反比例函数图象中的面积问题

合集下载

反比例函数中的面积问题(共26张PPT)

反比例函数中的面积问题(共26张PPT)

课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”

反比函数图像上四种三角形的面积

反比函数图像上四种三角形的面积

反比函数图像上的四种三角形的面积函数是解决实际生活问题的重要模型,在近几年各省市的考题中,对于函数的考查比例占有相当重的份量,绝大部分是考查考生对其基本概念、图象性质的理解和应用,甚至成为中考压轴题的大类。

反比例函数的图像经常与三角形的面积联系在一起,下面就举例说明。

结论1、过反比例函数图像上一点,向x 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。

设P (a ,b )是反比例函数y=xk(k ≠0)图像上的一点,过点P 作PA ⊥x轴,垂足为A ,三角形PAO 的面积是S ,则S k 2=结论2、过反比例函数图像上一点,向y 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。

设P (a ,b )是反比例函数y=x k(k ≠0)图像上的一点,过点P 作PB ⊥y 轴,垂足为B ,三角形PBO 的面积是S ,则S k 2=。

结论3、正比例函数y=k 1x (k 1>0)与反比例函数y=xk(k >0)的图像交于A 、kx 襄樊市第四十七中学 熊沙 图(1)2)B 两点,过A 点作AC ⊥x 轴,垂足是C ,三角形ABC 的面积设为S ,则S=|k|,与正比例函数的比例系数k 1无关。

证明:I因为,正比例函数y=k 1x (k 1>0)与反比例函数y=x k(k >0)的图像交于A 、B 两点,所以,x k xk1=,所以,x=±111k kk k k =, 当x=11k kk 时,y= k 1x=1kk ,所以,点A 的坐标是(11k kk ,1kk ),当x =-11k kk 时,y= k 1x =-1kk ,所以,点B 的坐标是(-11k kk ,-1kk ),所以,OC 的长度是11k kk ,三角形ABC 的面积=三角形AOC 的面积+三角形BOC 的面积=21×OC ×AC+21×OC ×BD =21×11k kk ×1kk +21×11k kk ×|-1kk | =21k+21k=k 。

反比例函数中及面积有关的问题

反比例函数中及面积有关的问题

反比例函数中与面积有关的问题知识点回忆由于反比例函数解析式及图象的特殊性,很多中考试题都将反比例函数与面积结合起来进展考察。

这种考察方式既能考察函数、反比例函数本身的根底知识内容,又能充分表达数形结合的思想方法,考察的题型广泛,考察方法灵活,可以较好地将知识与能力融合在一起。

下面就反比例函数中与面积有关的问题的几种类型归纳如下:利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,那么两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k故S=|k|从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k| 对于以下三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:结论2:在直角三角形ABO中,面积S=结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB中,面积为S=|k|类型之一k与三角形的面积k〔k>0〕经过直角三角形OAB斜边OB的中点D,与直※1、如图,双曲线y=x角边AB相交于点C.假设△OBC的面积为6,那么k=______.最正确答案过D点作DE⊥x轴,垂足为E,1k,由双曲线上点的性质,得S△AOC=S△DOE=2∵DE⊥x轴,AB⊥x轴,∴DE∥AB,∴△OAB∽△OED,又∵OB=2OD,∴S△OAB=4S△DOE=2k,由S△OAB-S△OAC=S△OBC,得2k-21k=6,解得:k=4.故答案为:4.2、如图1-ZT-1,分别过反比例函数y=x2018(x>0)的图象上任意两点A、B作x 轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S 1、S2,,比拟它们的大小,可得A.S1>S2B.S1=S2C.S1<S2D.S1、S2大小不确定。

