2 最优化方法-线性规划-单纯形法解读

合集下载

最优化方法-单纯形法

最优化方法-单纯形法

记:Z0=CBB-1b
(1-1) (1-2) (1-3)
(1-4)
2 最优解判别定理
定理:设B是线性规划(1-1)’~(1-2)’的基
b’=B-1b=(b’1 ,b’2 ,…..b’m )T ≥0 X(0)是与B对应的基可行解,即
X(0) =( b’1 ,b’2 ,…0 ..b’m,0,…..0) T 如果X所有的检验数 j ≤0,则X 是最优解。

X
1

X
2


X
3
X 4


X
5


(1,2,0,0)T
( 45 ,0, 14 ,0)T 13 13
(34 ,0,0, 7 )T
5
5
(0, 45 , 7 ,0)T 16 16
(0, 68 ,0, 7 )T 29 29

X
6

(0,0, 68 , 45)T 31 31
注:基向量的下标视约束方程而异,不一定是1,2,…,m
例 2 求初始基可行解
max z = 3x1-2x2+5x3+9x4-x5
x1
s.t.

x2 x3
x4 x5 8 6x4 - 3 x5 12 x4 2x5 4
Hale Waihona Puke x1, , x5 0解:
系数矩阵A
b
1 0… 0… 0 a1,m+1… a1,m+t… a1n
b1
0 1… 0… 0 ┇
a2,m+1… a2,m+t… a2n ┇
b2 ┇
0 0… 1… 0 al,m+1… al,m+t… aln

线性规划问题的单纯形法求解步骤

线性规划问题的单纯形法求解步骤

线性规划问题的单纯形法求解步骤线性规划是一种优化问题,它的解决方法有很多种,在这里我们来介绍其中一种常用的方法——单纯形法。

我们将介绍单纯形法的求解步骤,以帮助读者更好地理解和掌握这种求解方法。

1. 建立数学模型任何一个线性规划问题的解决都需要先进行建模。

我们将问题转换成数学模型,然后使用数学方法进行求解。

线性规划问题的一般形式为:max cxs.t.Ax ≤ bx ≥ 0其中,c、x、b、A都是向量或矩阵,x≥0表示各变量都是非负数。

其中c表示目标函数,A和b表示约束条件。

2. 计算初始基可行解我们需要从初始点开始,逐步优化目标函数。

但是,在开始优化前我们需要先找到一个基可行解。

基可行解的定义是:如果所有非基变量的取值都是0,并且所有基变量的取值都是非负的,则该解被称为基可行解。

当基可行解找到后,我们就可以开始进行优化。

3. 确定进入变量在单纯形法中,每次迭代中我们都需要找到进入变量。

进入变量是指,通过操作非基变量可以使得目标函数增加的变量。

我们需要找到一个使得目标函数增加最多的非基变量,将其称为进入变量。

4. 确定离开变量在确定进入变量后,我们需要确定一个离开变量。

离开变量是指,通过操作基变量可以使得目标函数增加的变量。

我们需要找到一个离开变量,使得当进入变量增加到某个值时,该离开变量的值为0。

这样,我们就找到了一个最小的正根比率,使得通过基本变量出基到进入变量变为零而得到的新解是可行的。

5. 交换变量接下来,我们需要将已选定的进入变量和离开变量进行交换。

此时,我们将进入变量转变为基变量,离开变量转变为非基变量。

通过这种交换,我们还需要调整我们的基向量。

由于这个交换,我们将得到一个新的基可行解,并且它可以比之前的解更好。

6. 重复迭代我们需要重复上述步骤,直到我们找到最优解。

重复迭代意味着我们将不断查找新的进入变量和离开变量,并进行变量交换。

这种找到最优解的过程可能非常复杂,但是单纯形法的效率很高,通常可以在很短的时间内找到最优解。

第二章线性规划及单纯形法总结

第二章线性规划及单纯形法总结

第一章
工厂需要的原棉存放在三个仓库中,现将原棉运往工 厂以满足工厂生产的需求。已知原棉运到各个工厂的单位 运费如表所示。问使总运费最小的运输方案?
仓库\工厂
1 2 3 需求
1
2 2 3 40
2
1 2 4 15
3
3 4 2 35
库存
50 30 10
2.线性规划数学模型
解:设xij为i 仓库运到 j工厂的原棉数量(i =1,2,3
1.线性规划介绍
第一章
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
第一章
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
第一章
j =1,2,3)
minZ= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33 x11 +x12+x13 x21+x22+x23 x31+x32+x33 50 30 10 40
st.
x11 +x21+x31 =
x12 +x22+x32 =
x13 +x23+x33 = xij 0
15
35
2.线性规划数学模型
第一章
练习4 连续投资10万元 A:从第1年到第4年每年初投资,次年末回收本利1.15; B:第3年初投资,到第5年末回收本利1.25,最大投资4万元; C:第2年初投资,到第5年末回收本利1.40,最大投资3万元; D:每年初投资,每年末回收本利1.11。 求:使5年末总资本最大的投资方案。 分析: A 1 x1A 2 x2A x2C x1D x2D x3D x4D x5D 3 x3A 4 x4A 5

