蛋白质的一级结构与功能的关系蛋白质的空间结构与功能的关系
蛋白质的一二三四级结构与功能的关系
蛋白质的一二三四级结构与功能的关系【最新版】目录一、蛋白质的结构层次二、蛋白质的一级结构与功能的关系三、蛋白质的二级结构与功能的关系四、蛋白质的三级结构与功能的关系五、蛋白质的四级结构与功能的关系正文蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。
没有蛋白质就没有生命。
氨基酸是蛋白质的基本组成单位。
它是与生命及与各种形式的生命活动紧密联系在一起的物质。
机体中的每一个细胞和所有重要组成部分都有蛋白质参与。
蛋白质占人体重量的 18%,最重要的还是其与生命现象有关。
蛋白质的结构层次可以从一级结构、二级结构、三级结构和四级结构来描述。
蛋白质一级结构又称化学结构(primary structure),是指氨基酸在肽键中的排列顺序和二硫键的位置,肽链中氨基酸间以肽键为连接键。
蛋白质的一级结构是最基本的结构,它决定了蛋白质的二级结构和三级结构,其三维结构所需的全部信息都贮存于氨基酸的顺序之中。
二级结构(secondary structure)是指蛋白质分子中肽链的局部折叠和构象,它由氢键和其他非共价作用力所决定。
蛋白质的三级结构(tertiary structure)是指整个蛋白质分子的空间构象,它由肽链中所有氨基酸残基的相对位置和空间取向所决定。
蛋白质的四级结构(quaternary structure)是指由多个多肽链组成的蛋白质分子的立体结构,它由各多肽链之间的相互作用所决定。
蛋白质的一级结构与功能的关系非常密切。
一级结构相似的蛋白质,其功能也相似,因为功能不同的蛋白质总是有不同的序列。
例如,哺乳动物胰岛素分子结构都是由 a 链和 b 链构成,且二硫键配对和一级结构均相似,它们都执行相同的调节血糖代谢等功能。
蛋白质的二级结构与功能的关系也非常重要。
二级结构决定了蛋白质的空间构象和功能。
蛋白质分子中的氢键和其他非共价作用力决定了肽链的局部折叠和构象,从而影响了蛋白质的功能。
蛋白质结构与功能的关系
生物名称
氨基酸差异数
生物名称
氨基酸差异数
黑猩猩 恒河猴 兔 袋鼠 鲸 牛羊猪 狗
0 1 9 10 10 10 11
鸡、火鸡 响尾蛇 乌龟 金枪鱼 狗鱼 蚕蛾 小麦
13 14 15 21 23 31 43
骡 马
11 12
面包酵母
红色面包霉
45 48
结论二:一级结构相似的蛋白质功能相似
例一
MSH 促黑激素
α-螺旋 正常
PrPsc β-折叠
疯牛病
应用前景
蛋白质工程 通过改变蛋白质构象,获得新功能蛋白 质。
讨论
血友病 血友病是一组遗传性凝血因子缺乏引起 的出血性疾病。 血友病是凝血酶一级结构改变造成的?
The end! Thank you!
