电气化铁道供电系统课程设计.
电气化铁路供电系统教材
谐波问题 整改措施:在牵引变电所增加滤波器 (单调谐滤波器、高通滤波器),存在 增加投资的问题。 限制:谐波电流问题一直是铁路部门 和电力部门之间争论的焦点问题。
负序电流问题 牵引供电系统的负荷为单相负荷,导致 从电力系统三相去用的电能不平衡,从而向 电力系统注入负序电流。 负序电流的危害:降低用户电能的利用 率,引起用户旋转电机转子表面温升过高。 整改措施:牵引供电系统采用换相方式 接入电力系统,采用新型供电方式。 限制:电力部门一直在对牵引供电系统 注入电力系统的负序电流进行限制。
2 牵引网 通常,将接触网、钢轨、回流线构成的线路称为牵引网。接触网 和钢轨是牵引网的主体。 接触网(图3-54)是架设在电气
化铁路上空,向电力机车供电的一种
特殊形式的输电线路,其质量和工作 状态直接影响电气化铁路的运输能力。 接触网根据其接触悬挂类型,可 以分为简单接触悬挂和链形接触悬挂 两类。
• 供电能力:满足在不同牵引工况下电能的输 送。关键点:牵引供电臂末端电压水平。 • 运行方式的灵活性:在确保供电的前提下, 为设备的检修、运行方式的调整等提供灵活 的操作方式。改变运行方式的动作迅速。 • 完备的确保一次系统运行可靠性的措施。
目前牵引供电系统面临的主要问题: • 谐波问题 • 负序电流问题 • 功率因数问题 • 机车过分相问题 • 接地问题 • 继电保护问题 • 弓网关系问题 • 绝缘配合问题 • 电磁兼容问题
功率因数问题 列车从牵引供电系统取用的电能会随着 列车牵引定数、路况(限坡、弯道)、运行 图、司机操作技术等因素的影响,因此改变 列车取用的有功功率和无功功率,导致功率 因素发生变化。 电力部门要求大工业用户的功率因数达 到0.9以上,高出部分奖励、低于该数值将罚 款。 整改措施:加功率因数补偿装置,困难 在于负荷波动导致功率因数大范围波动,难 以达到理想的补偿效果。
电气化铁道供电系统与设计-课程设计指导手册(自动化学院)
《电气化铁道供电系统与设计》课程设计指导手册兰州交通大学自动化学院电气工程系2009-6-18电气化铁道供电系统与设计课程设计学院:自动化学院适用专业:电气工程及其自动化课程设计名称:电气化铁道供电系统课程设计课程代码:0508941学分数:1 学时数:16一、课程设计目的本课程设计是学生在学完《电气化铁道供电系统与设计》课程之后、进行的一个综合性的教学实践环节。
通过本课程设计一方面使学生获得综合运用学过的知识进行牵引变电所主接线设计和电气设备选型的基本能力,另一方面能稳固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。
通过本课程设计,学生能运用电气基础课程中的基本理论和实践知识,正确地解决牵引变电所的电气主接线设计等问题。
通过牵引变电所的电气主接线设计的训练,提高电气设计能力,学会使用相关的手册及图册资料:1、掌握牵引变压器容量计算的基本方法能够根据牵引负荷的大小正确计算牵引变压器的计算容量、校核容量和安装容量。
2、掌握牵引变电所110kV侧主接线设计的基本方法能够根据牵引变电所在牵引供电系统中的重要性,正确在电气主接线的四种接线形式中进行选择,做出110kV侧主接线的设计。
3、掌握牵引变压器型号选择的基本方法能够根据变压器的容量和牵引网向电力机车的供电方式正确选择牵引变压器的型号。
4、掌握牵引变电所馈线侧主接线设计的基本方法能够根据牵引变电所向接触网的供电方式,正确进行馈线数目、备用方式和接线形式的和设计。
5、掌握牵引变电所主接线中电气设备选型的基本方法能够正确对主接线中电气设备某两种,如:断路器,隔离开关,电流互感器,电压互感器,避雷器,自用电变压器,地方负荷用变压器等进行正确选型。
二、课程设计的要求学生要按照课程设计指导书的要求,根据题目所给原始参数进行设计。
本课程设计的基本步骤是:1、分析问题及解决方案框架确定2、牵引变压器容量计算正确进行牵引变压器的计算容量、校核容量和安装容量的计算。
电气化铁道供电系统与设计课程设计报告
电气化铁道供电系统与设计课程设计报告班级:学号:姓名:指导教师:年月日一、题目某牵引变电所位于大型编组站内, 向两条复线电气化铁路干线的两个方向供电区段供电, 已知列车正常情况的计算容量为27000 kV A(三相变压器), 并以10kV电压给车站电力照明机务段等地区负荷供电, 容量计算为2700 kV A, 各电压侧馈出数目及负荷情况如下: 25kV回路(1路备): 两方向年货运量与供电距离分别为, , 。
10kV共4回路(2路备)。
二、供电电源由系统区域变电所以双回路110kV输送线供电。
本变电所位于电气化铁路的首端, 送电线距离30km, 主变压器为SCOTT接线。
三、题目分析及解决方案框架确定2.1.选题背景、负荷分析和原始数据在保证电气化铁道供电安全可靠的同时, 也要求供电设备最经济的利用, 因此选择合适容量的变压器是很有现实意义的。
本文在这方面对已有的计算公式进行了分析, 并提出了一个较为准确的变电所有效电流公式, 说明在某些情况下机组的选择必须进一步考虑实际的运行情况。
牵引变电所是电气化铁路牵引供电系统的核心部分, 它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。
而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及连接方式。