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤1>初始化将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示2>最优化测试如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为03>确定输入变量从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列4>确定分离变量对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行5>建立下一张表格将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步为求简单在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式:1:指定行和列,由用户自行输入每一个元素 SimpleMatrix(introw=0,int col=0);2:直接在主程序中初始化一个二维数组,然后利用构造函数 SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法)程序中主要的函数以及说明~SimpleMatrix();销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑这个函数用来判断是否已经存在最优解bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零这个函数用来判断线性规划是否是无解的bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)用来判断线性规划是否存在最优解,因为如果最后一列如果有负数的化,就无解了,算法终止int InColumn(); //确定输入变量用来判断主元所在的列int DepartRow(int col); //确定分离变量(寻找主元)用来确定主元所在的行void MainItem_To_1(int row,int col); //将主元所在的行做处理,使主元变为1void SubMatrixLine(int row1,int row2,intcol);//将矩阵的其他行做处理,矩阵的两行相减这个函数是在主元行已经做处理以后调用,目的是是矩阵的其他行主元列的元素变成0.其中row2为主元所在的行,col为主元所在的列,row1为要处理的行void PrintAnswer(); //输出矩阵的最优解int GetRows(); //返回矩阵的行数int GetCols(); //返回矩阵的列数double GetItem(int row,int col); //返回矩阵第row行,第col列的元素源代码//SimpleMatrix.h#ifndef SIMPLEMATRIX_H_#define SIMPLEMATRIX_H_class SimpleMatrix{public:SimpleMatrix(int row=0,int col=0);SimpleMatrix(int row,int col,double **M);~SimpleMatrix();bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)int InColumn(); //确定输入变量int DepartRow(int col); //确定分离变量(寻找主元)void MainItem_To_1(int row,int col); //将主元所在的行做处理,使主元变为1void SubMatrixLine(int row1,int row2,int col);//将矩阵的其他行做处理,矩阵的两行相减 void PrintAnswer(); //输出矩阵的最优解int GetRows(); //返回矩阵的行数int GetCols(); //返回矩阵的列数double GetItem(int row,int col); //返回矩阵第row行,第col列的元素private:int rowLen; //标准矩阵的行数int colLen; //标准矩阵的列数double **data; //一个二维数组,指向标准矩阵的数据成员void init(int rows,int cols); //动态分配一个rows行,cols列的二维数组};#end if//SimpleMatrix.cpp#include <iostream>#include <cmath>#include "SimpleMatrix.h"using namespace std;void SimpleMatrix::init(int rows,int cols){if(rows>0&&cols>0){rowLen=rows;colLen=cols;data = new double *[rows];for (int i=0;i<rows;i++){data[i]=new double[cols];}}elsecout<<"矩阵的行.列数不合法"<<endl;}SimpleMatrix::SimpleMatrix(int row,int col){init(row,col);for(int i=0;i<rowLen;i++){cout<<"请输入矩阵中第"<<i+1<<"行的系数"<<endl; for(int j=0;j<colLen;j++)cin>>data[i][j];}}SimpleMatrix::SimpleMatrix(int row,int col,double **M) {rowLen=row;colLen=col;init(row,col);for (int i=0;i<row;i++)for(int j=0;j<col;j++){data[i][j]=*((double*)M+col*i+j); ;}}SimpleMatrix::~SimpleMatrix(){if(colLen*rowLen != 0 ){for(int i=rowLen-1;i>=0;i--){if (data[i]!=NULL)if (data!=NULL)delete[] data;}}bool SimpleMatrix::Is_objectLine_All_Positive(){for(int i=0;i<colLen-1;i++)if(data[rowLen-1][i]<0)return false;return true;}bool SimpleMatrix::Is_MainCol_All_Negative(int col) {for(int i=0;i<rowLen;i++)if(data[i][col]>0)return false;return true;}bool SimpleMatrix::Is_column_all_Positive(int col) {for(int i=0;i<rowLen-1;i++){if(data[i][col-1]<0)return false;}return true;}int SimpleMatrix::InColumn(){int count=0;for(int i=0;i<colLen-1;i++){int temp=GetItem(rowLen-1,i);if(temp>=0){count++;}elsebreak;}double maxItem=fabs(GetItem(rowLen-1,count)); int index_col;for(i=0;i<colLen-1;i++){double temp=GetItem(rowLen-1,i);if(temp<0){maxItem=fabs(temp);index_col=i;}}}return index_col;}int SimpleMatrix::DepartRow(int col){int index_row;int count=0;for(int i=0;i<rowLen;i++){if(data[i][col]<0)count++;elsebreak;}double minItem=data[count][colLen-1]/data[count][col]; index_row=count;double temp;for(i=0;i<rowLen-1;i++){temp=data[i][col];if(temp>0){temp=data[i][colLen-1]/temp;if(temp<minItem){minItem=temp;index_row=i;}}}return index_row;}void SimpleMatrix::MainItem_To_1(int row,int col){double temp=GetItem(row,col);//double temp=data[row-1][col-1];for (int i=0;i<colLen;i++){data[row][i]/=temp;}}void SimpleMatrix::SubMatrixLine(int row1,int row2,int col) {double temp=GetItem(row1,col);//double temp=data[row1-1][col-1];double*tempLine=new double[colLen];for(int i=0;i<colLen;i++){tempLine[i]=data[row2][i];}for(i=0;i<colLen;i++){data[row1][i]=data[row1][i]-temp*tempLine[i];}delete[]tempLine;}int SimpleMatrix::GetRows(){return rowLen;}int SimpleMatrix::GetCols(){return colLen;}double SimpleMatrix::GetItem(int row,int col){return data[row][col];}void SimpleMatrix::PrintAnswer(){//先确定单位矩阵中1的位置for (int i=0;i<GetRows();i++)for (int j=0;j<GetRows();j++){if(1==data[i][j]){int index_col=j;cout<<"x"<<index_col+1<<"="<<data[i][colLen-1]<<" ";}}cout<<endl;cout<<"取得最优解,并且最优值为"<<data[rowLen-1][colLen-1];}//单纯形法.cpp#include <iostream>#include "SimpleMatrix.h"using namespace std;int main(){double M[4][7]={{5,3,1,1,0,0,9},{-5,6,15,0,1,0,15},{2,-1,1,0,0,-1,5},{-10,-15,-12,0,0,0,}}; SimpleMatrix Matrix(4,7,(double **)M);if(Matrix.Is_column_all_Positive(5)) //判断是否存在最优解{bool p=Matrix.Is_objectLine_All_Positive(); //判断主元列是否全部为正,确定是否已经取得最优解 while(!p){int col=Matrix.InColumn(); //确定主元所在的行if(Matrix.Is_MainCol_All_Negative(col)) //确定线性规划的解是否为无解的{cout<<"线性规划问题是无界的,没有最优解"<<endl;exit(EXIT_FAILURE);}else{int mainRow=Matrix.DepartRow(col); //确定主元所在的行Matrix.MainItem_To_1(mainRow,col); //将主元所在的行做变换,使主元变成1int i=0;while(i<Matrix.GetRows()){if(i!=mainRow){Matrix.SubMatrixLine(i,mainRow,col); //处理矩阵中其他的行,使主元列的元素为0i++;}else{i++;}}}for(int i=0;i<Matrix.GetRows();i++) //输出变换以后的矩阵,判断是否正确处理{for (int j=0;j<Matrix.GetCols();j++){cout<<Matrix.GetItem(i,j)<<" ";}cout<<endl;}p=Matrix.Is_objectLine_All_Positive();}Matrix.PrintAnswer();}elsecout<<"线性规划无解"<<endl;return0;}。

