三角函数的图像与性质一轮复习

合集下载

高考数学一轮复习三角函数的图像与性质培优课件

高考数学一轮复习三角函数的图像与性质培优课件

π
3

2kπ6

π
, 2π +
6
6
,∴函数的递增区间为
π
0, 6
.
π
≤x≤2kπ+ (k∈Z).
6
(k∈Z).
考向2.由单调性求参数
典例突破
例 4.已知 ω>0,函数 f(x)=sin

.
π
+4

π

2
上是减少的,则 ω 的取值范围
答案:
1 5
,
2 4
π
π
解析:由2 <x<π,ω>0,得 2
3π ∴0<a≤ π ,∴a 的最大值为π .
≤ 4 ,
4
4
> 0,
π 3π
−4, 4
,
(2)由题意可知,[a,2]⊆
π
π
− ,
π
2π + 4
, 2π +

4
(k∈Z).
突破技巧1.三角函数定义域的求法
将求复杂函数的定义域问题转化为求解简单的三角函数不等式.
2.简单三角不等式的解法
(1)利用三角函数线求解.
(2)利用三角函数的图像求解.
1
y=tan -1的定义域为
.
(2)函数 y=lg(sin 2x)+ 9- 2 的定义域为
π
3
的递减区间是函数 y=sin 2 −
的递增区间.