通过电气主接线可以了解牵引变电所设施的规模大小、设备情况。
由上述资料可知, 本牵引变电所担负着重要的牵引负荷供电任务(一级负荷), 馈线数目多、影响范围广, 应保证安全可靠的供电。
10KV地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等, 应有足够的可靠性。
2.2.牵引变压器台数和容量的选择牵引变压器是牵引供电系统的重要设备, 其容量大小关系到能否完成国家交给的运输任务的问题。
从安全运行和经济方面来看, 容量过小会使牵引变压器长期过载, 将造成其寿命缩短, 甚至烧毁;反之, 容量过大将使牵引变压器长期不能满载运行, 从而造成其容量浪费, 损耗增加, 使运营成本增大。
电气化铁路供电系统设计
摘要本毕业设计介绍了电气化铁道供变电技术,以交流电气化铁道为重点,加强了对牵引供电系统的认识。
牵引供电系统又以牵引变电所为重点,介绍了供电系统一次设备和二次电气设备,对变电所一次电气设备的构成、类型、工作原理做了一定的介绍;对变电所的二次装置的构成、工作原理进行了比较详细的介绍。
本设计主要以电力牵引供变电系统为主,对其结构特点进行系统分析,包括主电路、控制电路、计量回路。
事故预告,报警回路;高低压电器等。
同时对电力牵引供变电系统供电方式的特点进行分析,对典型故障案例进行深入分析,提出解决方案,包括组织流程、安全、技术、处理措施。
本设计书还对接触网和牵引变电所倒闸部分进行了分析,更便于掌握牵引变电所的运行状态。
关键词:交流电气化设备供电系统供电方式结构特点ABSTRACTThe graduation design specification introduces electrified railway for substation technology, with ac electrified railway as the key point, to strengthen the understanding of the traction power supply system. Traction power supply system and focusing on traction substation, this paper introduces a power supply system and the secondary electrical equipment, equipment for substation once electrical equipment structure, type, principle of work done some introduction; The second device for substation structure, working principle are detailed introduced. This design is mainly for electric traction substation system is given priority to, on the structure characteristic of system analysis, including the main circuit and control circuit, measurement circuit. The accident forecast, alarm circuit, high and low voltage electric apparatus, etc. At the same time on the electric traction substation system for the power-supply modes, analyzes the characteristic of typical fault cases analysis, and proposes the solutions, including organizational processes, safety, technology, handling measures. This proponent of catenary and traction substation pour brake parts are analyzed, more facilitate master traction substation operation.Key words: Ac electrified equipment power supply system Power-supply modes Structure characteristics目录1 电力牵引供电系统概述 (1)1.1电力牵引特点 (1)1.2电力系统简介 (1)1.3牵引供变电系统的组成 (2)1.4牵引供电方式 (4)1.5接触网 (8)2 牵引变电所电气主接线 (11)2.1电气主接线概述 (11)2.2牵引变电所110kv侧的电气主接线 (11)3 牵引供电系统主要电气设备 (15)3.1电气设备的概述 (15)3.2牵引变压器 (15)3.2.1变压器的分类 (15)3.2.2油侵式电力变压器结构,构成部件的作用。
电气化铁道供电系统与设计课程设计指导手册自动化学院模板