Mb 和 Hb结构相似性
血红蛋白(Hb)
血红蛋白具有4个亚基 组成的四级结构,每 个亚基中间有一个疏 水袋形空穴,可结合 一个血红素并携带1分 子氧, 因此1分子Hb 共结合4分子氧。 Hb各亚基的三级结构 与Mb极为相似。 成人红细胞中Hb主要 是由两条α 肽链和两 条β 肽链组成。
血红素 辅基
3、空间结构破坏对功能的影响
例一
蛋白质的变性与复性 天然蛋白质受物理或化学因素的影响,其 共价键不变,非共价键被破坏,分子内部 原有的有序紧密的结构变为无序而松散, 致使其原有性质发生部分或全部丧失,称 为蛋白质的变性。 变性后蛋白质的特性:生物活性丧失、理 化性质改变、一些侧链基团暴露、生物化 学性质改变。
血红蛋白(Hb)的功能
血红蛋白是血细胞携带和分配氧的蛋白 质。
在从肺部经心脏到达外周组织的动脉血中 Hb约为96%氧饱和度。在回到心脏的静脉 血中Hb仅为64%氧饱和度。因此每100ml血 经过组织约释放Hb携带的1/3氧或相当于大 气压和体温下6.5ml氧气。
蛋白质的一级结构与功能的关系
蛋白质的一级结构与功能的关系蛋白质的一级结构是指蛋白质分子中从N端到C端的氨基酸序列。
蛋白质的一级结构对其功能具有重要影响,因为不同的氨基酸序列可以形成不同的高级结构,进而赋予蛋白质不同的生物学功能。
1.氨基酸序列与蛋白质功能蛋白质的氨基酸序列是决定其一级结构和高级结构的基础,因此也是影响其功能的主要因素。
例如,一些具有催化活性的蛋白质,如酶,具有特定的氨基酸序列,这些序列形成了其活性位点。
这些特定的氨基酸序列可以与底物结合并催化化学反应。
另外,一些蛋白质的功能依赖于其与其他蛋白质的相互作用。
这些相互作用通常是通过蛋白质表面的特定氨基酸序列实现的。
这些序列可以与靶蛋白的互补序列相互作用,从而调节蛋白质的活性或定位。
2.蛋白质翻译后修饰与功能除了氨基酸序列外,蛋白质的功能还可能受到其翻译后修饰的影响。
这些修饰包括磷酸化、糖基化、甲基化、乙酰化等,它们可以改变蛋白质的结构和功能。
例如,磷酸化可以调节蛋白质的电荷和构象,从而影响其与配体的相互作用。
糖基化可以增加蛋白质的分子量,并参与细胞识别和信号转导。
3.蛋白质相互作用与网络除了单个蛋白质的功能外,蛋白质之间还可以相互作用形成复合物或网络。
这些相互作用通常是通过蛋白质表面上的特定氨基酸序列实现的。
例如,一些蛋白质可以形成二聚体或更复杂的寡聚体,这些复合物具有与单个蛋白质不同的生物学功能。
另外,蛋白质也可以与其他生物分子相互作用,如DNA、RNA和脂质,从而调节基因表达、细胞信号转导和细胞代谢等生物学过程。
这些相互作用通常是由蛋白质表面的特定氨基酸序列介导的。
4.结构域与功能蛋白质的一级结构还可以决定其不同结构域的相互作用和功能。
一些蛋白质可以包含多个结构域,每个结构域都具有特定的生物学功能。
例如,一些酶可以包含催化结构域和调节结构域。
催化结构域可以催化化学反应,而调节结构域可以调节酶的活性或与其他蛋白质相互作用。
此外,一些蛋白质的结构域可以形成复合物或与其他生物分子相互作用。
蛋白质的结构与功能的关系
蛋白质的结构与功能的关系
答:蛋白质的结构与功能的关系是:
1.蛋白质的结构决定了其功能。
蛋白质的特定构象和结构决定了其特定的生物学功能。
例如,蛋白质的催化作用、运输作用、免疫作用等,都是由其特定的结构决定的。
2.蛋白质的一级结构决定其高级结构,因此,最终决定了蛋白质的功能。
一级结构相
似的蛋白质具有相似的功能。
3.蛋白质的进化。
类似物指具有相同的功能,但起源于不同的祖先基因的蛋白质,是
基因趋同进化的产物。
同源蛋白质的氨基酸序列具有明显的相似性,这种相似性称为序列同源。
蛋白质一级结构,空间结构与功能的关系
蛋白质一级结构,空间结构与功能的关系
蛋白质是生物体中最重要的分子,它们参与细胞的各种生理过程,如细胞代谢、信号传导、膜蛋白等。
蛋白质的一级结构、空间结构和功能之间存在着密切的联系。
蛋白质的一级结构是指蛋白质的分子结构,它是由氨基酸残基组成的链状分子,这些氨基