管理学线性规划的图解法与单纯形解法

管理学线性规划的图解法与单纯形解法

n
z z0 (c j z j )x j j m1
最优性检验和解的判别
再令
j c j z j j m 1, , n
称为检验数。
n
z z0 j x j j m1
在线性规划模型中,可以用检验数 j替代目标函 数中的价值系数cj。
最优解的判别定理
定理1 最优解的判别定理
若 X (0) b1,b2,L ,bm ,0,L ,0T 为对应于基 B 的一个基可行解,
仍取值为 0。令
x(1) mk
x(1) j
0
( j m 1,L , n, 但j m k)
x(1) i
bi ai,mk
i 1, 2,L m
X (1)
x(1) 1
,
x2(1),L
,xl(1)
,L
,
x(1) m
,
0,L
,
0,
x(1) mk
,
0,
L
,0T
新解必须满足非负约束,从而必须
x(1) i
对于一切 j=m+1,…,n,有检验数 j≤0,则 X(0)为最优解。
定理2 有无穷多最优解的判别定理
若 X (0) b1,b2,L ,bm ,0,L ,0T 为对应于基 B 的一个基可行解,
对于一切 j=m+1,…,n,有检验数 j≤0, 且存在某个非基变量对 应的检验数 m+k=0, 则该线性规划问题有无穷多个最优解。
当检验某个基可行解不是最优、也非无界,那么就 应该从该顶点(基可行解)处出发,寻找一个新的 能使目标函数值改进的相邻顶点(基可行解)。 注:称两个基可行解为相邻的,是指它们之间变换 且仅变换一个基变量。
具体的方法是:在基变量中,选出一个,让它变为 非基变量;同时,从非基变量中,选出一个,让它 变为基变量,从而构造一个新基。

运筹学单纯形法

运筹学单纯形法
总结:①在迭代过程中要保持常数列向量非负,这能确保基 可行解旳非负性。最小比值能做到这一点。 ②主元素不能为0。因为行旳初等变换不能把0变成1。 ③主元素不能为负数。因为用行旳初等变换把负数变成1会 把常数列中相应旳常数变成负数。
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2