电气化铁道供电系统与设计课程设计指导手册自动化学院《电气化铁道供电系统与设计》课程设计指导手册兰州交通大学自动化学院电气工程系-6-18电气化铁道供电系统与设计课程设计学院:自动化学院适用专业:电气工程及其自动化课程设计名称:电气化铁道供电系统课程设计课程代码:0508941学分数:1 学时数:16一、课程设计目的本课程设计是学生在学完《电气化铁道供电系统与设计》课程之后、进行的一个综合性的教学实践环节。
经过本课程设计一方面使学生获得综合运用学过的知识进行牵引变电所主接线设计和电气设备选型的基本能力,另一方面能巩固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。
经过本课程设计,学生能运用电气基础课程中的基本理论和实践知识,正确地解决牵引变电所的电气主接线设计等问题。
经过牵引变电所的电气主接线设计的训练,提高电气设计能力,学会使用相关的手册及图册资料:1、掌握牵引变压器容量计算的基本方法能够根据牵引负荷的大小正确计算牵引变压器的计算容量、校核容量和安装容量。
2、掌握牵引变电所110kV侧主接线设计的基本方法能够根据牵引变电所在牵引供电系统中的重要性,正确在电气主接线的四种接线形式中进行选择,做出110kV侧主接线的设计。
3、掌握牵引变压器型号选择的基本方法能够根据变压器的容量和牵引网向电力机车的供电方式正确选择牵引变压器的型号。
4、掌握牵引变电所馈线侧主接线设计的基本方法能够根据牵引变电所向接触网的供电方式,正确进行馈线数目、备用方式和接线形式的和设计。
5、掌握牵引变电所主接线中电气设备选型的基本方法能够正确对主接线中电气设备某两种,如:断路器,隔离开关,电流互感器,电压互感器,避雷器,自用电变压器,地方负荷用变压器等进行正确选型。
二、课程设计的要求学生要按照课程设计指导书的要求,根据题目所给原始参数进行设计。
本课程设计的基本步骤是:1、分析问题及解决方案框架确定2、牵引变压器容量计算正确进行牵引变压器的计算容量、校核容量和安装容量的计算。
电气化铁路供电系统的设计与实现
电气化铁路供电系统的设计与实现一、导言电气化铁路是现代交通运输的必需品,概念简单来说就是用电力作为牵引能源的铁路交通系统。
电气化铁路的供电系统是电气化铁路的重要组成部分,供电系统的设计与实现是电气化铁路建设的重要环节,本文将就此展开讨论。
二、供电系统的基本概念供电系统是支持电气化铁路正常运行的关键基础设施之一,它主要由供电站、电气化变电站、牵引变压器、接触网、集电装置、地线以及设备和通信控制系统等部分组成。
其中,供电站是供应电力给电气化铁路的核心部分,电气化变电站负责将高压输电线路的电压转换为低压直流电,牵引变压器用于将低压直流电转换为适合交流电驱动的电能,接触网则是供电系统的主要能量输出装置,集电装置用于对接触网所输出的电能进行集电,地线则是用于保证安全的配套设施。
三、供电系统的设计原则为了保证电气化铁路运行的安全性和运行效率,供电系统的设计必须符合一定的原则。
首先,供电系统必须满足稳定、可靠、高效、安全的电力供应要求。
其次,供电系统的设计需要考虑供电站覆盖面积、变电站的布局、接触网构造等因素,要在满足技术要求和经济需求的前提下进行合理布局和安排。
此外,供电系统的设计还需要考虑在地形条件不同的地方下如何解决供电站、变电站、接触网和车站等相互关联的问题。
四、供电系统的实现方法在实现供电系统的过程中,需要考虑到系统的可靠性、稳定性和灵活性等因素。
供电系统具体的实现方法根据不同的技术要求和经济条件进行选择。
一般情况下,供电系统的实现技术主要有以下几种:1. 直供直流电力系统(DC)该方法主要是通过直流电传输来实现电气化铁路的供电,其特点是输电损耗较小,系统结构简单,稳定性和可靠性高。
但由于操作难度较大,需要专业技术人员进行操作,因此使用范围相对较窄。
2. 交流电力系统(AC)该方法主要是通过交流电传输来实现电气化铁路的供电,其特点是输电噪音小,相对稳定,且操纵容易。
但对于电气化铁路的大规模使用来说,支持的电压和频率等参数需要与国家标准保持一致,造成的成本相对较高。
电气化铁道供电系统与设计课程设计报告
电气化铁道供电系统与设计课程设计报告电气化铁道供电系统与设计课程设计报告班级:电气***学号: **********姓名: **** **指导教师: ******2011 年 07 月 18 日目录1、题目 (1)2 题目分析及解决方案框架确定 (1)3 设计过程 (2)3.1 牵引变电所110kV侧主接线设计 (2)3.2 牵引变压器主接线设计 (3)3.3 牵引变电所馈线侧主接线设计 (4)3.3.1 55kV侧馈线的接线方式 (4)3.3.2动力变压器及其自用电变压器接线 (5)3.4 绘制电气主结线图 (6)3.5 牵引变压器容量计算 (6)3.6 牵引变压器类型选择 (8)3.7导线选择 (8)3.7.1 室外110kV进线侧母线的选择 (9)3.7.2 室外27.5kV进线侧母线的选择 (10)3.7.3 室外10kV馈线侧母线的选择 (10)3.8 开关设备的选择 (10)3.8.1 高压断路器的选择 (10)3.8.2 高压熔断器的选择 (12)3.8.3 隔离开关的选择 (13)3.9 仪用互感器的选择 (13)3.9.1电流互感器的选择 (13)3.9.2电压互感器的选择及作用 (14)4 小结 (14)参考文献 (15)附表1 钢芯铝绞线的物理参数及载流量 (16)附图1 牵引变电所电气主结线图 (17)AT供电方式下斯科特接线牵引变电所设计1、题目某牵引变电所戊采用AT供电方式向复线区段供电,牵引变压器类型为110/27.5kV,SCOTT接线,两供电臂电流归算到27.5kV侧电流如表1所示。