π
2kπ-2
π
≤2x-3
π
≤2kπ+ 2 ,k∈Z,得
故所给函数的递减区间为 π −

专题24 三角函数的图象与性质-2025年高考数学一轮复习讲义(知识梳理+真题)(新高考专用)解析版

专题24 三角函数的图象与性质-2025年高考数学一轮复习讲义(知识梳理+真题)(新高考专用)解析版

专题24三角函数的图象与性质(新高考专用)【知识梳理】 (2)【真题自测】 (3)【考点突破】 (10)【考点1】三角函数的定义域和值域 (10)【考点2】三角函数的周期性、奇偶性、对称性 (15)【考点3】三角函数的单调性 (22)【分层检测】 (27)【基础篇】 (27)【能力篇】 (34)【培优篇】 (38)考试要求:1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数、正切函数的性质.1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0)(π,0)(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两对称中心之间的距离是半个周期.2.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,偶函数一般可化为y =A cos ωx +b 的形式.3.对于y =tan x 不能认为其在定义域上为增函数,π-π2,k πk ∈Z )内为增函数.一、单选题1.(2023·全国·高考真题)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A .1B .2C .3D .42.(2023·全国·高考真题)已知函数()()()sin ,0f x x ωϕω=+>在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D .23.(2022·全国·高考真题)设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦4.(2022·全国·高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .5.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .3二、多选题6.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则()A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线2y x =-是曲线()y f x =的切线三、填空题7.(2023·全国·高考真题)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是.8.(2023·全国·高考真题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =.9.(2022·全国·高考真题)记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =9x π=为()f x 的零点,则ω的最小值为.10.(2021·全国·高考真题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为.参考答案:1.C【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.2.D【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2T ω==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 123f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭故选:D.3.C【分析】由x 的取值范围得到3x ω+【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .4.A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.5.A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A6.AD【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z ,即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减;对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点;对C ,当7π6x =时,2π23π3x +=,7π(06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点0,2⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x -=--即2y x =-.故选:AD .7.[2,3)【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).8.【分析】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,依题可得,21π6x x -=,结合1sin 2x =的解可得,()212π3x x ω-=,从而得到ω的值,再根据2π03f ⎛⎫= ⎪⎝⎭以及()00f <,即可得2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,进而求得()πf .【详解】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=,由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,Z k ∈,由图可知,()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=.因为28ππsin 033f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,Z k ∈.所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭,所以()2sin 4π3f x x ⎛⎫=- ⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,()2πsin 4ππ32f ⎛⎫∴=-=- ⎪⎝⎭.故答案为:【点睛】本题主要考查根据图象求出ω以及函数()f x 的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.9.3【分析】首先表示出T ,根据()2f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解:因为()()cos f x x ωϕ=+,(0ω>,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0ω>,所以当0k =时min 3ω=;故答案为:310.2【分析】先根据图象求出函数()f x 的解析式,再求出7((43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得.【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,(2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解ω,根据特殊点求解ϕ.【考点1】三角函数的定义域和值域一、单选题1.(23-24高一上·河北邢台·阶段练习)函数()f x =)A .()ππ2π,2π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()5ππ2π,2π66k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .()π2π2π,2π63k k k ⎡⎤++∈⎢⎥⎣⎦Z D .()π7π2π,2π66k k k ⎡⎤++∈⎢⎥⎣⎦Z 2.(23-24高一上·北京朝阳·期末)函数()|sin |cos f x x x =+是()A .奇函数,且最小值为BC .偶函数,且最小值为D二、多选题3.(23-24高三下·江苏南通·开学考试)已知函数()cos 22sin f x x x =+,则()A .()f x 的最小正周期为2πB .()f x 关于直线π2x =对称C .()f x 关于点π,02⎛⎫⎪⎝⎭中心对称D .()f x 的最小值为3-4.(2024·贵州贵阳·二模)函数()tan()(0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .2π3ωϕ⋅=B .()f x在π0,3⎡⎤⎢⎥⎣⎦上的值域为(,)∞∞-⋃+C .函数|()|y f x =的图象关于直线5π3x =对称D .若函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[1,1]-三、填空题5.(2024·辽宁·二模)如图,在矩形ABCD 中,4,2AB BC ==,点,E F 分别在线段,BC CD 上,且π4EAF ∠=,则AE AF ⋅的最小值为.6.(2021·河南郑州·二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是.参考答案:1.A【分析】首先求出定义域,再根据复合函数单调性即可得到单调增区间.【详解】令sin 03x π⎛⎫+≥ ⎪⎝⎭,可得22,3k x k k ππππ≤+≤+∈Z .当22,232k x k k πππππ-≤+≤+∈Z 时,函数sin 3y x π⎛⎫=+ ⎪⎝⎭单调递增.所以当22,32k x k k ππππ≤+≤+∈Z 时,()f x 单调递增.故()f x 在()2,236k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 上单调递增.故选:A.2.D【分析】根据题意,结合函数的奇偶性,判定A 、B 不正确;再结合三角函数的图象与性质,求得函数()f x 的最大值和最小值,即可求解.【详解】由函数()|sin |cos f x x x =+,可得其定义域x ∈R ,关于原点对称,且()|sin()|cos()|sin |cos ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,因为()()()()2πsin 2πcos 2πsin cos f x x x x x f x +=+++=+=,所以2π为()y f x =的一个周期,不妨设[0,2π]x ∈,若[0,π]x ∈时,可得π()sin cos )4f x x x x =++,因为[0,π]x ∈,可得ππ5π[,444x +∈,当ππ42x +=时,即π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得min ()1f x =-;若[]π,2πx ∈,可得π()sin cos )4f x x x x =-+=+,因为[π,2π]x ∈,可得π5π9π[,]444x +∈,当π2π4x +=时,即7π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得()min 1f x =-,综上可得,函数()f x ,最小值为1-.故选:D.3.ABD【分析】将函数()cos 22sin f x x x =+可变形为213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,结合函数性质逐项分析计算即可得.