反比例函数中的面积问题

反比例函数中的面积问题
而 由四边形OEBF的面积为2得
解得 k=2 评注:第①小题中由图形所在象限可确定k>0,应用结论可直接求k值。 第②小题首先应用三角形面积的计算方法分析得出四个三角形面积相 等,列出含k的方程求k值。
例2(2008贵州省黔南州)如图,矩形ABOD的顶点A是函数 与函数 在第二象限的交点, 轴于B, 轴于D,且矩形ABOD的பைடு நூலகம்积为3. (1)求两函数的解析式. (2)求两函数的交点A、C的坐标.
图象上,∴
解得x=1从而所求面积为π 评注:对于较复杂的图形面积计算问题,先应观察图形的特征,若具有 对称特征,则应用对称关系可以简化解题过程。
四、 讨论与面积有关的综合问题 例8.(2008山东省)(1)探究新知:
如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由. (2)结论应用:
与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC的面积.
.解:(1)∵点A(-2,4)在反比例函数图象上 ∴k=-8 ∴反比例函数解析式为y=
(2)∵B点的横坐标为-4, ∴纵坐标为y=2 ∴B(-4,2) ∵点A(-2,4)、 点B(-4,2)在直线y=kx+b上 ∴ 4=-2k+b 且2=-4k+b 解得 k=1 b=6 ∴直线AB为y=x+6 与x轴的交点坐标C(-6,0)
(3)若点P是y轴上一动点,且 , 求点P的坐标.
解:(1)由图象知k<0,由结论及已知条件得 -k=3 ∴
∴反比例函数的解析式为 ,一次函数的解析式为 (2)由 ,解得 ,
∴点A、C的坐标分别为(
,3),(3, ) (3)设点P的坐标为(0,m) 直线 与y轴的交点坐标为M(0,2) ∵

反比例函数背景下的应用题(面积问题)

反比例函数背景下的应用题(面积问题)

反比例函数背景下的应用题(面积问题)
反比例函数背景下与面积相关的问题往往围绕着以下三个结论展开:①反比例函数上任意一点与坐标轴围成的矩形面积;②反比例函数上任意一点与坐标轴围成的三角形面积;③反比例函数上任意两点与原点围成的三角形面积.
解法分析:对于平面直角坐标系中三角形面积的求法问题有如下的解法策略:①当三角形的一边在坐标轴上或平行于坐标轴上时,可以直接求三角形面积;②当三角形中的任意一边不在坐标轴或不平行于坐标轴时,利用割补法(补成/分割成规则图形)面积进行求解。

本题中的△ABC的一边AC//x轴,则可以直接求解,需要注意的是当用点表示线段长度时,要加上绝对值。

解法分析:本题可以直接求三角形的面积,△MPQ的底PQ是可求的定值,而高是点M和点P横坐标差的绝对值,要注意M点可能在第二象限,也可能在第四象限,加上绝对值后就可以避免漏解了。

解法分析:本题首先需要联立正比例函数和反比例函数的解析式求出A、B两点的坐标,然后过A、B两点作x轴垂线构造梯形,求梯形面积即可。

解法分析:本题可以用代数法或几何法解决。

综合利用直角三角形的性质,三角形的面积比解决。

同时还要能够利用点的坐标表示线段的长度,灵活运用。

解法分析:本题主要考察了反比例函数上的点与坐标轴围成的矩形面积。

对于第2、3问,需要分类讨论,即P在B左侧或P在B右侧,进行计算。

解法分析:本题是反比例函数和正方形背景下的问题。

△BCE的面积可以直接求解,主要表示出E的坐标,再求出B'E的长度,即可求出△BCE的面积。

反比例函数与图形面积题

反比例函数与图形面积题
1.如图1,乙知反比例函数 的图象与一次函数 的图象相交于点P和Q,并且点P的纵坐标为6。
①求这个一次函数的解析式;
②求 的面积
图1
2.如图2,已知一次函数 的图象与x轴、y轴分别交于A、B两点,且与反比例函数 的图象在第一象限交于点C,CD垂直于x轴,垂足为D,
①求点A、B、D的坐标;
②求这一次函数和反比例函数的解析式;
③求
图2
(1)一次函数的解析式
(2) 的面积
图10
三.反比例函数与平行四边形面积
例9.如图(11),正比例函数 与反比例函数 的图象相交于A、C两点,过A点作x轴的垂线,交x轴于B,过C作x轴的垂线,交x轴于D,则四边形ABCD的面积为____________。
图11
例10.如图(12),A、C是双曲线上关于原点O对称的任意两点,AB垂直y轴于B,CD垂直y轴于D,且四边形ABCD的面积为6,则这个函数的解析式为________。
(1)求B点坐标和k的值;
(2)当 时,求点P的坐标;
图3
二.反比例函数与三角形面积
1.反比例函数与直角三角形面积
例3.如图(4),点A在反比例函数 的图象上,AB垂直于x轴,若 ,那么这个反比例函数的解析式为_____________。
图4
例4.如图(6),过反比例函数 的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连结OA、OB。设AC与OB的交点为E, 与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()
反比例函数与图形面积
一.反比例函数与矩形面积
例1.如图(1),P是反比例函数 的图象上一点,过P点分别向x轴、y轴作垂线,所得到的图中阴影部分的面积为6,则这个反比例函数的解析式为()