本次设计主要做了变电所AT供电方式下,从电源进线到向供电臂供电的所有接线设计和此种接线方式下变电所的容量计算。
2 题目分析及解决方案框架确定分析题目提供的资料可知,该牵引变电所要担负向区段安全可靠的供电任务,题目要求采用110/55kV、SCOTT接线牵引变压器,AT供电方式向复线区段供电的方式,此供电方式可减轻对邻近通信线路的干扰影响,大大降低牵引网中的电压损失,扩大牵引变电所间隔,减少牵引变电所的数目。
电气化铁道供电系统课程设计
电气化铁道供电系统与设计课程设计报告班级:学号:姓名指导教师:评语:1. 题目某牵引变电所丙采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相V-v接线,两供电臂电流归算到27.5kV侧电流如表1所示。
表1 已知参数供电臂供电臂长度km端子平均电流A有效电流A 短路电流A 穿越电流A左臂21.9 β238 318 917 206右臂24.7 α184 266 1052 2172. 题目分析及解决方案框架确定在设计过程中,先按给定的计算条件求出牵引变压器供应牵引负荷所必须的最小容量,然后按列车紧密运行时供电臂的有效电流与充分利用牵引变压器过负荷能力,求出所需要的容量,称为校核容量。
这是为确保牵引变压器安全运行所必须的容量。
最后计算容量和校核容量,再考虑其他因素(如备用方式等),然后按实际系列产品的规格选定牵引的台数和容量,称为安装容量或设计容量。
然后再变压器型号的基础之上,选取室外110kV侧母线,室外27.5kV侧母线以及室外10kV侧母线的型号。
三相V,v结线牵引变压器是近年新研制的产品,它是将两台容量相等或不相等的单相变压器器身安装于同一油箱内组成的。
三相V-v结线牵引变电所中装设两台V,v 结线牵引变压器,一台运行,一台固定备用。
三相V-v结线牵引变电所不但保持了单相V-v结线牵引变电所的牵引变压器容量得到充分利用,可供应牵引变电所自用电和地区三相负载,主接线较简单,设备较少,投资较省,对电力系统的负须影响比单线小,对接触网的供电可实现双边供电等优点,最可取的是,解决了单相V-v结线牵引变电所不便于采用固定备用及其自动投入的问题。
考虑到V-v接线中装有两台变压器的特点,在确定110kV侧主接线时我们采用桥形接线。
按照向复线区段供电的要求,其牵引侧母线的馈线数目较多,为了保障操作的灵活性和供电的可靠性,我们选用馈线断路器100%备用接线,这种接线也便于故障断路器的检修。
电气化铁道供电系统与设计课程设计报告——牵引变电所设计
电气化铁道供电系统与设计课程设计报告班级:电气08*班学号: 20080****姓名: ********指导教师: ********2011 年 12 月 30 日一、题目某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的四个方向供电区段供电,现在已知列车正常情况时的计算容量为10000kVA(三相变压器),以10KV 电压给车站电力照明机务段等地区负荷供电,容量计算为3750kVA,各电压侧馈出数目及负荷情况如下所示:25KV回路(1路备):两方向的年货运量与供电的距离分别为:113260Mt kmQ L=⨯g223025Mt kmQ L=⨯g,100kWh/10kt kmq∆=g。
10kV共12回路(2路备)。
供电电源由系统区域变电所以双回路110kV输送线供电。
本变电所位于电气化铁路的中间,送电线距离15km,主变压器为三相接线。
二、题目分析及解决方案框架确定根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:方案A:2×10000千伏安牵引变压器+2×6300 kVA地区变压器,一次侧同时接于110 kV母线,(110千伏变压器最小容量为6300 kVA)。
方案B:2×15000千伏安的三绕组变压器,因10千伏侧地区负荷与总容量比值超过15%,采用电压为110/27.5/10.5 kVA,结线为0//Y∆∆两台三绕组变压器同时为牵引负荷与地区电力负荷供电。
各绕组容量比为100:100:50。
由上述资料可知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠的供电。
10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等一部分为一级负荷、其他包括机务段在内均为二级负荷,应有足够可靠性的要求。
本变电所为终端变电所,一次侧无通过功率。
三相牵引变压器的计算容量是由牵引供电计算求出的。
电气化铁道供电专业教学计划
B」|;1卜I LBBn p n =■_r -r E ・=_*■""A n t 111»-■»-■►■f c »II s I r r L 1■1■--L 'L I —1-J^Bl 一澤矗•工片三云Se p■ir f i -■胃诸--VPreparedon24November2020团结•奉献■拼搏西安高速铁道技工学校电气化铁道供电专业教学计划一、培养目标本专业培养拥护党的基本路线,为轨道交通电气化施工与运营企业、电气化铁道供配电设备生产企业培养适应生产、建设、管理、服务第一线需要的,德、智、体、美等方面全面发展的,掌握本专业必备的基础理论知识,具有本专业相关领域工作的岗位能力和专业技能,具有良好职业素养,适应电气化铁道行业生产一线的技术、管理等职业岗位要求的高端技能型专门人才。