【详解】2213()cos 22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,由sin y x =的最小正周期为2π,故()f x 的最小正周期为2π,故A 正确;()()221313(π)2sin π2sin 2222f x x x f x ⎡⎤⎛⎫-=---+=--+= ⎪⎢⎥⎣⎦⎝⎭,且()(π)f x f x -≠-,故()f x 关于直线π2x =,不关于点π,02⎛⎫ ⎪⎝⎭对称,故B 正确,C 错误;由213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,且[]sin 1,1x ∈-,故2min13()21322f x ⎛⎫=-⨯--+=- ⎪⎝⎭,故D 正确.故选:ABD.4.CD【分析】根据正切型三角函数的图象性质确定其最小正周期,从而得ω的值,再根据函数特殊点求得,A ϕ的值,从而可得解析式,再由正切型三角函数的性质逐项判断即可.【详解】函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()tan()f x A x ϕ=+,由函数的图象可知:πππ623ϕϕ+=⇒=,即π()tan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:π(0)tan23f A A ===,所以π3ωϕ⋅=,因此A 不正确;关于πB,()2tan 3f x x ⎛⎫=+ ⎪⎝⎭,当π6x =时,ππ32x +=,故()f x 在π6x =处无定义,故B 错误.因为55ππ5π5ππ2tan 2tan ,2tan 2tan 333333f x x x f x x x π⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+=++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5533f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,所以函数|()|y f x =的图象关于直线5π3x =对称,C 正确;ππ()()2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭,当ππ,36x ⎛⎫∈- ⎪⎝⎭时,|()|()y f x f x λ=+=ππππ2tan 2tan 2tan 2tan (22)tan 33333x x x x x πλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当5,63x ππ⎛⎤∈-- ⎥⎝⎦时,()()2tan 2tan 2tan 333y f x f x x x x πππλλ⎛⎫⎛⎫⎛⎫=+=+++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ2tan (22)tan 33x x λλ⎛⎫⎛⎫++=-++ ⎪ ⎪⎝⎭⎝⎭,当函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有(22)(22)011λλλ+-+≤⇒-≤≤,故D 正确.故选:CD .5.)161【分析】根据锐角三角函数可得,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,即可由数量积的定义求解,结合和差角公式以及三角函数的性质即可求解最值.【详解】设π02BAE θθ⎛⎫∠=<< ⎪⎝⎭,则π4DAF θ∠=-,故,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,故π42cos π42cos cos 4AE AF AE AF θθ=⎛⎫- ⎪⋅⋅⎝⎭ππcos cos 44θθθθ=⎡⎤⎡⎤⎛⎫⎛⎫+-+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎝⎭当π2π,Z 4k k θ-=∈时,πcos 214θ⎛⎫-= ⎪⎝⎭,即π8θ=时,此时AE AF ⋅)1612=-.故答案为:)161.【点睛】关键点点睛:本题解决的关键是将所求转化为关于θ的表达式,从而得解,6.2⎛ ⎝【分析】由正弦定理可得sinB sin b cC=b c λ+sin()B θ=+且tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,可知b c λ+存在最大值即2B πθ+=,进而可求λ的范围.【详解】∵1a =,34A π=,由正弦定理得:sinB sin 2b c C =∴)sin sin sin sin cos sin 422b c B C B B B B B πλλ⎫⎛⎫+=+=-=-⎪ ⎪⎪⎝⎭⎭1)sin cos sin()B B B θ=-+⋅+,其中tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,∴b c λ+存在最大值,即2B πθ+=有解,即,42ππθ⎛⎫∈ ⎪⎝⎭,10->,解得2λ>1>,解得λ<,故λ的范围是2⎛ ⎝.故答案为:2⎛ ⎝.【点睛】关键点点睛:应用正弦定理边角关系、辅助角公式,结合三角形内角和、三角函数的性质列不等式组求参数范围.反思提升:1.求三角函数的定义域通常要解三角不等式(组),解三角不等式(组)常借助三角函数的图象.2.求解三角函数的值域(最值)常见的几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【考点2】三角函数的周期性、奇偶性、对称性一、单选题1.(2024·重庆·模拟预测)将函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,所得图象关于坐标原点对称,则ϕ的值可以为()A .2π3B .π3C .π6D .π42.(2024·湖北武汉·模拟预测)若函数()()ππ3cos 022f x x ωϕωϕ⎛⎫=+<-<< ⎪⎝⎭,的最小正周期为π,在区间ππ,66⎛⎫- ⎪⎝⎭上单调递减,且在区间π0,6⎛⎫ ⎪⎝⎭上存在零点,则ϕ的取值范围是()A .ππ,62⎛⎫ ⎪⎝⎭B .3π,2π⎛⎤-- ⎥⎝⎦C .ππ,32⎡⎫⎪⎢⎣⎭D .π0,3⎛⎤⎥⎝⎦3.(2024·北京西城·二模)将函数()tan f x x =的图象向右平移1个单位长度,所得图象再关于y 轴对称,得到函数()g x 的图象,则()g x =()A .1tan -xB .1tan --xC .tan (1)--x D .tan (1)-+x 二、多选题4.(2024·河南洛阳·模拟预测)已知函数3ππsin ,2π2π44()()π5πcos ,2π2π44x k x k f x k x k x k ⎧-≤≤+⎪⎪=∈⎨⎪+<<+⎪⎩Z ,则()A .()f x 的对称轴为()ππ,Z 4x k k =+∈B .()f x 的最小正周期为4πC .()f x 的最大值为1,最小值为2-D .()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增5.(2024·辽宁·二模)已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭满足πππ(),263f x f x f f ⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0,且在π5π,1212⎛⎫⎪⎝⎭上单调递减,则()A .函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称B .ϕ可以等于π4-C .ω可以等于5D .ω可以等于36.(23-24高三上·山西运城·期末)已知函数()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭,则()A .()f x 的一个周期为2B .()f x 的定义域是1,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭C .()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称D .()f x 在区间[]1,2上单调递增三、填空题7.(2024·全国·模拟预测)已知函数()()21cos cos 02f x x x x ωωωω=->,若()f x 的图象在[]0,π上有且仅有两条对称轴,则ω的取值范围是.8.(2024·四川雅安·三模)已知函数()e cos2e x x a f x x ⎛⎫=- ⎪⎝⎭是偶函数,则实数=a .9.(2023·四川达州·一模)函数()2lntan 32x f x m x x -=+++,且()6f t =,则()f t -的值为.参考答案:1.B【分析】由三角函数的平移变化结合奇函数的性质可得π2π3k k ϕ+=∈Z ,,解方程即可得出答案.【详解】因为()f x 向右平移ϕ个单位后解析式为π=sin 223y x ϕ⎛⎫-- ⎪⎝⎭,又图象关于原点对称,πππ2π,01362k k k k k ϕϕϕ∴+=∈∴=-+∈>∴=Z Z ,,,,时,π3ϕ=,故选:B.2.B【分析】根据给定周期求得2ω=-,再结合余弦函数的单调区间、单调性及零点所在区间列出不等式组,然后结合已知求出范围.【详解】由函数()f x 的最小正周期为π,得2ππ||ω=,而0ω<,解得2ω=-,则()3cos(2)3cos(2)f x x x ϕϕ=-+=-,由2π22ππ,Z k x k k ϕ≤-≤+∈,得2π+22ππ,Z k x k k ϕϕ≤≤++∈,又()f x 在ππ(,)66-上单调递减,因此π2π+3k ϕ≤-,且π2ππ,Z 3k k ϕ≤++∈,解得2ππ2π2π,Z 33k k k ϕ--≤≤--∈①,由余弦函数的零点,得π2π,Z 2x n n ϕ-=+∈,即π2π,Z 2x n n ϕ=++∈,而()f x 在(0,)6π上存在零点,则ππ0π,Z 23n n ϕ<++<∈,于是ππππ,Z 26n n n ϕ--<<--∈②,又ππ22ϕ-<<,联立①②解得ππ23ϕ-<≤-,所以ϕ的取值范围是ππ(,]23--.故选:B 3.D【分析】根据正切函数图象的平移变换、对称变换即可得变换后的函数()g x 的解析式.【详解】将函数()tan f x x =的图象向右平移1个单位长度,所得函数为()(1)tan 1f x x -=-,则函数()(1)tan 1f x x -=-的图象再关于y 轴对称得函数()()()()1tan 1tan 1g x f x x x =--=--=-+.故选:D.4.AD【分析】作出函数()f x 的图象,对于A ,验算()π2π2f k x f x ⎛⎫+-= ⎪⎝⎭是否成立即可;对于B ,由(),(2π)x f x f x ∈+=R 即可判断;对于CD ,借助函数单调性,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值验算即可判断CD.【详解】作出函数()f x 的图象如图中实线所示.