线性规划与单纯形法

线性规划与单纯形法

线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。

而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。

本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。

一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。

其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。

目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。

二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。

其基本思想是通过逐步迭代改进当前解,直至达到最优解。

三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。

2. 初始化:确定初始可行解。

通常使用人工变量法来获得一个初始可行解。

3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。

否则,进入下一步。

4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。

5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。

若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。

四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。

线性规划问题的解法与最优解分析

线性规划问题的解法与最优解分析

线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。

它在工程、经济学、管理学等领域有着广泛的应用。

本文将介绍线性规划问题的解法和最优解分析。

一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。

线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。

二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。

1. 图形法图形法适用于二维或三维的线性规划问题。

它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。

首先,将约束条件转化为不等式,并将其绘制在坐标系上。

然后,确定目标函数的等高线或等高面,并绘制在坐标系上。

最后,通过观察等高线或等高面与约束条件的交点,找到最优解。

图形法简单直观,但只适用于低维的线性规划问题。

2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。

它通过在可行域内不断移动,直到找到最优解。

单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。

它通过选择一个基本变量和非基本变量,来构造一个新的可行解。

然后,通过计算目标函数的值来判断是否找到了最优解。

如果没有找到最优解,则继续迭代,直到找到最优解为止。

单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。

线性规划(2单纯形法) (1)

线性规划(2单纯形法) (1)

X1 X 2 0 3
X4 -15 X3 9
作主元运算, 得到新的基础可行解: X(2)=(0,0,9,1,0)t S= 35
C CB -1 4 σ XB 10 3 4 X3 0 1 -1 X4 1 0 1 X5 -2 1 1 9 35 b Θ
X1 X 2 0 3
X4 -15 X3 9
判断是否最优解:X(2)=(0,0,9,1,0)T S= 35 计算检验数,所有检验数全小于零,达到最优解, X*=(0,0,9,1,0)T S = 35
=
CB B-1b
0 CN-CB B-1N
二、判别
•若检验数全小于等于零,则基B所对应 的基础可行解X就是最优解,终止。 •若存在检验数大于零,但所对应的进 基变量XS的系数向量PS小于等于零,则 原问题无最优解,终止。
•若存在检验数大于零,且对应的常数 项大于零,则需要换基迭代。
三、换基迭代 •确定进基变量XS,其中 max( Ơj | Ơj > 0 ) = Ơs
•继续寻找更优的基础可行解,进一步改进目 标函数值。当某一个基础可行解不能再改善 时,该解就是最优解。
一、已知初始可行基求最优解
线性规划标准型的矩阵形式(3):
Max S = CX
(1-17)
s.t. AX=b
X0
(1-18)
(1-19)
a11 a12 …. a1n
b1
A=
a21 a22 …. a2n
第一行加上第二行的(-6)倍
C CB -1 1 σ XB 10 X1 3 X2 0 1 6 4 X3 0 1/3 5 -1 X4 1 0 0 1 X5 -2 1/3 0 1 3 -10 b Θ
X4 -15 X5 3 4

2 最优化方法-线性规划-单纯形法

2 最优化方法-线性规划-单纯形法

自由变量 松弛(slack)/盈余(surplus)变量;
例5. 化成标准形
等 价 表 示 为
基本解与基变量
其中 满秩假定: m×n矩阵A满足m<n,且A的行向量线性无关 • 在满秩假定下,方程组Ax=b总有解,且至少有一个基本 解
定义: 给定含有n个变量,m个方程的线性方程组Ax=b, 设B是由A 的列组成的任一非奇异m×m子阵,则如果置x 的所有与B无关的n-m个分量为零后,所得方程组的解是 Ax=b关于基B的基本解(basic solution) ,称x中与基B对应 的分量为基变量(basic variables)
进基变量:最小相对费用系数规则;出基变量:最小指标规则!
例1.
化标准形
得标准形的初始表格/第一张单纯形表
转 轴
0

转 轴
-2 ↓
转 轴
-4 ↓ -27/5
最优解: 最优值:
原问题的极大值:
退化(degenerate)与循环(cycling)
◎退化问题
⊙ 单纯形法可能出现循环! ⊙ 实际中经常碰到退化问题,但很少出现循环 ⊙ 避免出现循环的措施:摄动法、Bland法则、字典序法

为转轴元,转轴后即得新基对应的数据!
例1
a2进基,计算y2. 计算表格如下:
计算
a1进基,计算y1. 得如下表格:
最优值:
最优解:
利用两阶段单纯形过程求解
实用优化方法
线性规划:单纯形法
线性规划
线性规划:目标函数是线性的,约束条件是 线性等式或不等式
线性规划的历史
• 渊源要追溯到Euler、Liebnitz、Lagrange等
• George Dantzig, Von Neumann(Princeton)和 Leonid Kantorovich在1940’s创建了线性规划