通过学习,使学生具有良好的政治素质和道德素养,热爱祖国,具有正确的人生观,养成良好的社会公共道德和职业道德。
掌握本专业必备的数学、外语、计算机应用等文化基础知识;掌握计算机操作和用于分析设计电路的计算机工具软件的使用方法;毕业后能运用所学理论知识和技能,在轨道交通企业、铁路局、有自备铁路的大型生产企业、轨道交通电气化设备生产企业,从事电力调度、供配电设备生产调试检修、变电所值班等具体工作,核心岗位为接触网工、变电站值班员、电力线路工、电气试验工、维修电工。
二、培养规格1.知识结构基本知识(1)具有一定的社会科学和人文知识;(2)具有本专业必需的电工、电子技术基础理论知识;(3)具有本专业必需的机械和电气的基础知识;(4)具有可编程序控制器应用的基础知识;(5)具有供配电技术的基础知识;(6)具有接触网施工与维护的基本知识;(7)具有变电所运行与维护的基本知识;(8)具有必要的电气化铁道相关设备的维护与轨道交通运营的基本知识。
专业知识(1)具有供用电技术及电气设备的控制、运行及维护专业知识;(2)具有牵引变配电、接触网施工运营维护、高电压试验及电力线路施工专业知识;(3)具有牵引变电所运行与维护的专业知识;(4)具有高压电气设备测试的专业知识。
铁道供电设计
电气化铁道供电系统与设计课程设计报告班级:学号:姓名:指导教师:评语:2011年 12 月30日一、 题目某牵引变电所甲采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV ,三相平衡接线,两供电臂电流归算到27.5kV 测电流如下表所示。
表1 牵引变电所甲电流参数表牵引变电所供电臂 长度km 端子 平均电流 A 有效电流A 短路电流A 穿越电流 A 甲24.6 β 282 363 1023 202 20.4α240319874154二、 题目分析及解决方案框架确定2.1计算牵引变压器的容量由题目所知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电,主变压器采用非阻抗匹配YN 接线方式,其中平衡变压器为牵引变电所的主牵引变压器,是YN 型,结线的平衡变压器,取λ=1的特例,再不需要专门进行阻抗匹配,按结构对称性布置绕组,就可以使该变压器达到平衡,优点是绕组布置较容易,由此设计制造方便。
其绕组结线示意图如图1所示。
+AB CI ABCI I ACB+E abcabE图1 绕组结线示意图变压器容量的计算,目的是为了经济合理的选择变压器容量,计算步骤:①确定计算容量─按正常运行的计算条件求出主变压器供应牵引负荷所必须的最小容量。
(2-11);为供电臂的有效电流。
②确定校核容量─按列车紧密运行的计算条件并充分利用牵引变压器的过负荷能力所计算的容量。
(2-12)为、供电臂最大电流之比;分别为供电臂最大电流。
③确定安装容量─在计算容量和校核容量的基础上,再考虑备用方式,最后按其系列产品的规格确定牵引变压器台数与容量。
2.2画出牵引变电所的主接线图本设计采用的是直接供电方式向复线区段供电,牵引变电所为电气化铁路牵引供电系统的心脏,主要任务是将电力系统输送来的三相高压电变换成适合电力机车使用的电能,为完成接受电能、高压和分配电能的工作,电气接线可分为两大部分:一次接线(主接线)和二次接线。
电气化铁道供电系统与设计课程设计报告1
电气化铁道供电系统与设计课程设计报告班级:电气08*班学号: 200*09***姓名: *******指导教师: *****2011 年月日一、题目某牵引变电所甲采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相平衡接线,两供电臂电流归算到27.5kV侧电流如下表所示二、题目分析及解决方案确定因为牵引变压器是牵引供电系统的主要设备,其容量大小关系到能否完成国家交给的运输任务及运营成本,所以进行牵引变压器的容量计算,以便合理选用牵引变压器的额定容量十分重要。
以下将对三相平衡接线方式的牵引变压器的计算容量、校核容量以及安装容量分别进行分析及计算。
2.1设计方案分析目前,我国使用的牵引变压器类型主要有以下几种形式:单相结线变压器、单相V,v结线变压器(三相)、三相YN,d11双绕组变压器、斯科特结线变压器、YN,结线阻抗匹配牵引变压器、YN,结线平衡变压器、非阻抗匹配YN,结线平衡变压器。
针对以上几种牵引变压器的优缺点的分析如下:(1)单相结线变压器优点:容量利用率可达100%;主接线简单,设备少,占地面积小,投资少。
缺点:不能供应地区和牵引变电所三相负荷用电,在电力系统中,单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。
(2)单相V,v结线变压器(三相)优点:主结线较简单,设备较少,投资较省。
对电力系统的负序影响比单相结线少。
对接触网的供电可实现双边供电。
缺点:当一台牵引变压器故障时,另一台必须跨相供电,即兼供左右两边供电臂的牵引网。
这就需要一个倒闸过程,即把故障变压器原来承担的供电任务转移到正常运行的变压器。
在这一倒闸过程完成前,故障变压器原来供电的供电臂牵引网中断供电,这种情况甚至会影响行车。
即使这一倒闸过程完成后,地区三相电力供应也要中断。
牵引变电所三相自用电必须改用劈相机或单相-三相自用变压器供电。
实质上变成了单相结线牵引变电所,对电力系统的负序影响也随之增大。
电气化铁道技术专业《电力牵引供变电技术》课程设计—.