对于A ,由图可知,函数()f x 的图象关于直线3ππ5π,,444x x x =-==对称,对任意的k ∈Z ,π1ππ1ππ2πsin 2πcos 2πsin 2πcos 2π2222222f k x k x k x k x k x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=+-++--+--+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111(cos sin )cos sin |(sin cos )|sin cos |()2222x x x x x x x x f x =+--=+--=,所以函数()f x 的对称轴为()ππ,Z 4x k k =+∈,A 正确;对于B ,对任意的11,(2π)[sin(2π)cos(2π)]sin(2π)cos(2π)22x f x x x x x ∈+=+++-+-+R 11(sin cos )|sin cos |()22x x x x f x =+--=,结合图象可知,函数()f x 为周期函数,且最小正周期为2π,故B 错误;对于C ,由A 选项可知,函数()f x 的对称轴为()ππ,Z 4x k k =+∈,且该函数的最小正周期为2π,要求函数()f x 的最大值和最小值,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值,因为函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,所以当π5π,44x ⎡⎤∈⎢⎥⎣⎦时,min ()(π)cos πf x f ==1=-,因为ππ5π5ππsin sin sin 4424442f f ⎛⎫⎛⎫====-=- ⎪ ⎪⎝⎭⎝⎭,所以max π()42f x f ⎛⎫== ⎪⎝⎭,因此()f x ,最小值为-1,故C 错误;对于D ,由C 选项可知,函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,D 正确,故选:AD .【点睛】关键点点睛:判断C 选项的关键是求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值即可,由此即可顺利得解.5.ABD【分析】根据题意,可得函数()y f x =的图象关于π4x =-对称,关于点π,04⎛⎫ ⎪⎝⎭对称,由三角函数的对称性性质可得π4ϕ=±,从而判断选项A 、B ;再根据函数的单调性,可求出ω的值,从而判定选项C 、D.【详解】由π()2f x f x ⎛⎫-=- ⎪⎝⎭,则ππππ(4424f x f x f x ⎛⎫⎛⎫-=+-=-- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于π4x =-对称,又πππ5π126312<<<,且ππ063f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则1πππ02634f f ⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,故A 正确;根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,可得,()()2121ππ,1242k k k k ϕω-=+=+-,由于π||2ϕ<,所以π4ϕ=±,故B 正确;当π4ϕ=时,由π5π1212x <<,得πππ5ππ1244124x ωωω+<+<+,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧+≥⎪⎪⎨⎪+≤+⎪⎩,即92424355k ω-≤≤+,又0ω>,所以90,05k ω=<<,又()2112k k ω=+-,所以1ω=,当π4ϕ=-时,由π5π1212x <<,得πππ5ππ1244124x ωωω-<-<-,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧-≥⎪⎪⎨⎪-≤+⎪⎩,即2424335k k ω+≤≤+,又0ω>,所以0,3k ω==,故C 错误,D 正确.故选:ABD【点睛】关键点点睛:根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,从而()()2121ππ,1242k k k k ϕω-=+=+-.6.ACD 【分析】利用正切函数的图象与性质一一判定选项即可.【详解】对于A ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知其最小正周期π2π2T ==,故A 正确;对于B ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知πππ1π2,Z 2422x k x k k +≠+⇒≠+∈,故B 错误;对于C ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知1πππ2242x x =⇒+=,此时()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称,故C 正确;对于D ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知[]ππ3π5π1,2,2444x x ⎡⎤∈⇒+⎢⎥⎣⎦,又tan y x =在π3π,22⎡⎤⎢⎥⎣⎦上递增,显然3π5π,44⎡⎤⊂⎢⎥⎣⎦π3π,22⎡⎤⎢⎥⎣⎦,故D 正确.故选:ACD 7.54,63⎡⎫⎪⎢⎣⎭【分析】运用正余弦二倍角公式及辅助角公式化简()f x ,由已知条件结合正弦函数性质可得结果.【详解】因为()211πcos cos sin2cos2sin 22226f x x x x x x x ωωωωωω⎛⎫=-=-=- ⎪⎝⎭,因为()f x 的图象在[]0,π上有且仅有两条对称轴,所以3ππ5π2π262ω≤-<,解得5463ω≤<,所以ω的取值范围是54,63⎡⎫⎪⎢⎣⎭.故答案为:54,63⎡⎫⎪⎢⎣⎭.8.1-【分析】根据偶函数的定义,即可列关系式求解.【详解】()f x 定义域为R ,()()()1e cos 2e cos2e cos2e e e x xx xx xa af x x a x f x x --⎛⎫⎛⎫⎛⎫-=--=-+==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()1111e e e e 1e 0e e e e e xxx xx x x x xx a a a a ⎛⎫⎛⎫-+=-⇒-=-⇒+-= ⎪ ⎪⎝⎭⎝⎭,故1a =-,故答案为:1-9.0【分析】构造()()3g x f x =-,得到()g x 为奇函数,从而根据()6f t =得到()3g t =,由()3g t -=-求出()f t -.【详解】令()()23lntan 2x g x f x m x x -=-=++,定义域为{|2x x <-或2x >且ππ,Z}2x k k ≠+∈,关于原点对称,则()()()222lntan ln tan ln tan 222x x x g x m x m x m x g x x x x --+--=+-=-=--=--+-+,故()g x 为奇函数,又()()3633g t t f =-=-=,故()()33t g t f -=--=-,解得()0f t -=.故答案为:0反思提升:(1)三角函数周期的一般求法①公式法;②不能用公式求周期的函数时,可考虑用图象法或定义法求周期.(2)对于可化为f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z )(或令ωx +φ=k π(k ∈Z )),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ωx +φ=π2+k π(k ∈Z x 即可.(3)对于可化为f (x )=A tan(ωx +φ)形式的函数,如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π2(k ∈Z ),求x 即可.(4)三角函数型奇偶性的判断除可以借助定义外,还可以借助其图象与性质,在y =A sin(ωx +φ)中代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).【考点3】三角函数的单调性一、单选题1.(2024·云南·模拟预测)已知函数()f x 为R 上的偶函数,且当()1212,,0,x x x x ∞∈-≠时,()()12120f x f x x x ->-,若12log 3a f ⎛⎫= ⎪⎝⎭,()()0.20.5,sin1b f c f ==,则下列选项正确的是()A .c b a <<B .b<c<aC .a b c<<D .c<a<b2.(2024·陕西榆林·三模)已知()0,2πα∈,若当[]0,1x ∈时,关于x 的不等式()()2sin cos 12sin 1sin 0x x αααα++-++>恒成立,则α的取值范围为()A .π5π,1212⎛⎫⎪⎝⎭B .π5π,66⎛⎫ ⎪⎝⎭C .ππ,63⎛⎫ ⎪⎝⎭D .π5π,36⎛⎫ ⎪⎝⎭二、多选题3.(2022·湖北武汉·三模)已知函数()2cos f x x x =-的零点为0x ,则()A .012x <B .013>xC .0tan 2x >D .001<sin 4x x -4.(2024·湖南长沙·一模)已知函数()()tan (0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .π6A ωϕ⋅⋅=B .()f x 的图象过点11π6⎛ ⎝⎭C .函数()y f x =的图象关于直线5π3x =对称D .若函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[]1,1-三、填空题5.(2023·陕西西安·模拟预测)已知函数()()cos f x A x b ωϕ=++,(0A >,0ω>,π2ϕ<)的大致图象如图所示,将函数()f x 的图象上点的横坐标拉伸为原来的3倍后,再向左平移π2个单位长度,得到函数()g x 的图象,则函数()g x 的一个单调递增区间为.6.(2022·上海闵行·模拟预测)已知[0,π]∈,若sin cos 0αα->,则α的取值范围是.参考答案:1.C【分析】根据条件判断函数的单调性,结合函数奇偶性和单调性的关系进行转化求解即可.【详解】当()12,,0x x ∞∈-时,()()12120f x f x x x ->-,所以()f x 在(),0∞-上单调递增;又有()f x 为R 上的偶函数,所以()f x 在()0,∞+上单调递减.由于我们有()11100.2555522πlog 3log 210.50.50.50.4984210.870.87sin sin 1023>==>=>==>=>>,即0.22sin10log 30.5>>>,故()()()0.22log 30.5sin1f f f <<.而()()1222log 3log 3log 3a f f f ⎛⎫==-= ⎪⎝⎭,()0.20.5b f =,()sin1c f =,故a b c <<.故选:C.2.A【分析】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,易得()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=∈++,则()()00101sin 20sin cos 1f f f ααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪+ ⎪⎪> ⎪⎪++ ⎪⎪⎝⎭⎩,进而可得出答案.【详解】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,由题意可得()()0010f f ⎧>⎪⎨>⎪⎩,则sin 0cos 0αα>⎧⎨>⎩,又因为()0,2πα∈,所以π0,2α⎛⎫∈ ⎪⎝⎭,函数()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=++,则()()2sin 0cos 011sin sin 22sin cos 12sin 1sin 0sin cos 1sin cos 1αααααααααααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪++ ⎪⎪++-+⋅+> ⎪⎪++++ ⎪⎪⎝⎭⎩,即()2sin 0cos 0(2sin 1)4sin sin cos 10αααααα⎧>⎪>⎨⎪+-++<⎩,即sin 0cos 01sin22ααα⎧⎪>⎪>⎨⎪⎪>⎩,结合π0,2α⎛⎫∈ ⎪⎝⎭,解得π5π1212α<<.