数学建模 - 第二章 线性规划及单纯形法

数学建模 - 第二章 线性规划及单纯形法
p j a1 j , a2 j ,, amj 为A的第j列向量
T
max s.t.
p
j 1
n
j
xj b
x0
13
§2 线性规划问题的图解法
max s.t.
z cx Ax b x0
(1) (2) (3)
定义1 在LP 问题中,凡满足约束条件(2)、(3)的 解 x = (x1,x2,…,xn)T 称为LP 问题的可行解, 所有可行解的集合称为可行解集(或可行域)。 记作 D={ x | Ax = b ,x≥0 }。 定义2 设LP问题的可行域为D,若存在x*∈D,使得 对任意的x∈D 都有c x*≥c x,则称x*为LP 问题
设 xj 没有非负约束,若 xj ≤0,可令 xj = - xj’ ,
则 xj’ ≥0;
又若 xj 为自由变量,即 xj 可为任意实数,
可令 xj = xj’ - xj’’,且 xj’ , xj’’ ≥0
11
第二章
线性规划及单纯形法
max z’= x1-2x2+3x4- 3x5 s.t. x1+x2+x4-x5+x6=7 x1-x2+x4-x5-x7=2 3x1-x2-2x4+2x5=5 x1,x2,x4,x5,x6,x7≥0
x2
2x1 x2 2
x1 4x2 4
max z = 2x1 + 2x2 s.t. 2x1 – x2 ≥ 2 -x1 + 4x2≤ 4 x1,x2 ≥ 0
Note:
可行域为无界区域,
目标函数值可无限
增大,即解无界。
(1,0)
O
A
x1
称为无最优解。

第二章 线性规划及单纯形法

第二章 线性规划及单纯形法

标准形式
目标函数: 目标函数: 约束条件: 约束条件: Max z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn = b1 a21 x1 + a22 x2 + … + a2n xn = b2 …… …… am1 x1 + am2 x2 + … + amn xn = bm x1 ,x2 ,… ,xn ≥ 0,bi ≥0 ,
(一)一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn ≥(=, ≤)b1 a21X1+ a22X2+…+ a2nXn ≥(=, ≤)b2 … … … am1X1+ am2X2+…+ amnXn ≥(=, ≤)bm Xj ≥0(j=1,…,n) 0( )
三、线性规划问题的标准形式 线性规划问题的标准形式
2、约束条件不是等式的问题: 约束条件不是等式的问题: 设约束条件为
ai1 x1+ai2 x2+ … +ain xn ≤ bi
可以引进一个新的变量s ,使它等于约束右边与左 边之差
s=bi–(ai1 x1 + ai2 x2 + … + ain xn ) (
一、问题提出
Ⅰ 设备A 设备 设备B 设备 调试工序 利润 0 6 1 2
例1生产计划问题
Ⅱ 5 2 1 1 每天可用能力 15 24 5
两种家电各生产多少, 可获最大利润? 两种家电各生产多少, 可获最大利润