专题:反比例函数中的面积问题

专题:反比例函数中的面积问题

微专题 反比例函数中的面积问题
模型一 一点一垂线
反比例函数图象上一点与坐标轴垂线、另一坐标轴上一点(含原点)围成的三 角形面积= |k|.
1
S△ABC= 2 |k|
S△ABC=12 |k|
1
S△AOC= 2 |k|
1. 如图,点A在反比例函数y=- 4 的图象上,AM⊥y轴于点M,点P是x轴上的一
方法一:S△EOF=S△EOD-S△FOD. 方法二:作EM⊥x轴于点M,交OF于点B,FA⊥x轴于点A,则S△OEB=S四边形 BMAF(划归到模型一),则S△EOF=S直角梯形EMAF.
类型一 两交点在反比例函数同一支上
Байду номын сангаас
方法一:当
BE CE

BFFA=m时,则S四边形OFBE=m|k|.
方法二:作EM⊥x轴于点M,
A. 1
B. m-1
C. 2
D. m
第3题图
模型四 两点两垂线
反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形 面积=2|k|.
SABC 2 | k |
易得四边形ANBM是平行四边形, ∴S四边形ANBM=AM·NM=AM·2OM=2|k|
模型四 两点两垂线 反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形
= =
1
2
1
OM·AM+12 OM·BC |k|+1 |k|=|k|
22
S△ABM=S△ADM+S△MDB