故选:A.3.ABD【分析】对AB ,求导分析可得()f x 为增函数,再根据零点存在性定理可判断;对C ,根据AB 得出的01132x <<结合正切函数的单调性可判断;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,再根据零点存在性定理,放缩判断()g x 的正负判断即可【详解】对AB ,由题()2sin 0f x x '=+>,故()f x 为增函数.又111cos 022f ⎛⎫=-> ⎪⎝⎭,12122cos cos 03333632f π⎛⎫=-<-=-< ⎪⎝⎭,故01132x <<,故AB 正确;对C ,因为01132x <<,所以01tan tan 2t n 14a x π<=<1>,故C 错误;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,则()1cos 0g x x '=->,故()g x 为增函数.故()111111sin sin sin2424124344g x g πππ⎛⎫⎛⎫<=-<-=--= ⎪ ⎪⎝⎭⎝⎭,因为(2130-=<,故1<,故104<,即()0g x <,故111sin 0,,432x x x ⎛⎫--<∈ ⎪⎝⎭,故001<sin 4x x -,D 正确;故选:ABD【点睛】本题主要考查了利用导数分析函数零点的问题,一般需要用零点存在性定理判断零点所在的区间,同时在判断区间端点正负时,需要适当放缩,根据能够确定取值大小的三角函数值进行判断,属于难题4.BCD【分析】根据函数图象所经过的点,结合正切型函数的对称性、单调性逐一判断即可.【详解】对于A :设该函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()()tan f x A x ϕ=+,由函数的图象可知:πππππ623k k ϕϕ+=+⇒=++,又0πϕ<<,所以π3ϕ=,即()πtan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:()π0tan 23f A A ===,所以2π3A ωϕ⋅⋅=,因此A 不正确;对于B :11π11ππ13ππ2tan 2tan 2tan 26636633f ⎛⎫⎛⎫=+===⨯= ⎪⎪⎝⎭⎝⎭,所以B 正确;对于C :因为5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫+=++= ⎪ ⎪⎝⎭⎝⎭,所以5π5π33f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于直线5π3x =对称,因此C 正确;对于D :()()ππ2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭当ππ,36x ⎛⎫∈- ⎪⎝⎭时,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=++ ⎪⎝⎭,当5ππ,63x ⎛⎤∈-- ⎥⎝⎦,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=-++ ⎪⎝⎭,当函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有()()2222011λλλ+-+≤⇒-≤≤,D 正确.故选:BCD【点睛】关键点睛:运用函数对称性、函数单调性的性质是解题的关键.5.7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)【分析】先根据()f x 的部分图象得到函数的周期、振幅、初相,进而求出()f x 的解析式,再根据函数图象的伸缩变换和平移变换得到()g x 的解析式,后可求()g x 的单调递增区间.【详解】由图可知πππ==43124T -,得=πT ,所以2π==2Tω,()112A =--=,1b =-,所以()()2cos 21f x x ϕ=+-,由图ππ2cos 2111212f ϕ⎛⎫⎛⎫=⨯+-= ⎪ ⎪⎝⎭⎝⎭,得π2π6k ϕ=-+,Z k ∈,又π2ϕ<,所以π6ϕ=-,故()π2cos 216f x x ⎛⎫ -⎪⎝⎭=-,由题意()1ππ2π2cos 212cos 132636g x x x ⎡⎤⎛⎫⎛⎫=⨯+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令2ππ2π2π36k x k -+≤+≤,Z k ∈,得7ππ3π3π44k x k -+≤≤-+,Z k ∈故函数()g x 的单调递增区间为7ππ3π,3π44k k ⎡⎤-+-+⎢⎥⎣⎦,Z k ∈,当0k =时,函数()g x 的一个单调递增区间为7ππ,44⎡⎤--⎢⎥⎣⎦,故答案为:7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)6.π3π(,)44【分析】根据角的范围分区间讨论,去掉绝对值号,转化为不含绝对值的三角不等式,求解即可.【详解】由题,当π[0,]2α∈时,原不等式可化为sin cos αα>,解得ππ42α<≤,当ππ2α<≤时,由原不等式可得tan 1α<-,解得π3π24α<<,综上π3π(,44α∈.故答案为:π3π(,)44反思提升:1.求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题,利用特值验证排除法求解更为简捷.【基础篇】一、单选题1.(2024·福建·模拟预测)若函数()sin23f x A x =-在3π5π,812⎛⎫ ⎪⎝⎭上有零点,则整数A 的值是()A .3B .4C .5D .62.(2024·贵州黔南·二模)若函数()πcos 3f x x ϕ⎛⎫=-+ ⎪⎝⎭为偶函数,则ϕ的值可以是()A .5π6B .4π3C .πD .π23.(2024·安徽·三模)“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(22-23高一下·湖北武汉·期中)若函数()sin 0y x x ωωω=->在区间π,03⎛⎫- ⎪⎝⎭上恰有唯一对称轴,则ω的取值范围为()A .17,22⎡⎫⎪⎢⎣⎭B .17,36⎛⎤ ⎥⎝⎦C .17,33⎛⎤ ⎥⎝⎦D .17,22⎛⎤ ⎥⎝⎦二、多选题5.(2024·云南·模拟预测)已知函数()()()sin ,0,0,πf x x ωϕωϕ=+>∈,如图,图象经过点π,112A ⎛⎫ ⎪⎝⎭,π,03B ⎛⎫⎪⎝⎭,则()A .2ω=B .π6ϕ=C .11π12x =是函数()f x 的一条对称轴D .函数()f x 在区间7π13π,1212⎛⎫⎪⎝⎭上单调递增6.(2023·辽宁·模拟预测)已知定义域为I 的偶函数0(),f x x I ∃∈,使()00f x <,则下列函数中符合上述条件的是()A .2()3f x x =-B .()22x xf x -=+C .2()log||f x x =D .()cos 1f x x =+7.(23-24高一上·广东肇庆·期末)关于函数πtan 3y x ⎛⎫=- ⎪⎝⎭,下列说法中正确的有()A .是奇函数B .在区间ππ,66⎛⎫- ⎪⎝⎭上单调递增C .5π,06⎛⎫⎪⎝⎭为其图象的一个对称中心D .最小正周期为π三、填空题8.(2022·江西·模拟预测)将函数()tan2f x x =的图像向左平移t (0t >)个单位长度,得到函数g (x )的图像,若12g π⎛⎫= ⎪⎝⎭,则t 的最小值是.9.(2022·重庆沙坪坝·模拟预测)若函数cos y x ω=在,06π⎛⎫- ⎪⎝⎭单调递增,在0,3π⎛⎫ ⎪⎝⎭单调递减,则实数ω的取值范围是.10.(21-22高三上·河南·阶段练习)已知函数()3cos 2n f x x x p ⎛⎫=+ ⎪⎝⎭为偶函数,且当()0,x π∈时,()0f x >,则n 的值可能为.四、解答题11.(2022·北京门头沟·一模)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,6x π=是函数()f x 的对称轴,且()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调.(1)从条件①、条件②、条件③中选一个作为已知,使得()f x 的解析式存在,并求出其解析式;条件①:函数()f x 的图象经过点10,2A ⎛⎫⎪⎝⎭;条件②:,03π⎛⎫⎪⎝⎭是()f x 的对称中心;条件③:5,012π⎛⎫ ⎪⎝⎭是()f x 的对称中心.(2)根据(1)中确定的()f x ,求函数()0,2y f x x π⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的值域.12.(2021·浙江·模拟预测)已知函数()22sin 263f x x x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间.(2)若对任意的()2,2m ∈-,方程()f x m =(其中[)0,x a ∈)始终有两个不同的根1x ,2x .①求实数a 的值;②求12x x +的值.参考答案:1.C【分析】将函数的零点问题转化为sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上的交点问题,求出sin2y x =的值域即可.【详解】由于函数()sin23f x A x =-在3π5π,812⎛⎫⎪⎝⎭上有零点,所以方程sin230A x -=在3π5π812⎛⎫⎪⎝⎭,上有实数根,即sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上有交点,令2t x =,则3π5π46t <<,当3π5π46t <<,sin y t =单调递减,故在区间上最多只有1个零点,又1sin 2t ⎛∈ ⎝⎭,即312A ⎛∈ ⎝⎭,解得()6A ∈,由于A 是整数,所以5A =.故选:C.2.B【分析】由题意可知:0x =为函数()f x 的对称轴,结合余弦函数对称性分析求解.【详解】由题意可知:0x =为函数()f x 的对称轴,则ππ,3k k ϕ-+=∈Z ,则ππ,3k k ϕ=+∈Z ,对于选项A :令π5ππ36k ϕ=+=,解得12k =∉Z ,不合题意;对于选项B :令π4ππ33k ϕ=+=,解得1k =∈Z ,符合题意;对于选项C :令πππ3k ϕ=+=,解得23k =∉Z ,不合题意;对于选项D :令πππ32k ϕ=+=,解得16k =∉Z ,不合题意;故选:B.3.A【分析】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,根据正切函数的对称性可得ππ,42k k ϕ=-+∈Z ,再根据充分、必要条件结合包含关系分析求解.【详解】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,则ππ,42k k ϕ+=∈Z ,解得ππ,42k k ϕ=-+∈Z ,因为π|π,4k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 是ππ|,42k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 的真子集,所以“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的充分不必要条件.故选:A.4.D【分析】利用辅助角公式化简得到π2cos 6y x ω⎛⎫=+ ⎪⎝⎭,再求出ππππ,6366x ωω⎛⎫ ⎪⎝+∈-⎭+,结合对称轴条数得到不等式,求出答案.【详解】πsin 2cos 6y x x x ωωω⎛⎫=-=+ ⎪⎝⎭,。