最优化方法第二讲单纯形法

最优化方法第二讲单纯形法

最优化方法第二讲单纯形法在运筹学中,最优化问题是指在一组约束条件下,寻找使目标函数取得最大(或最小)值的决策变量值。

而最优化方法是解决这类问题的一种有效手段。

单纯形法是最优化方法中的一种重要算法,它是由乔治·丹齐格于1947年提出的,用于求解线性规划问题。

单纯形法的基本思想是通过逐步移动到目标函数最优解的方法来解空间。

它通过对线性规划问题进行逐步转换和简化,从而将复杂问题简化为简单问题的序列,从而找到最优解。

单纯形法的步骤如下:1.制定线性规划模型:确定决策变量、目标函数和约束条件。

2.将约束条件转化为标准形式:将所有约束条件都转化为等式形式。

3.初始化:选择一组基本可行解作为初始解,并计算初始目标函数值。

如果所有的目标函数系数都是非负的,则找到了初始基本可行解。

4.迭代过程:根据当前基本可行解,计算对应的单纯形表。

5.判断最优性:如果单纯形表没有负值,则当前基本可行解是最优解;否则,找到表中最小的负值所在的列,作为入基变量。

6.选出基变量:根据入基列,选出出基行。

7.更新单纯形表:通过行变换和列变换更新单纯形表。

8.重复迭代:如果目标函数在迭代过程中得到改善,则继续迭代;否则,停止迭代,当前基本可行解即为最优解。

9.输出最优解:输出最优解的决策变量值。

单纯形法作为最优化问题的常用方法,具有以下优点:1.简单易实现:单纯形法的算法步骤简单明了,可以利用计算机编程实现。

2.可靠性高:经过数十年的实践与应用,单纯形法已被广泛接受与使用,并且在许多实际问题中取得了良好的结果。

3.理论基础深厚:单纯形法是基于矩阵运算和线性代数理论的,具有坚实的理论基础。

然而,由于单纯形法存在着多个局限性,使得它在一些问题中的效率和实用性有所受限。

1.算法复杂度高:单纯形法的迭代过程需要进行大量的行变换和列变换,当问题规模较大时,计算量会非常庞大,运算时间会大大增加。

2.进入和离开基变量选择问题:单纯形法需要选择进入和离开基变量,而一次迭代只能选择一个基变量,这会导致算法的迭代次数较多。

线性规划的解法

线性规划的解法

线性规划的解法线性规划(Linear Programming)是数学优化的一个重要分支,旨在寻求一组最优解,以满足一系列线性约束条件。

在实际问题中,线性规划方法被广泛应用于资源分配、生产调度、运输计划等领域。

本文将介绍线性规划的解法及其应用。

一、线性规划问题的描述与模型建立线性规划问题可以用数学模型来描述,一般表示为:$max\{c^Tx | Ax \leq b, x \geq 0\}$其中,$c$表示目标函数的系数向量,$x$表示决策变量的值向量,$A$和$b$分别表示约束条件的系数矩阵和常数向量。

解决线性规划问题的关键是确定目标函数和约束条件,以及求解最优解的方法。

二、单纯形法(Simplex Method)单纯形法是解决线性规划问题最常用的方法之一,由乔治·丹尼格(George Dantzig)于1947年提出。

该方法基于下面的原理:从一个顶点出发,沿着边界不断移动到相邻的顶点,直到找到目标函数的最大(或最小)值。

具体而言,单纯形法的步骤如下:1. 将线性规划问题转化为标准形式(如果不满足标准形式)。

2. 选择一个初始基本可行解。

3. 判断当前解是否为最优解,若是,则结束;否则,进行下一步。

4. 选择一个进入变量和一个离开变量,即确定下一个顶点。

5. 进行变量的调整,即计算新的基本可行解。

6. 重复3-5步,直到找到最优解。

三、内点法(Interior Point Method)内点法是另一种常用的线性规划求解方法,其优点是能够在多项式时间内找到最优解。

与单纯形法相比,内点法不需要从一个顶点移动到相邻的顶点,而是通过在可行域内搜索,在每次迭代中逐渐接近最优解。

内点法的基本思路是通过寻找原问题的拉格朗日对偶问题的最优解来解决线性规划问题。

它通过引入一个额外的人工变量,将原问题转化为一个等价的凸二次规划问题,并通过迭代的方式逐步逼近最优解。

四、应用举例线性规划方法在各个领域都有广泛的应用。

线性规划问题的求解方法与实践

线性规划问题的求解方法与实践

线性规划问题的求解方法与实践线性规划是一种常见的优化问题,可以用来研究诸如资源分配、生产优化等问题。

线性规划问题的求解方法也十分重要,常用的方法有单纯形法、内点法、整数规划等。

本文将从理论和实践两个层面讨论线性规划问题的求解方法。

一、单纯形法单纯形法是一种求解线性规划问题的标准算法,在实践中得到广泛应用。

其基本思想是将线性规划问题转化为标准型,并通过不断的迭代来达到最优解。

标准型是指将目标函数和限制条件均转化为等式的形式。

具体来说,假设有线性规划问题:max c1*x1 + c2*x2 + … + cn*xns.t.a11*x1 + a12*x2 + … + a1n*xn ≤ b1a21*x1 + a22*x2 + … + a2n*xn ≤ b2…am1*x1 + am2*x2 + … + amn*xn ≤ bm其中,x1~xn为决策变量,c1~cn为目标函数的系数,a11~amn 为各限制条件的系数,b1~bm为约束条件的右值。