高速铁路牵引变电所电气主接线的设计摘要:牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。
而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。
通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。
1.2 电气化铁路的国内外现状变电所是对电能的电压和电流进行变换、集中和分配的场所。
在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。
因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。
现阶段我过主要是使用常规变电所。
常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。
继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。
这种模式有许多不足之处。
我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。
国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。
1.3 牵引变电所1.3.1 电力牵引的电流制电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。
(1) 直流制即牵引网供电电流为直流的电力牵引电流制。
电力系统将三相交流电送到牵引变电所一次侧,经过牵引变电所降压并整流变成直流电,再通过牵引网供给电力机车使用。
直流制发展最早,目前有些国家的电气化铁路仍在应用。
我国仅工矿、城市电车和地下铁道采用。
牵引网电压有1200V,1500V,3000V和600V,750V等,后两种分别用于城市电车、地下铁道。
电气化铁道供电系统与设计课程设计报告——牵引变电所设计1
电气化铁道供电系统与设计课程设计报告班级:电气0**班学号: 20080****姓名: **********指导教师: *********评语:年月日一、题目某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的四个方向供电区段供电,现在已知列车正常情况时的计算容量为10000kVA(三相变压器),以10KV 电压给车站电力照明机务段等地区负荷供电,容量计算为3750kVA,各电压侧馈出数目及负荷情况如下所示:25KV回路(1路备):两方向的年货运量与供电的距离分别为:113260Mt kmQ L=⨯223025Mt kmQ L=⨯,100kWh/10kt kmq∆=。
10kV共12回路(2路备)。
供电电源由系统区域变电所以双回路110kV输送线供电。
本变电所位于电气化铁路的中间,送电线距离15km,主变压器为三相接线。
二、题目分析及解决方案框架确定由上述资料可知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠的供电。
10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等一部分为一级负荷、其他包括机务段在内均为二级负荷,应有足够可靠性的要求。
本变电所为终端变电所,一次侧无通过功率。
三相牵引变压器的计算容量是由牵引供电计算求出的。
本变电所考虑为固定备用方式,按故障检修时的需要,应设两台牵引用主变压器,地区电力负荷因有一级负荷,为保证变压器检修时不致断电,也应设两台。
根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:方案A:2×10000千伏安牵引变压器+2×6300 kVA地区变压器,一次侧同时接于110 kV母线,(110千伏变压器最小容量为6300 kVA)。
方案B:2×15000千伏安的三绕组变压器,因10千伏侧地区负荷与总容量比值超过15%,采用电压为110/27.5/10.5 kVA,结线为0//Y∆∆两台三绕组变压器同时为牵引负荷与地区电力负荷供电。
电气化铁道供电系统与设计课程设计报告
电气化铁道供电系统和设计课程设计报告一、题目某牵引变电所丁采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,单相V-V接线,两供电臂电流归算到27.5kV侧电流如下表1所示。
表1 牵引变电所丁电流参数表牵引变电所供电臂长度km 端子平均电流A有效电流A短路电流A穿越电流A丁20.4 α152 229 819 162 22.2 β157 238 968 188二、分析及解决方案单相V-v接线的牵引变压器是将两台单相变压器以V的方式联于三相电力系统,每一个牵引变电所都可以实现由三相系统的两相线电压供电。
两台变压器的次边绕组,各取一端联至牵引变电所的两相母线上。
而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。
这时,两臂电压的相位差为60°,电流不对称度有所减少。
这种接线即通常所说的60°接线。
同时,由于左、右两供电臂对轨道的电压相位不同,在这两个相邻的接触网区段间必须采用分相绝缘结构。
另外,由于牵引变压器次边绕组电流等于供电臂电流,因此供电臂长期允许电流就等于牵引变压器次边的额定电流,牵引变压器的容量得到了充分利用。
在正常运行时,牵引侧保持三相,可供应牵引变电所自用电和地区三相负载。
主接线较简单,设备较少,投资较省。
对电力系统的负序影响比单相接线小。
对接触网的供电可实现双边供电。
在设计过程中,通过求解变压器的计算容量、校核容量以及安装容量来选取变压器的型号。
然后再变压器型号的基础之上,选取室外110kV侧母线,室外27.5kV侧母线以及室外10kV侧母线的型号。
考虑到V-v接线中装有两台变压器的特点,在确定220kV侧主接线时我们采用桥形接线。
按照向复线区段供电的要求,其牵引侧母线的馈线数目较多,为了保障操作的灵活性和供电的可靠性,我们选用馈线断路器100%备用接线,这种接线也便于故障断路器的检修。
按照选取的变压器的容量以及22kV侧的和牵引侧的主接线,可以做出设计牵引变电所的电气主接线。
电气化铁路供电系统设计