三角函数的图像与性质一轮复习课件.

三角函数的图像与性质一轮复习课件.
思想方法 练出高分
题型分类·深度剖析
题型一 求三角函数的定义域和最值
思维启迪 解析 答案 思维升华
【例 1】 (1)(2012· 山东)函数 y πx π =2sin 6 -3 (0≤x≤9)的最大 值与最小值之和为 A.2- 3 C.-1 B.0 D. -1- 3 ( A )
题型分类
思想方法
练出高基础 突破疑难
题号
1 2 3 4 5
答案
(1) √ (2) √ (3) × (4) × (5) × (6) ×
解析
C
B
B
π π {x|-3≤x<-2或 0<x<2}
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 求三角函数的定义域和最值
思维启迪 解析 答案 思维升华
【例 1】 (1)(2012· 山东)函数 y πx π =2sin 6 -3 (0≤x≤9)的最大 值与最小值之和为 A.2- 3 C.-1 B.0 D. -1- 3 ( )
(1) 利用三角函数的性质先 求出函数的最值.
∵0≤x≤9, π π π 7π ∴-3≤6x-3≤ 6 ,
奇函数 奇函数 kπ ( ,0)(k∈Z) 2
时,ymin=-1 奇偶性 对称 中心
(kπ,0)(k∈Z)
π (2+kπ,0) (k∈Z)
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
知识回顾 理清教材
对称轴 方程 周期
π x= +kπ(k∈Z) x=kπ(k∈Z) 2