1 2
MD·|yB-yA|
S△ABM=S△BMO+S△AMO

1 2
MO·|xB-xA|
3. 如图,直线y=mx与双曲线y=k (k≠0)交于点A,B,过点A作

反比例函数常见的面积类型

反比例函数常见的面积类型

反比例函数常见的面积类型
反比例函数是数学中的一种基本函数类型。

在实际应用中,反比例函数常常涉及到面积问题。

下面列举一些常见的反比例函数面积类型。

1. 长方形面积
如果一个长方形的宽是固定的,而长度是随着宽的增加而减小的,那么它的面积就可以用反比例函数来表示。

设长方形宽为x,长度为y,则长方形面积为S=xy,即S与x成反比例关系,S=k/x。

其中,k 为比例常数。

2. 圆形面积
圆的半径和面积之间也存在反比例关系。

设圆的半径为r,圆的面积为S,则圆的面积可以表示为S=k/r^2。

其中,k为比例常数。

3. 梯形面积
如果一个梯形的高是固定的,而底边长度是随着高的增加而减小的,那么它的面积也可以用反比例函数来表示。

设梯形的高为h,上底为a,下底为b,则梯形面积为S=(a+b)h/2,即S与h成反比例关系,S=k/h。

其中,k为比例常数。

4. 等腰三角形面积
如果一个等腰三角形的底边长度是固定的,而高是随着底边长度增加而减小的,那么它的面积也可以用反比例函数来表示。

设等腰三角形的底边长度为b,高为h,则等腰三角形面积为S=bh/2,即S与b成反比例关系,S=k/b。

其中,k为比例常数。

综上所述,反比例函数在实际应用中常常涉及到面积问题,这些常见的反比例函数面积类型包括长方形面积、圆形面积、梯形面积和等腰三角形面积。

人教版反比例函数图象中的面积问题

人教版反比例函数图象中的面积问题
则 S矩O 形AP B OAAP |m|•|n||k|(如 图)所 .
思考
图中的这些矩形面积相等吗?
结论:
y
过双曲线上任意一点作x轴、 y轴的垂线,所得矩形的面 积S为定值,即S=|k|.
y k x
O
x
如图,已知点P(m,n)在函数y= k (k>0)
x
的图像上,PB⊥y轴,垂足为B,O’A在x轴
反比例函数图象中的面积问题
y
y
0
x
0
x
探究1 反比例函数与矩形的面积
k 已的象足知图(上 分2点像)点过 的 别上PPP 一是((分 m,点点m,那n,A,过)、么别 在n点x)Bm函轴 P,是分n,数作 则y反=别轴 yS比y向2矩=形例xO的 轴函kAxP、B数.,=垂 y_垂 轴y_|_作k_kx|_足 垂(线 _k_≠线_0.),分 垂图A,B,别
B P(m,n)
(或y轴)的垂线,所得直 O’ O
x
角三角形的面积S为定值,
即S=
1 2
|k|
.
探究3
任意正比例函数与反比例函数 图象交于A、B两点,那么
y k (k 0) x
△ABC的面积为多少呢?
y
A
C
D
图7
x
B
反比例函数与正比例函数围成的图形面积
变式:任意正比例函数与反比例函数 y= k 图像相交,
则a-b的值是多少?(中考题)
⊿AOB的面积。
图中面积相等的图形有哪些?
y
y k x
O
x
学会寻找图像中的基本构图、寻找单位面积 矩形或三角形、寻找变化中的不变量
拓展.如图,已知点A,C在反比例函数 y 的图象上,点B,D在反比例函数 y b(b

反比例函数图象的面积问题

反比例函数图象的面积问题
例1:如图,在坐标平面上有两点A(2,3)和B(6,1),求△AOB的面 积;
下列选项中,阴影部分面积最小的是(

A.
B.
C.
D.
图中面积相等的图形有哪些?
如果B是RE的中点,那么哪些三角形面 积相等?
k 如图,反比例函数y= (x>0)的图象经过 x
矩形OABC对角线的交点M,分别与AB、BC 相交于点D、E.若四边形ODBE的面积为6, 则k的值为( )
k 如图,A,C是函数y= (k≠0)的图象 x
上关于原点对称的任意两点,AB,CD垂直 于x轴,垂足分别为B,D,那么四边形 ABCD的面积S=_______
2 如图,正比例函数 y kx( k 0)与反比例函数 y x 相交于A、B两点.过 A作x轴的垂线、过B 作y轴的 垂线,垂足分别为D、C,设四边形ABCD的面积为S, y 则( ) B
反比例函数图象中的面积问题
面积不变性
任意一组变量的乘积是一个定值,即xy=k
k 反比例函数 y x
S长方形=︳x y︱ =︳k︱
三角形的面积
SAOP SBOP
k 2
练习1:用含k的代数式表示下列阴影部分的面积
k
2k
k
2k
练习
1
练习
方法1:k的几何意义 方法2:坐标
练习
三角形ABC
方法1:k的几何意义 方法2:坐标
练习
方法1:k的几何意义 方法2:坐标
练习
ABC
方法1:k的几何意义 方法2:坐标
练习1:用含k的代数式表示下列阴影部分的面积
4k
2k
4k
2k
如图,点A在双曲线y=
4 上,点B在双曲线y= x