酸残基之间通过键的形成而组成。
蛋白质的一级结构决定了蛋白质的空间结构,也决定了
蛋白质的功能。
蛋白质的空间结构是指蛋白质的三维结构,它是由蛋白质的一级结构经过折叠而形成的。
蛋白质的空间结构决定了蛋白质的功能,因为蛋白质的活性中心是由空间结构决定的,而
蛋白质的活性中心是蛋白质的功能的核心。
蛋白质的功能是指蛋白质在生物体中所发挥的作用,它可以参与细胞的各种生理过程,如细胞代谢、信号传导、膜蛋白等。
蛋白质的功能受到蛋白质的一级结构和空间结构的影响,因为蛋白质的活性中心是由一级结构和空间结构决定的。
因此,蛋白质的一级结构、空间结构和功能之间存在着密切的联系。
蛋白质的一级结构决
定了蛋白质的空间结构,而蛋白质的空间结构又决定了蛋白质的功能。
因此,蛋白质的一级结构、空间结构和功能之间的关系是十分重要的,它们之间的关系是蛋白质的功能的核心。
蛋白质的一级结构与功能的关系
蛋白质的一级结构与功能的关系
1. 由较短肽链组成的蛋白质一级 结构,其结构不同,生物功能也 不同. 2. 由较长肽链组成的蛋白质一级 结构中,其中“关键”部分结构 相同,其功能也相同;“关键” 部分改变,其功能也随之改变。
蛋白质空间橡象与功能活性的关系 < 一>
白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的 空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。 蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋 白质在复性后,构象复原,活性即能恢复。 在生物体内,当某种物质特异地与蛋白质分子的某个部位结合,触 发该蛋白质的构象发生一定变化,从而导致其功能活性的变化,这种现 象称为蛋白质的别构效应(allostery)。
关于蛋白质的一级结构
蛋白质的空间结构
蛋白质的结构和功能
催化功能 调节功能 保护和支持功能 运输功能 储存和营养功能 收缩和运动功能 防御功能 识别功能 信息传递功能 基因表达调控功能 凝血功能 级键对于维系Hb分子空间构象 有重要作用,例如在四亚基间的8对 盐键(见前图—血红蛋白结构与亚基 间连接示意),它们的形成和断裂将 使整个分子的空间构象发生变化。
蛋白质的空间结构与功能的关系
蛋白质结构与功能的关系
肌红蛋白
结合氧
释放氧
血红蛋白
肌红蛋白与血红蛋白的带氧曲线 肌红蛋白的氧饱和曲线为距形双曲线,血氧饱和度为20%时仍能带氧,肌肉 缺氧时(氧饱和度为5%)大量释放氧,以供肌肉收缩需要;血红蛋白的氧饱和曲线
为S形曲线,表明血红蛋白四个亚基对氧的结合具有正协同效应。
N
F8 His
N
N
F8 His
N
I
18 角鲨
响尾蛇
软骨鱼类
七鳃鳗
蛾,天蛾
蜜蜂
9
16
苍蝇
昆虫类
16
8
1
蝗虫
7
13
真菌
5
植物
动物体细胞色素C一级结构的进化树
图中的数字表示该类动物与其祖先相比细胞色素C一级结构氨基酸残基的差异数
(四)一级结构与分子病
例镰刀状红细胞贫血
HbA β肽链
N-Val .his .leu .thr .pro .glu .glu ….C (146)
NH2
1
Gly
15
Tyr Gln
Leu
Leu
Ile
Ser
Glu
HOOC Thr 30
A链 Val 5 Cys Ile 10
Glu Gln Cys
Ser
Cys Thr
Asn Gln His Leu
Val 1 Phe
5
Cys
Gly
Ser
Asn
COOH
Tyr
20
Cys
Asn
Lys Pro Thr
Tyr
C、D、E、F、G、H),其辅基为血红素。
2
C
1
N
N
2
2-1蛋白质的一级结构与功能的关系
2-1蛋白质的一级结构与功能的关系一、蛋白质分子的一级结构多肽链是蛋白质分子的最基本结构形式。
氨基酸排列顺序是由遗传信息决定的,氨基酸的排列顺序是决定蛋白质空间结构的基础,而蛋白质的空间结构则是实现其生物学功能的基础。