电气化铁路供电系统设计摘要:铁路和电力同为国家的重要基础设施,电气化铁路的发展与其供电系统密不可分。
电气化铁路是电网的重要用电负荷,同时对电力系统运行也带来一些新的问题。
本文首先分析了电气化铁路供电系统的构成,并对电力牵引的特点和优越性进行了说明,其次分析了电气化铁路供电系统设计中存在的问题,最后重点论述了电气化铁路供电系统的设计要点。
关键词:电气化铁路;供电系统;设计;牵引供电;供电方式Abstract: the railways and power as a national important foundation facilities, is closely related to development of electrified railway and power supply system. The electrified railway is the important power grid electricity load, but also brings some new problems to power system operation. This paper first analyzes the structure of electrified railway traction power supply system of electric traction, and the characteristics and advantages are described, followed by analysis of the design of electrified railway traction power supply system in question, finally discusses the key points in the design of power supply system of electric railway.Keywords: electric railway; power supply system; design; traction power supply; power supply一、电气化铁路供电系统的构成电气化铁道供电系统由一次供电系统和牵引供电系统组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气化铁道供电系统与设计课程设计报告班级:学号:姓名指导教师:评语:1. 题目某牵引变电所丙采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相V-v接线,两供电臂电流归算到27.5kV侧电流如表1所示。
表1 已知参数供电臂供电臂长度km端子平均电流A有效电流A 短路电流A 穿越电流A左臂21.9 β238 318 917 206右臂24.7 α184 266 1052 2172. 题目分析及解决方案框架确定在设计过程中,先按给定的计算条件求出牵引变压器供应牵引负荷所必须的最小容量,然后按列车紧密运行时供电臂的有效电流与充分利用牵引变压器过负荷能力,求出所需要的容量,称为校核容量。
这是为确保牵引变压器安全运行所必须的容量。
最后计算容量和校核容量,再考虑其他因素(如备用方式等),然后按实际系列产品的规格选定牵引的台数和容量,称为安装容量或设计容量。
然后再变压器型号的基础之上,选取室外110kV侧母线,室外27.5kV侧母线以及室外10kV侧母线的型号。
三相V,v结线牵引变压器是近年新研制的产品,它是将两台容量相等或不相等的单相变压器器身安装于同一油箱内组成的。
三相V-v结线牵引变电所中装设两台V,v 结线牵引变压器,一台运行,一台固定备用。
三相V-v结线牵引变电所不但保持了单相V-v结线牵引变电所的牵引变压器容量得到充分利用,可供应牵引变电所自用电和地区三相负载,主接线较简单,设备较少,投资较省,对电力系统的负须影响比单线小,对接触网的供电可实现双边供电等优点,最可取的是,解决了单相V-v结线牵引变电所不便于采用固定备用及其自动投入的问题。
考虑到V-v接线中装有两台变压器的特点,在确定110kV侧主接线时我们采用桥形接线。
按照向复线区段供电的要求,其牵引侧母线的馈线数目较多,为了保障操作的灵活性和供电的可靠性,我们选用馈线断路器100%备用接线,这种接线也便于故障断路器的检修。
按照选取的变压器的容量以及110kV侧的和牵引侧的主接线,可以做出设计牵引变电所的电气主接线。
3.设计过程电气主接线一方面从电源系统接收电能,另一方面又通过馈电线路将电能分配出去。
电气主接线的电源回路和用电回路之间采用什么方式连接,以保证工作可靠.灵活是十分重要的问题。
牵引变电所(包括开闭所、分区所)的电气主结线是指由隔离开关、互感器、避雷器、断路器、主变压器、母线、电力电缆、移相电容器等高压一次电气设备,按工作要求顺序连接构成的接受和分配电能的牵引变电所内部的电气主电路。
安全可靠的要求是首要的。
运行检修时绝不允许发生人身事故和重大设备事故。
停电必然造成损失,尤其是牵引负荷和部分动力负荷(如地铁的动力、主要照明和信号电源等)为一级负荷,中断供电将直接造成运输阻塞,甚至造成人员生命伤亡、设备损坏。
在考虑主结线的可靠性时,应该辩证地看待以下几个问题:①可靠性的客观检验标准是运行实践。
主结线的故障率是它的各组成元件在运行中的故障率的总和,过多地增加主结线中的电气设备,会降低主结线的可靠性(增加了故障率);②可靠性并不是绝对的。
同样的主结线对二、三级负荷来说是可靠的,而对一级负荷来说就可能不够可靠,因此分析和估价主结线的可靠性时,不能脱离负荷等级和供电电源的具体条件;③主结线的可靠性是发展的。
随着电力系统的发展,技术的进步,主结线的可靠性也是会改变的。
经济性也是设计主结线的重要原则。
经济性主要涉及主变压器、地区变压器的设备与安装费用,以及配电装置的设备、安装费用,还有占地面积和土石方工程等。
可靠性与经济性二者之间,既有矛盾的一面,也有统一的一面。
如果过分强调可靠性,势必造成设备增多,投资增大,结线系统复杂,其结果可能造成操作复杂,易产生误操作,增大故障率,反而降低了主结线的可靠性;如果过分强调经济性,减少设备,简化结线,必然又会影响可靠性,造成事故和停电停产,反而不经济。
所以在处理这些矛盾时,应当首先满足可靠而后再求经济。
因此,确定主结线时应深入调查分析用电负荷的性质和大小、对供电电源的要求、自动化装置的采用、发展的远景等等,找出主要矛盾,才能设计出高质量的主结线。