9.2 反比例函数图象中的面积问题

9.2 反比例函数图象中的面积问题
反比例函数图象中的面积问题
图象上的面积1

y
过P分别作x轴, y轴的垂线, 垂足分别为A, B,
B
P(m,n) A
o
x
S矩形OAPB= k
图象上的面积2

k 设P(m, n)是双曲线y (k 0)上任意一点, x 过P作x轴的垂线, 垂足为A, 则
y P(m,n) o A x y
A
o
P(m,n)
,它们的横坐标依次为1,2,3,4.分别过这些点作
x 轴与y
轴的垂线,图中所构成的阴影部分的面积从左到右依次为
S1,S2,S3 ,则
y
3 S1 S 2 S3 2 .
思考:1.你能求出S2和S3的值吗? 1 1 3 6 2.S1呢? 1
O
2 y (x>0) x
P1 P2
P3 3
P4 4 x
k (2) 在双曲线 y (X>0) 上 x
y
O
x
3 (3)如图3,点A、B是双曲线y 上的点, x 分别经过A、B两点向x轴、y轴作垂线段, 若S阴影 1,则S1 S 2
y
A
S1 S2
O
图3
B
x
2 (x>0) 的图象上,有点 P (4) 如图,在反比例函数 y x 1,P 2,P 3,P 4
如图,矩形OABC的两边在坐标轴上,且与反比例
函数
的图像交于点E、F,其中点E、
F分别是BC、AB的中点,若四边形OFBE的面积
S四边形 OFBE 2 ,
则k的值_______
y
C
E
B F
O
A
x
变式一

反比例函数求面积

反比例函数求面积

反比例函数求面积反比例函数是数学中一种常见的函数形式,其表达式为y =k/x,其中k为常数。

反比例函数具有一定的特点,其中最常见的应用就是求解面积相关问题。

在几何学中,很多问题可以通过反比例函数来求解面积,以下将介绍几个常见的例子。

1. 矩形的面积:可以将矩形的长记为x,宽记为y,则矩形的面积为S = xy。

如果已知矩形的面积S和宽y,可以通过反比例函数求解矩形的长x。

我们知道xy = S,对上式两边同时取倒数,得到yx = 1/S,可以看到yx符合反比例函数的形式,因此可以通过反比例函数求解矩形的长。

2. 圆的面积:圆的面积公式为S = πr²,其中r为圆的半径。

如果已知圆的面积S,可以通过反比例函数求解圆的半径r。

我们知道S = πr²,对这个式子两边同时取倒数,得到1/S = 1/(πr²),可以看到1/S符合反比例函数的形式,因此可以通过反比例函数求解圆的半径。

3. 三角形的面积:三角形的面积公式为S = 1/2bh,其中b为底边的长度,h为高的长度。

如果已知三角形的面积S和底边长度b,可以通过反比例函数求解高h。

我们知道S = 1/2bh,对这个式子两边同时取倒数,得到1/S = 2/bh,可以看到1/S符合反比例函数的形式,因此可以通过反比例函数求解三角形的高。

在实际问题中,反比例函数也有着广泛的应用。

例如,汽车行驶的时间和速度之间就存在着反比例关系。

假设一辆汽车行驶的距离为d,速度为v,行驶的时间为t。

根据定义,速度等于距离除以时间,即v = d/t。

如果我们已知汽车行驶的距离d和行驶的时间t,可以通过反比例函数求解汽车的速度v。

在数学教育中,反比例函数也是一个重要的概念,它可以帮助学生理解函数的性质和图像的变化。

学生可以通过绘制函数图像、计算函数的值等方式来探究反比例函数的特点,并且可以通过实际应用问题来加深对反比例函数的理解。

综上所述,反比例函数是求解面积问题常用的数学工具之一。

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题万能解题模型(一):反比例函数中的面积问题类型1:单支双曲线上一点一垂直形成的三角形的面积设单支双曲线方程为 $y=\frac{k}{x}$,点$A(x_1,y_1)$ 为单支双曲线上的一点,点 $P(x_1,0)$ 为$A$ 点向 $x$ 轴作垂线段的底部交点,则 $\triangle AOP$ 的面积为 $S=\frac{1}{2}x_1y_1$,同时 $\triangle ABC$ 的面积为 $S=\frac{1}{2}x_1\cdot\frac{k}{x_1}=\frac{1}{2}k$,因此$\triangle AOP$ 和 $\triangle ABC$ 面积的比值为$\frac{S_{\triangle AOP}}{S_{\triangleABC}}=\frac{\frac{1}{2}x_1y_1}{\frac{1}{2}k}=\frac{y_1}{k} $,即 $S_{\triangle AOP}=|k|\cdot S_{\triangle ABC}$。