1953年,英国生物化学家Fred Sanger报道了胰岛素的一级结构,这是世界上第一个被确定一级结构的蛋白质。
同年,Watson与Crick发现DNA的双螺旋结构。
生物化学由此迈向了一个更高层次——分子生物学时代。
图人胰岛素的一级结构蛋白质多肽链中氨基酸按一定排列顺序以肽键相连形成蛋白质的一级结构。
蛋白质的一级结构是其高级结构的基础。
蛋白质分子中的多肽链经折叠盘曲而具有一定的构象称为蛋白质的高级结构。
高级结构又可分为二级、三级和四级结构。
维持蛋白质高级结构的化学键主要是次级键,有氢键、离子键、疏水键、二硫键以及范德华引力。
二、蛋白质的一级结构与其构象及功能的关系蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和侧链R 基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。
一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的差别,而且在系统发生上进化位置相距愈近的差异愈小。
在蛋白质的一级结构中,参与功能活性部位的残基或处于特定构象关键部位的残基,即使在整个分子中发生一个残基的异常,那么该蛋白质的功能也会受到明显的影响。
被称之为“分子病”的镰刀状红细胞性贫血仅仅是574个氨基酸残基中,一个氨基酸残基即β亚基N端的第6号氨基酸残基发生了变异所造成的,这种变异来源于基因一场信息的突变。
正常红细胞镰刀状红细胞。
蛋白质结构与功能的关系
蛋白质多种多样的生物功能是以其化学组成和极其复杂的结构为基础的。
这不仅需要一定的结构还需要一定的空间构象。
蛋白质的空间构象取决于其一级结构和周围环境,因此研究一级结构与功能的关系是十分重要的。
一、蛋白质一级结构与功能的关系(一)种属差异对不同机体中表现同一功能的蛋白质的一级结构进行详细比较,发现种属差异十分明显。
例如比较各种哺乳动物、鸟类和鱼类等胰岛素的一级结构,发现它们都是由51个氨基酸组成的,其排列顺序大体相同但有细微差别。
不同种属的胰岛素其差异在A链小环的8、9、10和B链30位氨基酸残基。
说明这四个氨基酸残基对生物活性并不起决定作用。
起决定作用的是其一级结构中不变的部分。
有24个氨基酸始终不变,为不同种属所共有。
如两条链中的6个半胱氨酸残基的位置始终不变,说明不同种属的胰岛素分子中AB链之间有共同的连接方式,三对二硫键对维持高级结构起着重要作用。
其他一些不变的残基绝大多数是非极性氨基酸,对高级结构起着稳定作用。
对不同种属的细胞色素C的研究同样指出具有同种功能的蛋白质在结构上的相似性。
细胞色素C广泛存在于需氧生物细胞的线粒体中,是一种含血红素辅基的单链蛋白,由124个残基构成,在生物氧化反应中起重要作用。
对100个种属的细胞色素C的一级结构进行了分析,发现亲缘关系越近,其结构越相似。
人与黑猩猩、猴、狗、金枪鱼、飞蛾和酵母的细胞色素C比较,其不同的氨基酸残基数依次为0、1、10、21、31、44。
细胞色素C的氨基酸顺序分析资料已经用来核对各个物种之间的分类学关系,以及绘制进化树。
根据进化树不仅可以研究从单细胞到多细胞的生物进化过程,还可以粗略估计各种生物的分化时间。
(二)分子病蛋白质分子一级结构的改变有可能引起其生物功能的显著变化,甚至引起疾病。
这种现象称为分子病。
突出的例子是镰刀型贫血病。
这种病是由于病人血红蛋白β链第六位谷氨酸突变为缬氨酸,这个氨基酸位于分子表面,在缺氧时引起血红蛋白线性凝集,使红细胞容易破裂,发生溶血。
高级动物生物化学:第五章 蛋白质结构与功能的关系
4、蛋白质变性的利用与预防 、