π
基础知识
k∈Z} . ______

专题五+5.3三角函数的图像与性质课件——2023届高三数学一轮复习

专题五+5.3三角函数的图像与性质课件——2023届高三数学一轮复习

标):ωx+φ=π+2kπ.(以上k∈Z)
例1
(2022重庆十一中月考,5)函数f(x)=Asin(ωx+φ)
A
0,
ω
0,
0
φ
2
的部分图象如图所示,将其向右平移 3 个单位长度后得到图象对应的函
数解析式为 ( )
A.y= 2 sin 2x
B.y=
2
sin
2x
3
C.y=
2
sin
2x
3
D.y=
5 3
, 13 6

3 2
, 5 2
,易知函数y=sin
x在
3 2
,
5 2
上单调递增,则函数f(x)=sin
2
x
3
在区间
,
5 4
上单调递增,故
D正确.故选BD.
答案 BD
考法三 三角函数的最值 求三角函数最值常见的函数形式
1.y=asin x+bcos x= a2 b2 sin(x+φ),其中cos φ= a ,sin φ= b .
2
,
0
,(π,-1),
3 2
,
0
,(2π,1).
2.用“五点法”画y=Asin(ωx+φ)(A,ω≠0)在一个周期内的简图 用五点法画y=Asin(ωx+φ)(A,ω≠0)在一个周期内的简图时,一般先列表,后 描点,连线,其中所列表如下:
ωx+φ
x
y=A· sin(ωx+φ)
0
π
2
-
π - + 2
左平移 个单位长度,得到曲线C2
12

三角函数的图象与性质课件高三数学一轮复习

三角函数的图象与性质课件高三数学一轮复习
,所以 ≤



3

C.
3


≤ φ ≤ 2π

D.
3
≤φ≤


[解析] 因为 ∈ [− , ],所以�� + ∈ [− + , + ].
又 ≤ <
所以


+ ≤ ,



+ ≥ ,

解得

+<

,且函数

≤≤

,即



在[− , ]上单调递增,
φ = kπ +
π
2
k∈ .
③若y = Atan ωx + φ 为奇函数,则有φ = kπ k ∈ .
自测诊断
1.函数f x = 2sin
A.
π
2
1
x
2