类型2:单支双曲线上一点两垂直形成的矩形面积设单支双曲线方程为 $y=\frac{k}{x}$,点$P(x_1,y_1)$ 为单支双曲线上的一点,$AC$ 和 $DE$ 分别为$P$ 点向 $x$ 轴和 $y$ 轴作垂线段的线段,$B$ 点为 $AC$ 和$DE$ 的交点,则四边形 $PMON$ 的面积为 $S=|x_1y_1|$,同时四边形 $ACDE$ 的面积为$S=\frac{1}{2}|x_1|\cdot|y_1|=\frac{1}{2}S_{\square PMON}$,因此四边形 $PMON$ 和四边形 $ACDE$ 面积的比值为$\frac{S_{\square PMON}}{S_{\squareACDE}}=\frac{2S}{|x_1|\cdot|y_1|}=2|k|$,即 $S_{\square PMON}=|k|\cdot S_{\square ACDE}$。

与反比例函数的图象有关的面积问题

与反比例函数的图象有关的面积问题

1
解析 由反比例函数的图象关于原点对称的性质
知 : 图中两个阴影部分 面积的和 恰好 是一个 圆的面 积 ,
而已知圆与 x轴相切 , A点纵坐标为 2,即 圆的半径为 2, 所求面积 = 22π = 4π.
例 3 ( 07年荆州 中考 ) 如图 3,边 长为 4 的正 方形
AB CD 的对称中心是坐标原点 O, AB ∥x轴 , BC∥y轴 , 反
足为 C , 过 点 B 作 y 轴 的 垂 线 , 垂 足 为 D. 记 △AOC , △BOD 的面积分别为 S1 和 S2 ,则 S1 和 S2 的大小关系怎 样?
解析 在如图 1 中 ,设点 A ( x1 , y1 ) , B ( x2 , y2 ) ,则
S1
=
1 2
x1 y1 , S2
=
Rt△AOD中 , 因为 ∠AOD = 30°,所 以 , AO = 2 y,根 据勾 股
定理得 :
AO2 = OD2 + AD2 ,即 4 y2 = x2 + y2 ,即 x2 = 3 y2

由点
A ( x,
y) 在双曲线
y
=
3 x;
( x > 0 ) 上知 : xy =
3,
于是 x2 y2 =3,
8, 选 D.
图 1 图 2
例 2 (改编题 ) 已知 ,如图 2,正比例函数 y = k1 x与
反比例函数
y=
k2 的图 象相交于 x
A, B 两点
( k1
> 0, k2
>
0) , A点坐标为 ( 4, 2) ,分别以 A、B 为圆心 的圆与 x轴相
切 ,则图中两个阴影部分面积的和为

反比例函数中的面积问题专题课程教案

反比例函数中的面积问题专题课程教案

反比例函数中的面积问题专题课程教案一、教学目标1. 让学生理解反比例函数的定义及其图像特征。

2. 培养学生运用反比例函数解决实际问题的能力。

3. 引导学生掌握反比例函数中的面积计算方法。

二、教学内容1. 反比例函数的定义及图像特征2. 反比例函数在实际问题中的应用3. 反比例函数中的面积计算方法4. 反比例函数综合练习三、教学重点与难点1. 重点:反比例函数的定义,反比例函数的图像特征,反比例函数中的面积计算方法。

2. 难点:反比例函数在实际问题中的应用,反比例函数中的面积计算方法的灵活运用。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究反比例函数的性质及其应用。

2. 利用多媒体课件辅助教学,清晰展示反比例函数的图像,增强学生的直观感受。

3. 注重个体差异,鼓励学生提问,及时解答学生心中的疑惑。

4. 组织小组讨论,培养学生的合作意识,提高解决问题的能力。

五、教学过程1. 导入:以实际问题引入反比例函数的概念,激发学生的学习兴趣。

2. 讲解:讲解反比例函数的定义,引导学生绘制反比例函数的图像,分析其图像特征。

3. 实例分析:选取生活中的实例,让学生运用反比例函数解决问题,体会反比例函数的应用价值。

4. 面积计算:讲解反比例函数中的面积计算方法,引导学生进行相关练习。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评价1. 采用课堂问答、练习题和小组讨论等方式,及时了解学生对反比例函数的理解程度和应用能力。