蛋白质变性有许多实际应用。 蛋白质变性有许多实际应用。如在医疗上利用高温 高压消毒手术器械、用紫外线照射手术室、 高压消毒手术器械、用紫外线照射手术室、用70%酒精 酒精 消毒手术部位的皮肤。这些变性因素都可使细菌、 消毒手术部位的皮肤。这些变性因素都可使细菌、病毒 的蛋白质发生变性,从而失去致病作用,防止伤口感染; 的蛋白质发生变性,从而失去致病作用,防止伤口感染; 另外,在蛋白质、酶的分离纯化过程中, 另外,在蛋白质、酶的分离纯化过程中,为了防止蛋白 质变性,必须保持低温,防止强酸、强碱、重金属盐、 质变性,必须保持低温,防止强酸、强碱、重金属盐、 剧烈震荡等变性因素的影响。 剧烈震荡等变性因素的影响。
(四) 蛋白质变性与复性 1、蛋白质的变性与变性因素 、
在变性因素的作用下,蛋白质的空间结构被破坏, 在变性因素的作用下,蛋白质的空间结构被破坏, 从而引起蛋白质生物学功能的丧失和理化性质的改变, 从而引起蛋白质生物学功能的丧失和理化性质的改变,这 种现象被称为变性( )。变性后的蛋白质 种现象被称为变性(denaturation)。变性后的蛋白质 )。 称变性蛋白质;没有变性的称天然蛋白质。 称变性蛋白质;没有变性的称天然蛋白质。 引起天然蛋白质变性的因素很多。 引起天然蛋白质变性的因素很多。 变性的因素很多 物理因素包括热、紫外线、 射线 超声波、高压、 射线、 物理因素包括热、紫外线、X-射线、超声波、高压、 包括热 表面张力,以及剧烈的振荡、研磨、搅拌等; 表面张力,以及剧烈的振荡、研磨、搅拌等; 化学因素(又称变性剂)包括酸、 化学因素(又称变性剂)包括酸、碱、有机溶剂(如 变性剂 有机溶剂( 乙醇、丙酮等)、尿素、盐酸胍、重金属盐、三氯醋酸、 )、尿素 乙醇、丙酮等)、尿素、盐酸胍、重金属盐、三氯醋酸、 苦味酸、磷钨酸以及去污剂等。 苦味酸、磷钨酸以及去污剂等。 加入巯基试剂如β-巯基乙醇、二硫苏糖醇( 加入巯基试剂如 巯基乙醇、二硫苏糖醇( DTT)使二 巯基乙醇 ) 硫键还原。 硫键还原。
蛋白质空间结构
蛋白质结构与功能的关系――――蛋白质的一级结构一、蛋白质的空间结构决定了其生物学功能。
下面以肌红蛋白和血红蛋白为例,说明蛋白质空间结构和功能关系。
(一)蛋白质的一级结构决定其高级结构如核糖核酸酶含124个氨基酸残基,含4对二硫键,在尿素和还原剂β-巯基乙醇存在下松解为非折叠状态。
但去除尿素和β—巯基乙醇后,该有正确一级结构的肽链,可自动形成4对二硫键,盘曲成天然三级结构构象并恢复生物学功能。
(二)一级结构与功能的关系已有大量的实验结果证明,如果多肽或蛋白质一级结构相似,其折叠后的空间构象以及功能也相似。
几种氨基酸序列明显相似的蛋白质,彼此称为同源蛋白质。
可认为同源蛋白质来自同一祖先,它们的基因编码序列及蛋白质氨基酸组成有较大的保守性,构成蛋白质家族。
在进化过程中祖先蛋白的基因发生突变,蛋白质结构逐渐发生变异,同源蛋白质序列的相似性大小反映蛋白质之间的进化关系的近远。
比较广泛存在各种生物的某种蛋白质,如细胞色素C的一级结构,通过分析不同物种的细胞色素C一级结构间相似程度,可反映出该物种在进化中的位置。
二、蛋白质的空间结构与功能的关系蛋白质的空间结构决定了其生物学功能。
下面以肌红蛋白和血红蛋白为例,说明蛋白质空间结构和功能关系。
(一)肌红蛋白(Mb)和血红蛋白(Hb)的结构的相似性决定了功能的相似性肌红蛋白与血红蛋白都都能与氧结合,因为它们以血红素为辅基,并且在血红素周围以疏水性氨基酸残基为主,形成空穴,为铁原子与氧结合创造了结构环境。
(二)肌红蛋白(Mb)和血红蛋白(Hb)的结构的差异性决定了功能的不同肌红蛋白为单肽链蛋白质,而血红蛋白是由四个亚基组成的寡聚蛋白,这样的空间结构差异决定了它们之间的功能的各自特性。
肌红蛋白的主要功能是储存氧。
其三级结构折叠方式使辅基血红素对环境中O2的浓度改变非常敏感,当环境中的O2分压高时,Mb与O2结合能力极高,起到对O2的储存功能;当环境中的O2分压低时,Mb与O2结合能力大大降低,对外释放O2,为环境提供O2供机体所需。
蛋白质的一二三四级结构与功能的关系
蛋白质的一二三四级结构与功能的关系
蛋白质的结构与功能之间存在密切的关系。
蛋白质的一、二、三、四级结构决定了其功能和性质。
一级结构是指蛋白质的氨基酸序列,不同的氨基酸序列决定了不同的功能和结构。