将其转化为标准型:max cxs.t.Ax = bx ≥ 0其中,x = (x1, x2, …, xn)T,c和x为向量,A为mxn的矩阵,b为m维的向量。

线性规划问题的解可以存在于顶点中,而顶点又可以表示为n-m个线性约束的交点。

单纯形法就是借助这一点来求解问题,每次从一个顶点出发,向相邻的顶点移动,最终找到全局最优解。

二、内点法内点法是求解线性规划问题的另一种常见方法,也被称为封闭框架法。

其基本思想是通过构造一个特殊的迭代序列,将问题转化为无约束的非光滑的优化问题,然后使用牛顿迭代等方法求解。

内点法的优点在于可以直接求解非线性约束和整数规划问题,同时有较好的收敛性和鲁棒性。

内点法的基本思路是将约束条件改写为一组等效条件,并考虑在这些等效条件内部寻找最优解。

这些等效条件称为“内点”,表示在这些条件下寻找的最优解都在可行域内部。

例如,在松弛的线性规划问题中,对于每个限制条件,都可以构造一个内点,使得其满足该约束条件,并使用初始可行解来初始化算法。

运筹学单纯形法讲解

运筹学单纯形法讲解

运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。

设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。

单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。

由单纯形求出的最优解就叫做单纯形的最优解。

在实际应用中,一般用来求最优解的都是单纯形。

二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。

但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。

非线性规划只能得到对象最优解。

三、单纯形法具体步骤和算法介绍1、明确问题的目标。

2、计算出所有解,按确定的先后顺序排列。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

四、单纯形法的误差和精度1、明确问题的目标。

一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。

但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。

2、计算出所有解,按确定的先后顺序排列。

首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。

这种方法称为“穷举法”。

穷举法通常用于没有更好的方法时,常用于工程实际中。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。

5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。

单纯形法的精度可达0.01或0.05。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i) 如果用 aj 替换基中某列得到了新的BFS,则新解 处的目标值比 z0 严格小. ii) 如果任何替换都产生不了新的BFS,则问题无界.
◆ 退化基本可行解:某个或某些基变量取零的基本可行解!
问题:基本可行解与基的对应关系?
◎相对费用系数的经济解释!(合成价格、相对价格)
4. 计算过程-单纯形法
几何解释:连接集合中任两点的线段仍含在该集合中 性质
一些重要的凸集
超平面(hyperplane):
正/负闭半空间: 多面集(polyhedral convex set): 有限个闭半空间的交集
推 广 平面上:多边形
注:任一线性规划的可行集是多面集!
极点
几何上:极点即不能位于连接该集合中其它两点 的开线段上的点

为转轴元,转轴后即得新基对应的数据!
例1
a2进基,计算y2. 计算表格如下:
计算
a1进基,计算y1. 得如下表格:
最优值:
最优解:
利用两阶段单纯形过程求解
第七张单纯形表
循环!
注:循环转轴序列中所有BFS都是退化的!是 同一个BFS!
避免循环的方法
美好愿望:构造某种永远不会产生循环的转轴规则!
◎ 摄动法(Charnes,1952年) ◎ 字典序法(Dantzig, Orden和Wolfe,1954年) ◎ Bland法则(Bland, 1977)-最小指标法则
• 1947年, George Dantzig发明了单纯形法
• 1979年,L. Khachain找到了求解线性规划的一 种有效方法(第一个多项式时间算法-椭球内点法)
• 1984年,Narendra Karmarkan发现了另一种求 解线性规划的有效方法,已证明是单纯形法的强 有力的竞争者(投影内点法) • 现在求解大规模、退化问题最有效的是原-对偶 内点法
例1. 食谱问题
◎ 问题:确定食品数量,满足营养需求,花费最小?
n种食品,m种营养成份; -第 j 种食品的单价
-每单位第 j 种食品所含第 i 种营养的数量 -为了健康,每天必须食用第i 种营养的数量
◎ 变量:
-食用第 j 种食品的数量
◎ 模型:
例2. 运输问题
产销平衡/不平衡的运输问题
得辅助问题的一个新最优BFS,且基变量中少1个人工变量!
第 i 个约束冗余; 删除单纯形表的第 i 行数据
例1. 给出下面系统的一个基本可行解,或者说明其无解
引入人工变量 目标:
辅助问题的 初始表格!
BFS
第一张 单纯形表
第二张 单纯形表
注意基变量整列包括末行z在内除了基变量 其他元素都是0
辅助问题的最优值是0. 原问题的BFS:
7. 单纯形法的矩阵形式
给定基 B 及对应BFS (xB, 0), 其中xB=B-1b
用非基变量表示基变量: 用非基变量表示目标函数:
相对费用向量
初始表格-单纯形表
初始表格 通常不是单纯形表!
与基矩阵 B 对应的单纯形表
修正单纯形法的计算步骤
步0 给定BFS及对应的B-1。计算
步1 计算 步2 选取 q 满足 步3 计算 yq=B-1aq;若 停,问题无界;否则,选 p 满足 , 。如果 停;得最优解.
假设最后得最优解(x, y)、最优值 z* 和最优基 B
得到原问题的基本可行解
◎ z*> 0,无可行解! ◎ z*= 0,有可行解!
⊙ 基变量中无人工变量→x 是BFS,B 是对应的基 ⊙ 基变量中有人工变量→驱赶人工变量出基 假设第 i 个基变量是人工变量,且当前单纯形表 第 i 行的前n个数据是 以任一非零元为转轴元转轴
◎ 收敛性定理:
对非退化线性规划,从任一基本可行解出发,利用 单纯形法可在有限步内得到最优解或判断问题无界.
5. 两阶段法
如何启动单纯形法-人工变量
◎ 目标 判断 Ax=b, x≥0 是否有界; 有解时找一个基本可行解; ◎ 方法 ⊙ 给有需要的行乘以-1,使得 b≥0 ⊙ 构造辅助问题
人工变量
(x, y)=(0, b)是基本可行解! 故可以(0,b)为初始BFS,利用单纯形法求解辅助问题
iii) Ax=b对应的约束集K最多有有限个极点.
例1.
K 有3个极点 有3个基本解,均可行
例2.
K
有2个极点
有3个基本解,2个可行
例3.
Subject to
5个极点 -极点
线性规划 解的 几何特征
唯一 解(顶点)!
线性规划解的几何特征
• 有解:唯一解/多个解(整条边、面、甚至 有顶点解 整个可行集) • 无界:没有有限最优解 • 不可行:没有可行解 无解
两阶段法-可求任一线性规划问题
◎ 第I阶段:启动单纯形法 →构造、求解辅助问题
→判断原问题不可行、或可行 → 可行时找到基本可行解及对应规范形
⊙ 第II阶段:利用单纯形法求原问题
→从上述BFS出发,求解所给问题 →原问题无界或者有解
例2. 利用两阶段法求解下面的问题
第I阶段:辅助问题
先构造辅助向量z=x4+x5
实用优化方法
线性规划:单纯形法
线性规划
线性规划:目标函数是线性的,约束条件是 线性等式或不等式
线性规划的历史
• 渊源要追溯到Euler、Liebnitz、Lagrange等
• George Dantzig, Von Neumann(Princeton)和 Leonid Kantorovich在1940’s创建了线性规划
进基变量:最小相对费用系数规则;出基变量:最小指标规则!
例1.
化标准形
得标准形的初始表格/第一张单纯形表
转 轴
0