牵引变电所的电气主结线分为三个部分来分别设计:110kV电源侧的电气主接线、牵引侧的主接线、三相V-v直接供电方式变压器接线。
3.1牵引变电所馈线侧主接线设计由于27.5kV 馈线断路器的跳闸次数较多,为了提高供电的可靠性,按馈线断路器备用方式不同,牵引变电所27.5kV 侧馈线的接线方式一般有下列三种:1)带旁路母线和旁路断路器的接线如图3所示。
一般每2至4条馈线设一旁路断路器。
通过旁路母线,旁路断路器可代替任一馈线断路器工作。
这种接线方式适用于每相牵引母线馈线数目较多的场合,以减少备用断路器的数量。
旁路母线a 母线b 母线图3 带有旁路母线和旁路断路器的接线2)馈线断路器50%备用的接线如图4所示。
这种接线每两条馈线设一台备用断路器,通过隔离开关的转换,备用断路器可代替其中任一台断路器工作。
当每相母线的馈出线数目较多时,一般很少采用此种法方法。
左臂上行左臂下行右臂上行右臂下行a母线b母线图4 馈线断路器50%备用3)馈线断路器100%备用的接线如图5所示。
这种接线当工作断路器需检修时,此种接线用于单线区段,牵引母线不同的场合。
即由备用断路器代替。
断路器的转换操作方便,供电可靠性高,但一次投资较大。
送左臂上行送左臂下行送右臂上行送右臂下行a母线b母线图5 馈线断路器100%备用由于牵引变压器类型为三相V-v,而且此牵引变电所向两个相邻区间的复线供电,为提高供电的可靠性,保障断路器转换的操作方便,牵引变电所27.5kV 侧馈线断路器采用100%备用的接线。
3.2牵引变电所110kV侧主接线设计根据实际运行要求,三相V-v牵引变电所装设两回电源进线和两台变压器,因有系统功率穿越,属通过式变电所。
因此选取结构比较简单且经济性能高的桥式接线[1]。
图1为内桥接线,特点是连接在靠近变压器侧,适用于线路长,线路故障高,而变压器不需要频繁操作的场合,这种接线形式可以很方便地切换或投入线路。
图2为外桥接线,与内桥形接线相比,外桥接线靠近线路侧,适合于输电距离较短,线路故障较少,而变压器需要经常操作的场合,这种接线方便于变压器的投入以及切除。
为了配合三相V-v牵引变电所在出现变压器故障时备用变压器的自动投入,选择采用外桥接线便于备用变压器的投入以及故障变压器的切除。
图1 内桥接线图2 外桥接线3.3 三相V-v 直供方式变压器接线为了克服单相V,V 结线方式在变电所内需设置第三台同样的单相牵引变压器作固定备用,使变电所主接线较复杂,倒闸操作或备用自投装置麻烦的缺点可采用两台三相V,V 结线牵引变压器,一台运行,另一台固定备用[2]。
当采用直接供电方式时,三相V ,v 变压器低压侧两个绕组接成正“V ”或反“V ” ,原边绕组接成固定的V 结线。
低压侧两次边绕组,各取一端联至27.5kV 的a 相和b 相母线上,它们的公共端接至接地网和钢轨。
其主接线如图6所示。
V V V V至钢轨或回流线至钢轨或回流线27.5kV图6 三相V-v 变压器直接供电方式主接线3.4 牵引变压器容量计算为了确定牵引变电所的变压器安装容量和台数,需要进行变压器容量计算。
变压器容量计算一般分为三个步骤:首先根据铁道部任务书中规定的年运量大小和行车组织的要求确定计算容量,这是为供应牵引负荷所必须的容量。
其次根据列车紧密运行时供电臂的有效电流和充分利用牵引变压器的过载能力,计算校核容量,这是为确保变压器安全运行所必须的容量。
最后,根据计算容量和校核容量,再考虑其他因素(如备用方式等),并按实际变压器系列产品的规格选定变压器的数量和容量称为安装容量。
牵引变压器是牵引供电系统的重要设备,其容量大小关系到能否完成国家交给的运输任务和运营成本。
从安全运行和经济方面来看,容量过小会使牵引变压器长期过载,将造成其寿命缩短,甚至烧损;容量过大将使牵引变压器长期不能满载运行,从而造成其容量浪费,损耗增加,使运营费用增大。
因此,在进行牵引变压器容量计算时,正确地确定计算条件,以便合理地选定牵引变压器的额定容量是十分重要的。
①三相V-v 接线牵引变压器绕组的有效电流三相V-v 结线变压器是由两台单相变压器安装于同一油箱内组成的,每台变压器供给所辖供电臂负荷。所以其绕组有效电流I ve 即为供电臂的有效电流,故I 1ve = I 1eI 2ve = I 2e式中,I 1e 、I 2e 分别为供电左β、右臂α的馈线有效电流;I 1ve 、I 2ve 分别为三相V-v 结线变压器绕组的有效电流。根据题意,I 1ve =318A,I 2ve =266A 。②计算三相V-v 接线牵引变压器的计算容量三相V-v 接线牵引变压器供两个供电臂时,其计算容量为S 1 = UI 1ve S 2 = UI 2veS 1 = UI 1ve = 27.5×318(kVA)=8745(kVA)S 2 = UI 2ve = 27.5×266(KVA)=7315(kVA)③计算三相V-v 接线牵引变压器的校核容量三相V-v 接线中两台牵引变压器的最大容量分别为S 1max = UI 1maxS 2max = UI 2maxS 1max = UI 1max =27.5×917(kVA)=25217.5(kVA)S 2max = UI 2max =27.5×1052(kVA)=28930(kVA)在最大容量的基础之上,再考虑牵引变压器的过负荷能力后所确定的容量,就可以得到校核容量,即S 校 = KS S max 2max 1 (1) (2 ) (7)(3) (4) (5) (6)式中,K 为牵引变压器过负荷倍数,取K =1.5,则可得S 校=(25217.5+28930)/1.5(kV A)=36098.34(kV A)④确定三相V-v 接线牵引变压器的安装容量及型号选择将三相V-v 接线的变压器的计算容量和校核容量进行比较,并结合采用固定备用方式和系列产品,选用三相V-v 变压器的安装容量为2×40000kV A 。通过查询附表1可选择SFY-40000/110型号的三相双绕组变压器。3.5 导线选择导电材料可以是铜或铝按最大长期工作电流选择母线截面要求根据导线允许温度查表获得的允许电流大于母线长期工作电流。
按经济电流密度选择母线截面,导线发热损耗随着导线截面积的增加而降低,同时,导线截面积的增加将导致导线的投资和维护费用增加,考虑上述两条件可获得导线的年运行费用,对应年运行费用最小值,就是导线的经济截面积。
导线截面的选择有两种方法:根据最大长期工作电流,根据 经济电流密度。