例如,胰岛素的氨基酸序列决定了其能够调节血糖水平的功能。
二级结构是指蛋白质中氨基酸的局部空间排列方式。
常见的二级结构包括α-螺旋和β-折叠。
这些二级结构的形成由氢键作用力驱动,能够使蛋白质具有稳定的结构,从而实现其特定的功能。
例如,α-螺旋结构有助于蛋白质在细胞膜中的嵌入,而β-折叠结构则有助于蛋白质的稳定和形成复杂的三维结构。
三级结构是指蛋白质的整体空间结构,包括各个二级结构之间的空间排列和折叠方式。
蛋白质的三级结构决定了其特定的功能和催化活性。
例如,酶的活性部位通常位于蛋白质的特定空间位置,只有正确的三级结构才能发挥催化作用。
四级结构是指由多个蛋白质亚基组合而成的复合物的结构。
这些亚基之间通过非共价相互作用力(如电荷作用力、范德华力等)和共价键(如二硫键)相互连接,形成较大的功能单位。
四级结构决定了蛋白质复合物的特定功能和稳定性。
例如,血红蛋白就是一个四级结构蛋白质,它由四个亚单位组成,每个亚单位含有一个铁原子,起到运输氧气的功能。
综上所述,蛋白质的一、二、三、四级结构与其功能之间有着紧密的联系,不同结构的蛋白质具有不同的功能和性质。
蛋白质的一级结构和空间结构与功能的关系
蛋白质的一级结构和空间结构与功能的关系蛋白质,这个听起来高大上的词,其实在我们的生活中无处不在。
想象一下,咱们的身体就像一个精密的机器,蛋白质就是那把钥匙,打开了各种功能的大门。
一级结构,听起来复杂,但其实就像是蛋白质的“名字”,它由氨基酸拼成的小链子。
就好比你在微信上给朋友发消息,字母的顺序一变,意思就全变了,蛋白质也是如此。
不同的氨基酸顺序,造就了不同的蛋白质,进而影响它们的功能。
真是有趣吧!说到空间结构,嘿,那才是个大玩意儿。
想象一下你在拼乐高,拼得好好的,但最后没装对位置,整个作品就崩了。
蛋白质也是如此,它的三维结构可复杂了。
要是它的形状不对,功能就没法发挥。
举个例子,像酶这样的蛋白质,要和特定的底物结合,形状必须“对上眼”。
要是你非得用方块拼图去拼圆形的洞,哈哈,结果可想而知!所以,一级结构和空间结构的完美结合,就像是一场精心编排的舞蹈,缺一不可。
咱们的身体里,蛋白质不仅负责构建肌肉,还参与各种生化反应,真是个全能选手。
举个简单的例子,血红蛋白就是一个经典。
它的一级结构和空间结构决定了它能有效地携带氧气。
你想啊,要是血红蛋白的形状不对,那可就真的是“没气”了,生命的车也开不动了。
再比如,抗体,身体的“保镖”,形状决定了它能不能抓住入侵的细菌,真是个英雄角色。
有趣的是,蛋白质的功能不仅和它的结构有关,还有环境因素的影响。
温度、酸碱度,甚至盐浓度都可能让蛋白质“变脸”。
就像你在夏天和冬天穿的衣服不一样,蛋白质也需要在适合的环境中才能发挥最大的作用。
想象一下,你在热天穿着羽绒服,简直是自讨苦吃。
蛋白质也是一样,在不适宜的环境下,它可能变得不稳定,甚至失去功能。
咱们说到某些病症,很多时候也是因为蛋白质的结构出了问题。
像一些遗传病,就是因为基因变异导致蛋白质的一级结构发生改变。
结果就是,咱们的身体就像失去了指挥的乐队,乱得不可开交。
这可真让人感到无奈,想想看,咱们身体里的每一个小细胞都在忙碌,而蛋白质却可能因为小小的变化而功亏一篑。
举例说明蛋白质的一级结构和空间结构与功能的关系
举例说明蛋白质的一级结构和空间结构与功能的关系
一级结构是空间结构和功能的基础。
一级结构相似其功能也相似,例如不同哺乳动物的胰岛素一级结构相似,仅有个别氨基酸差异,故它们都具有胰岛素的生物学功能;一级结构不同,其功能也不同;一级结构发生改变,则蛋白质功能也发生改变,例如血红蛋白由两条α链和两条β链组成,正常人β链的第六位谷氨酸换成了缬氨酸,就导致分子病--镰刀状红细胞贫血的发生,患者红细胞带氧能力下降,易出血。
空间结构与功能的关系也很密切,空间结构改变,其理化性质与生物学活性也改变。
如核糖核酸酶变性或复性时,随之空间结构破坏或恢复,生理功能也丧失或恢复。
变构效应也说明空间结构改变,功能改变。