2. 关注学生在解决问题时的思维过程,鼓励学生发表自己的观点,提高学生的逻辑思维能力。

3. 定期进行课堂小测,了解学生对反比例函数知识的掌握情况,为下一步教学提供依据。

七、教学拓展1. 引导学生探究反比例函数与其他函数的联系与区别,提高学生的整合能力。

2. 介绍反比例函数在实际工程、物理等领域的应用,拓宽学生的知识视野。

3. 组织学生进行反比例函数的课题研究,培养学生的研究意识和创新能力。

反比例函数面积问题

反比例函数面积问题

反比例函数面积问题反比例函数是一种特殊的函数形式,具有以下的一般形式: y =k/x (其中k为常数,x不等于0)。

反比例函数经常在数学和科学领域中出现,特别是在描述多种关系和量之间的相互影响时。

在这篇文章中,我们将探讨反比例函数面积问题。

面积问题是在求解几何形体的面积时经常遇到的一类问题。

反比例函数面积问题就是基于反比例函数的特性来解决与面积相关的问题。

让我们从一个具体的实例开始,以更好地理解反比例函数在面积问题中的应用。

假设有一个矩形,其长度为x,宽度为y。

我们知道,矩形的面积可以通过计算长度乘以宽度来得到。

我们将根据反比例函数的定义来描述此问题。

根据反比例函数的定义,我们有y = k/x。

将x和y分别替换为矩形的长度和宽度,我们得到y = k/x = l*w (其中l表示矩形的长度,w表示矩形的宽度)。

我们可以看到,在这个例子中,矩形的面积与其长度和宽度之间存在反比例关系。

当长度增加时,宽度会减小,以保持面积不变;反之亦然。

现在让我们来尝试解决一个具体的反比例函数面积问题。

问题:假设有一个矩形,其长度为8 cm,面积为24 cm²。

当长度增加到10 cm时,矩形的面积是多少?解法:我们可以使用反比例函数来解决这个问题。

根据反比例函数的定义,我们有y = k/x。

这里,y表示矩形的面积,x表示矩形的长度。

根据题目中给出的条件,我们可以将面积和长度表示为y = 24/x。

我们将已知的长度和面积带入公式,得到24 = 8/x。

现在我们可以解这个方程,求得反比例函数的常数k的值。

通过求解方程,我们得到k = 24*8 = 192。

现在我们可以使用得到的常数k来求解问题中给出的具体情况。

根据反比例函数的形式y = k/x,我们有y = 192/10 = 19.2 cm²。

所以,当长度增加到10 cm时,矩形的面积为19.2 cm²。

通过这个具体的例子,我们可以看到反比例函数如何在解决面积问题中发挥作用。

反比例函数面积问题

反比例函数面积问题

反比例函数面积问题
反比例函数面积问题通常是指与反比例函数相关的图形面积的计算
问题。

例如,给定反比例函数y=k/x的图像与坐标轴所围成的区域,要求该区域的面积。

解决这类问题通常需要应用积分学知识,因为反比例函数的图像通常是一个双曲线,与坐标轴围成的区域是一个不规则图形。

通过积分,我们可以求出这个不规则图形的面积。

具体地,如果要求反比例函数y=k/x在第一象限内与x轴、y轴所围成的区域面积,可以先求出该函数在第一象限内的图像与x轴之间的面积,然后再乘以2(因为反比例函数在第一、三象限内是对称的)。

这个面积可以通过定积分来计算,积分区间是从0到正无穷大,被积函数是y=k/x。

需要注意的是,由于反比例函数的图像在x轴和y轴上都趋于无穷大,
因此所求得的面积也是无穷大的。

但是,在某些特定情况下,例如给定一个特定的矩形区域,我们可以通过计算该矩形区域内反比例函数图像的面积来得到一个有限的数值。

总之,反比例函数面积问题需要根据具体情况进行具体分析,通常需要应用积分学知识和几何知识来解决。

以上是对于反比例函数面积问题5的回答,希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档