条件不变的情况下,每增加一名高级工程师,公司的最大直接收益就增加700元;每增加一名工程师,公司的最大直接收益就增加550元;每增加一名助理工程师,公司的最大直接收益增加480元;每增加一名技术员,公司的最大直接收益增加440元。
因此,在不影响公司正常业务的情况下,应减少助理工程师和技术员的人数,增加高级工程师和工程师的人数,以使公司获得最大的直接收益。
七、模型评价1.模型优点:(1)该模型对问题用线性规划进行分析,而且列出了利润表对问题进行简化,使得问题变得简单,也减少了模型变量的数量,使得分析问题变得简单;(2)结果分析了各级别技术人员数量增加时对企业利润的影响,给人力资源结构调整作了一个参照,以及今后公司扩展业务时应该招聘的人员比例。
2.模型缺点:(1)本模型忽略了实际作业时的多种因素,例如天气、人员缺勤等不确定因素;(2)本模型未对公司实际作业时的其他支出进行考虑,如购买工具、设备折旧等;八、模型改进四个项目同时要求的总人数为55人,而公司实际人口为41人,如果公司招聘更多的技术人员会使利润增加,但应该招多少高级工程师、工程师、助理工程师和技术员,才能使公司的直接收益最大呢下面我们对此问题进行求解。
假设其他条件不变,新招聘的技术人员的工资标准和现有人员的相同。
我们编写如下lingo程序并进行求解:model:max=750*x11+1250*x12+1000*x13+700*x14+ 600*x21+600*x22+650*x23+550*x24+430*x31+530*x32+480*x33+480*x34+390*x41+490*x42+240*x43+340*x44; x11+x21+x31+x41<=10;x12+x22+x32+x42<=16;x13+x23+x33+x43<=11;x14+x24+x34+x44<=18;x11>=1;x11<=3;x12>=2;x12<=5;x13=2;x14>=1;x14<=2;x21>=2;x22>=2;x23>=2;x24>=2;x24<=8;x31>=2;x32>=2;x33>=2;x34>=1;x41>=1;x42>=3;x43>=1;x44=0;End结果(详见附录二)显示:当招录高级工程师3人,工程师7人,助理工程师4人时,公司的直接收益最大,且最大收益为35020元。
各项目的专业技术人员最优分配表如下:表中的各级别的技术人员比例是最优的人员配置,当A公司保持这种人员比例时,会使公司的利润最大化。
这就给今后公司的进行人员招聘提供了一个比较科学的参照。