蛋白质一级结构与其功能的关系
蛋白质的一级结构与其功能有的关系
蛋白质的一级结构是指蛋白质分子中氨基酸的排列顺序,包括肽键的位置和连接方式。
蛋白质的一级结构与其功能有着密切的关系。
首先,蛋白质的一级结构是空间构象的基础。
如果一级结构未破坏,保持了氨基酸的排列顺序,就有可能恢复到原来的三级结构,从而保持其功能。
其次,蛋白质一级结构的不同会导致其生物学功能各异。
例如,加压素与缩宫素都是垂体后叶分泌的肽激素,它们分子中仅有两个氨基酸差异,但两者的生理功能却有根本的区别,加压素表现为抗利尿作用,而缩宫素表现为催产功能。
此外,蛋白质一级结构中的“关键”部分相同,其功能也相同。
例如,猪胰岛素和人胰岛素分子中虽有一个氨基酸不同,但其作用与人胰岛素相似。
然而,当蛋白质一级结构中的“关键”部分发生变化时,其生物活性也会改变。
例如,把生长抑制素(14肽)中的丝氨酸8改为D-丝氨酸8时,其相对活性会大大减少;而把生长抑制素(14肽)中的丝氨酸13改为D-丝氨酸13时,其相对活性就会提高。
因此,蛋白质的一级结构与其功能有着密切的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质的空间结构与功能的关系
❖ 血红蛋白(Hb)为例加以说明(Hb的结构如图所示)
❖
Hb由4条肽链组成:2α、2β,功能是运载O2;在去氧
❖
Hb与O2结合后,Hb的构象发生变化,这类变化称
为变构效应,即通过构象变化影响蛋白质的功能。Hb
称为变构蛋白(allosteric protein)。
❖
构型(configuration):L、D,改变时有共价键的
断裂。
构象(conformation):改变无须有共价键的断裂, 只是次级键断裂。
❖
一级结构是蛋白质生物学功能的基础,空间结构与
系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。
二、蛋白质的空间结构
❖ 蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空 间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅 测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生 物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红 蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等), 前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的 氨基酸排列顺序来解释。
❖
在生物体内,当某种物质特异地与蛋白质分子的某个部位结合,触
发该蛋白质的构象发生一定变化,从而导致其功能活性的变化,这种现
象称为蛋白质的别构效应(allostery)。
蛋白质空间橡象与功能活性的关系<二>
❖ 以血红蛋白(hemoglobin,简写Hb)为 例来说明构象与功能的关系。
血红蛋白(avi)是红细胞中所含有的一种结 合蛋白质,它的蛋白质部分称为珠蛋白非 蛋白质部分(辅基)称为血红素(见下图)。 Hb分子由四个亚基构成,每一亚基结合 一分子血红素。正常成人Hb分子的四个 亚基为两条α链,两条β链。
❖ Gly、Pro、Asp、Ser是β转角最强生成者,
❖
Ile、Val、Leu是β转角最强破坏者。
❖ 一级结构决定了三级结构:
❖
如牛胰核糖核酸酶
❖ 一级结构决定了四级结构:
❖
如血红蛋白的四级结构,见球状蛋白质。
.蛋白质的一级结构与其构象及功能的关系
❖ 蛋白质一级结构是空间结构的基础, 特定的空间构象主要是由蛋白质分子 中肽链和侧链R基团形成的次级键来 维持,可根据一级结构的特点自然折
蛋白质的一级结构与功能的关系
❖ 1. 由较短肽链组成的蛋白质一级 结构,其结构不同,生物功能也 不同.