转 轴
-2 ↓
转 轴
-4 ↓ -27/5
最优解: 最优值:
原问题的极大值:
退化(degenerate)与循环(cycling)
◎退化问题
⊙ 单纯形法可能出现循环! ⊙ 实际中经常碰到退化问题,但很少出现循环 ⊙ 避免出现循环的措施:摄动法、Bland法则、字典序法
退化基本解:基本解中如果有一个或多个基变量的值为零
基本可行解
约束系统
定义 称 的非负基本解是标准形的基 本可行解(basic feasible solution);
线性规划的基本定理
考虑线性规划标准形,其中A是秩为m的m×n阶 矩阵,则以下结论成立:
i) 若标准型有可行解,则必有基本可行解;
ii) 若标准型有最优解,则必有最优基本可行解。
⊙如果有多个费用系数是负的,选取下标最小的相对 费用系数对应的变量为进基变量 ⊙如果最小正比值在多个指标处取得,取下标最 小者对应的变量为进基变量
利用Bland法则作为转轴规则求解Beale的例子! 前四张单纯形表相同!
最后一张单纯形表/最优单纯形表
单纯形法的收敛性
◎ 非退化线性规划:任一基本可行解非退化
可行集:多边形(二维) →多边集(高维空间) 给出有效的代数刻画和严谨的几何描述,从理论上证 实上述几何特征,并寻求有效算法
顶点 一 条 边
无 (下 )界
线性规划问题解的几种情况
单纯形法简介
• 适用形式:标准形(基本可行解=极点) • 理论基础:线性规划的基本定理! • 基本思想:从约束集的某个极点/BFS开始, 依次移动到相邻极点/BFS,直到找出最优 解,或判断问题无界. • 初始化:如何找到一个BFS? • 判断准则:何时最优?何时无界? • 迭代规则:如何从一个极点/BFS迭代到相 邻极点/BFS?
◎ 当且仅当 ,可以替换 ◎ 替换后,新规范形的系数 转轴公式
-转轴元(pivot element)
例1. 求下列方程组以
为基变量的基本解
转轴
转 轴
转 轴
转 轴
x=(0,0,0,4,2,1)
2. BFS→相邻BFS(极点→相邻极点)
设x是BFS, 且规范形如前,且假设 aq 进基 ◎问题: 确定出基变量,使转轴后新规范形对应BFS? 因为 所以
自由变量 松弛(slack)/盈余(surplus)变量;
例5. 化成标准形
等 价 表 示 为
基本解与基变量
其中 满秩假定: m×n矩阵A满足m<n,且A的行向量线性无关 • 在满秩假定下,方程组Ax=b总有解,且至少有一个基本 解
定义: 给定含有n个变量,m个方程的线性方程组Ax=b, 设B是由A 的列组成的任一非奇异m×m子阵,则如果置x 的所有与B无关的n-m个分量为零后,所得方程组的解是 Ax=b关于基B的基本解(basic solution) ,称x中与基B对应 的分量为基变量(basic variables)
1. 转轴(基本解→相邻基本解)
满秩假定: A是行满秩的
规范形(canonical form)
不妨设 线性无关 等价变形
基变量
基本解
非基变量
一般地: 只要有m个单位列 次序可以打乱!
规范形的转换问题
◎ 替换问题
假设在上述规范形中,想用
⊙ 什么时候可以替换? ⊙ 替换后新规范形是什么?
转轴(pivot)
例3. 其它应用
• 数据包络分析(data envelope analysis, DEA) • 网络流问题(Network flow) • 博弈论(game theory)等
线性规划的一般形式
线性规划的标准形(分析、算法)
向量表示:
标准形的特征:极小化、等式约束、变量非负
一般形式
转化
标准形

令 可否选取合适的 使得 是BFS ?
确定离基变量
至少有一个正元
例3. 考虑线性方程组
B=(a1,a2,a3)
X=(4,3,1,0,0,0)
相关文档
最新文档