❖ 2. 由较长肽链组成的蛋白质一级 结构中,其中“关键”部分结构 相同,其功能也相同;“关键” 部分改变,其功能也随之改变。
❖
蛋白质空间橡象与功能蛋白质特定的空间构象密切相关,蛋白质的 空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。 蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋 白质在复性后,构象复原,活性即能恢复。
❖
迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。
❖
蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物
学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质
的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关
功能的表现有关。
蛋白质结构预测
❖ 一种生物体的基因组规定了所有构成该生物体的蛋白质,基因规定了组成蛋白质的氨基酸 序列。虽然蛋白质由氨基酸的线性序列组成,但是,它们只有折叠成特定的空间构象才能 具有相应的活性和相应的生物学功能。了解蛋白质的空间结构不仅有利于认识蛋白质的功 能,也有利于认识蛋白质是如何执行其功能的。确定蛋白质的结构对于生物学研究是非常 重要的。目前,蛋白质序列数据库的数据积累的速度非常快,但是,已知结构的蛋白质相 对比较少。尽管蛋白质结构测定技术有了较为显著的进展,但是,通过实验方法确定蛋白 质结构的过程仍然非常复杂,代价较高。因此,实验测定的蛋白质结构比已知的蛋白质序 列要少得多。另一方面,随着DNA测序技术的发展,人类基因组及更多的模式生物基因组 已经或将要被完全测序,DNA序列数量将会急增,而由于DNA序列分析技术和基因识别方 法的进步,我们可以从DNA推导出大量的蛋白质序列。这意味着已知序列的蛋白质数量和 已测定结构的蛋白质数量(如蛋白质结构数据库PDB中的数据)的差距将会越来越大。人 们希望产生蛋白质结构的速度能够跟上产生蛋白质序列的速度,或者减小两者的差距。那 么如何缩小这种差距呢?我们不能完全依赖现有的结构测定技术,需要发展理论分析方法, 这对蛋白质结构预测提出了极大的挑战。20世纪60年代后期,Anfinsen首先发现去折叠蛋 白或者说变性(denatured)蛋白质在允许重新折叠的实验条件下可以重新折叠到原来的结构, 这种天然结构(native structure)对于蛋白质行使生物功能具有重要作用,大多数蛋白质只 有在折叠成其天然结构的时候才能具有完全的生物活性。自从Anfinsen提出蛋白质折叠的 信息隐含在蛋白质的一级结构中,科学家们对蛋白质结构的预测进行了大量的研究,分子 生物学家将有可能直接运用适当的算法,从氨基酸序列出发,预测蛋白质的结构。本章主 要着重介绍蛋白质二级结构及空间结构预测的方法。
叠和盘曲,形成一定的空间构象。 蛋白质的一级结构中,参与功能 活性部位的残基或处于特定构象 关键部位的残基,即使在整个分 子中发生一个残基的异常,那么 该蛋白质的功能也会受到明显的 影响。被称之为“分子病”的镰 刀状红细胞性贫血仅仅是574个 氨基酸残基中,一个氨基酸残基 即β亚基N端的第6号氨基酸残基 发生了变异所造成的,这种变异 来源于基因上遗传信息的突变。
蛋白质的一级结构与功能的关系 蛋白质的空间结构与功能的关系
.1 蛋白质的一级结构与其构象及功能的关系
2. 蛋白质空间橡象与功能活性的关系
一、蛋白质的一级结构
❖ 白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是 蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通 过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。
蛋白质一级结构是空间结构的基础
一级结构决定了二级结构
❖ 一级结构决定了二级结构:
❖
Chou和Fasman对29种蛋白质的一级结构和二级结构关系
❖
进行统计分析,发现:
❖ Glu、Met、Ala和Leu残基是α-螺旋最强的生成者,
❖
Gly、Pro是α-螺旋最强的破坏者
❖ Gly、Ala、Ser是β折迭最强生成者
Hb亚基中有下列几对盐键:
α1-α2:141α2Arg-COOH-1α1Val-NH2
α1-α2:141α2 Arg 胍基-126α1Asp-COOH
α1-β2:40a1Lsy的ξ-NH2-146β2 His-COOH
β1-β2:146β2 His-咪唑基-94β1Asp-β-COOH
❖ 第一个O2结合时,要打开的盐键不只是4个亚基间盐 键的1/4,而是要多一些,打开盐键需要能量。因此, 第一个O2的结合需要的能量多于第2、第3个O2。结合 到第4个O2时,需能更少,带O2速度比第1个时大几百 倍。如图所示