π
4
的最小正周期为(
B.π
[解析] 由题意知,在 =
D )
C.2π






D.4π


中, = ,∴ =


=
π 3π
π π
A.
B. ,
C. − ,
D.
4 4
2 2



[解析] 因为 = + − = + = − ,




令 − ≤ ≤ + , ∈




,解得 − ≤ ≤ + , ∈ ,

高三数学一轮复习知识点讲解5-3三角函数的图象与性质

高三数学一轮复习知识点讲解5-3三角函数的图象与性质

高三数学一轮复习知识点讲解专题5.3 三角函数的图象与性质【考纲解读与核心素养】1. 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 3.高考预测:(1) “五点法”作图; (2)三角函数的性质;(3)往往将三角恒等变换与三角函数图象、性质结合考查. 4.备考重点:(1)掌握正弦、余弦、正切函数的图象;(2)掌握三角函数的周期性、单调性、对称性以及最值.【知识清单】知识点1.正弦、余弦、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1- []1,1-R知识点2.“五点法”做函数()sin y A x h ωϕ=++的图象 “五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.【典例剖析】高频考点一 三角函数的定义域和值域 【典例1】(2020·山东高一期末)函数tan2xy =的定义域为_____.【答案】{}2,x x k k Z ππ≠+∈ 【解析】 解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan2xy =的定义域为{}2,x x k k Z ππ≠+∈. 故答案为:{}2,x x k k Z ππ≠+∈.【典例2】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【规律方法】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【变式探究】1.(2020·上海高三专题练习)函数sin y m x n =+的最大值为2,最小值为4-,则m =_________,n =_________.【答案】3± 1- 【解析】由已知得24m n m n ⎧+=⎪⎨-+=-⎪⎩,解得31m n =±⎧⎨=-⎩. 故答案为:3±;1-.2.(2020·全国高一课时练习)求下列函数的定义域. (1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z πππ≤≤+∈;(2)|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【解析】(1)要使函数有意义,必须使sin 0x ≥.由正弦的定义知,sin 0x ≥就是角x 的终边与单位圆的交点的纵坐标是非负数. ∴角x 的终边应在x 轴或其上方区域, ∴22,k x k k Z πππ≤≤+∈.∴函数y ={|22,}x k x k k Z πππ≤≤+∈.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠.∴,()2x k k Z x k πππ⎧≠+⎪∈⎨⎪≠⎩ ∴,2kx k Z π≠∈. ∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.【总结提升】在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 高频考点二 三角函数的单调性【典例3】(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.【典例4】(2020·河南洛阳�高一期末(理))已知sin33a =︒,cos55b =︒,tan35c =︒则a ,b ,c ,的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】因为cos55sin35sin33b a ==>=,且sin 35tan 35sin 35cos35c ==>,所以c b a >>. 故选:A .【典例5】(2020·浙江柯城�衢州二中高三其他)已知函数()()2sin 0f x x ωω=>,则()f x 的最大值为________,若()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是________. 【答案】2 30,2⎛⎤ ⎥⎝⎦【解析】因为函数()()2sin 0f x x ωω=>, 所以()[]2sin 2,2ω=∈-f x x , 所以()f x 的最大值为2, 因为()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数, 所以,,4322πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 所以4232πωππωπ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得30,2ω⎛⎤∈ ⎥⎝⎦.故答案为:(1). 2 (2). 30,2⎛⎤⎥⎝⎦【规律方法】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解. 【变式探究】1.(2020·河北路北�开滦第一中学高一期末)在ABC 中,A B C >>,且2C π≠,则下列结论中正确的是( ) A .tan tan A C < B .tan tan A C >C .sin sin <A CD .sin sin A C >【答案】D 【解析】若543,,12123124A B C πππππ=====,由于02C A π<<<,则tan tan A C >,所以A 选项错误. 若74,,1212312A B C ππππ====,则tan 0tan A C <<, 75sin sin sin sin sin 121212A C πππ==>=,所以BC 选项错误.在三角形ABC 中,大角对大边,由于A C >,所以a c >,由正弦定理得2sin 2sin R A R B >①,R 是三角形ABC 外接圆的半径.由①得sin sin A C >.所以D 选项正确. 故选:D2.(2020·河南林州一中高一月考)π()sin()(0,),2f x x ωϕωϕ=+>≤若π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴,()f x 在区间ππ(,)54上单调,则ω的最大值是 ( ) A .14 B .18C .20D .22【答案】A 【解析】因为π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴, 所以2144n T n N ,π+=∈,即21244n ππω+=, n N ∈,即42,?n n N ω=+∈,即ω为正偶数. 因为()f x 在区间ππ,54⎛⎫⎪⎝⎭上单调,则ππ45202T π-=≤,即210T ππω=≥. 20ω≤. 当18ω=时,ππ sin 18088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得9 ,4k k Z πϕπ-+=∈,9 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=,()πsin 184f x x ⎛⎫=+ ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π779518,42020x ππ⎛⎫+∈ ⎪⎝⎭,其中,901202f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调; 当14ω=时,ππ sin 14088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得7 ,4k k Z πϕπ-+=∈,7 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=-,()πsin 144f x x ⎛⎫=- ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π516514,42020x ππ⎛⎫-∈ ⎪⎝⎭,满足()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调. 故ω的最大值是14. 故选A.3.(2019·涡阳县第九中学高一期末(文))已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭.求()f x 的单调增区间; 【答案】5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【解析】因为sin y x =在区间2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上单调递增,所以222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-≤≤+∈ 所以()f x 的单调增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【总结提升】1.对正弦函数、余弦函数单调性的两点说明(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 2.对正弦函数、余弦函数最值的三点说明(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.3.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),…上都是增函数.(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π2)∪…上是增函数.高频考点三 三角函数的周期性 【典例6】(2018年全国卷Ⅲ文)函数的最小正周期为( )A. B. C. D.【答案】C 【解析】 由已知得的最小正周期故选C. 【规律方法】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【变式探究】已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【答案】(1)见解析;(2)是,2π. 【解析】(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π]k ∈Z ,0,x ∈[2k π-π,2k πk ∈Z . 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π. 【特别提醒】最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.. 高频考点四 三角函数的奇偶性【典例7】(2018届辽宁省丹东市测试(二))设,若,则函数A. 是奇函数B. 的图象关于点对称C. 是偶函数D. 的图象关于直线对称【答案】C 【解析】 由题意得,∴.∴,∴函数为偶函数.故选C . 【规律方法】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【变式探究】(浙江省2019届高考模拟卷(二))函数的图象可能是( )A .B .C .D .【答案】A 【解析】 由题意得函数的定义域为,∵,∴函数为偶函数,∴函数图象关于y 轴对称,故排除C,D . 又当时,,因此可排除B . 故选A . 【特别提醒】利用定义判断与正切函数有关的一些函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看f(x)的定义域是否关于原点对称,然后再判断f(-x)与f(x)的关系. 高频考点五 三角函数的对称性 【典例8】(2018年江苏卷)已知函数的图象关于直线对称,则的值是________. 【答案】【解析】 由题意可得,所以,因为,所以【规律方法】函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【变式探究】(2021·广西钦州一中高三开学考试(理))关于函数()1cos cos f x x x=+有如下四个命题: ①()f x 的图像关于y 轴对称. ②()f x 的图像关于原点对称. ③()f x 的图像关于直线2x π=对称.④()f x 的图像关于点,02π⎛⎫⎪⎝⎭对称. 其中所有真命题的序号是__________. 【答案】①④ 【解析】对于①,()f x 定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,显然关于原点对称, 且()()()()11cos cos cos cos x x x f x f x x=-=-++=-,所以()f x 的图象关于y 轴对称,命题①正确;对于②,532f π⎛⎫= ⎪⎝⎭,532f π⎛⎫-= ⎪⎝⎭,则33f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于原点对称,命题②错误; 对③,532f π⎛⎫= ⎪⎝⎭,2532f π⎛⎫=- ⎪⎝⎭,则233f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于2x π=对称,命题③错误; 对④,1sin 2sin f x x x π⎛⎫-=+ ⎪⎝⎭,1sin 2sin f x x x π⎛⎫+=-- ⎪⎝⎭, 则22f x f x ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭,命题④正确. 故答案为:①④.【特别提醒】1.求y =Asin(ωx +φ)或y =Acos(ωx +φ)函数的对称轴或对称中心时,应把ωx +φ作为整体,代入相应的公式中,解出x 的值,最后写出结果.2.正切函数图象的对称中心是(k π2,0)而非(k π,0)(k ∈Z ).高频考点六 三角函数的图象和性质的应用 【典例9】(2018年理北京卷】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________. 【答案】 【解析】 因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.【典例10】(2020·上海高三专题练习)函数3sin 1()sin 2x f x x -=+的最大值是____,最小值是_________.【答案】234- 【解析】3(sin 2)77()3sin 2sin 2x f x x x +-==-++ sin [1,1]x[]sin 21,3x ∴+∈11,1sin 23x ⎡⎤∴∈⎢⎥+⎣⎦777,sin 23x ⎡⎤∴-∈--⎢⎥+⎣⎦7234,sin 23x ⎡⎤∴-∈-⎢⎥+⎣⎦即max 2()3f x =,min ()4f x =- 故答案为:23;4- 【典例11】(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6f x x πωω=-->的周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在[0,]2π上的最值及其对应的x 的值.【答案】(1)(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.【解析】 (1)解:∵2T ππω==,∴2ω=,又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛⎫=-- ⎪⎝⎭, ∵222262k x k πππππ-+≤-≤+,k Z ∈,∴222233k x k ππππ-+≤≤+,k Z ∈, ∴63k x k ππππ-+≤≤+,k Z ∈,∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)解:∵02x π≤≤,∴02x ≤≤π,∴52666x πππ-≤-≤,∴1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭, ∴12sin 226x π⎛⎫-≤-≤ ⎪⎝⎭,∴22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭, 当0x =时,()min 2f x =-, 当226x ππ-=,即3x π=时,()max 1f x = 【规律方法】1.求形如y =a sin x +b 的函数的最值或值域时,可利用正弦函数的有界性(-1≤sin x ≤1)求解.2.对于形如y =A sin(ωx +φ)+k (Aω≠0)的函数,当定义域为R 时,值域为[-|A |+k ,|A |+k ];当定义域为某个给定的区间时,需确定ωx +φ的范围,结合函数的单调性确定值域.3.求形如y =a sin 2x +b sin x +c ,a ≠0,x ∈R 的函数的值域或最值时,可以通过换元,令t =sin x ,将原函数转化为关于t 的二次函数,利用配方法求值域或最值,求解过程中要注意正弦函数的有界性.4.求形如y =a sin x +bc sin x +d ,ac ≠0的函数的值域,可以用分离常量法求解;也可以利用正弦函数的有界性建立关于y 的不等式反解出y .综上可知,求与三角函数有关的函数的值域(或最值)的常用方法有:(1)借助于正弦函数的有界性、单调性求解;(2)转化为关于sin x 的二次函数求解.注意求三角函数的最值对应的自变量x 的值时,要考虑三角函数的周期性. 【变式探究】1.(2020·山东潍坊�高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>-⎪⎝⎭B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭【答案】C 【解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+,令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈, 当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭. 故选:C.2.(2020·陕西新城�西安中学高三月考(文))设0a <,若不等式22cos (1)cos 0x a x a -+-+≥对于任意的x ∈R 恒成立,则a 的取值范围是__________. 【答案】2a ≤- 【解析】令cos [1,1]t x =∈- ,则不等式22()(1)0f t t a t a =---≤ 对[1,1]t ∈- 恒成立,因此22(1)00,02(1)020f a a a a f a a -≤⎧-≤⎧⇒<∴≤-⎨⎨≤--≤⎩⎩ 3.(浙江省绍兴市第一中学2019届高三上期末)设函数(1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为,求的值【答案】(1) 最小正周期,为的单调递增区间;(2) .【解析】 (1)则的最小正周期当时,单调递增即的单调递增区间为:(2)当时,当,即时,所以【总结提升】比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.。

说课:三角函数的图象与性质

说课:三角函数的图象与性质
移法),从而使学生掌握作三角函数基本图象的基本方 法,为三角函数性质的学习做好铺垫。
教学流程2:回顾概念、夯实基础
问题二:从这些三角函数的图象中,我们可以观 教材分析 察到哪些性质?
学情分析 教学目标 教法学法 教学流程 教学反思
教学流程2:回顾概念、夯实基础
教材分析
三 学情分析 角
函 教学目标 数
教法学法
还不够强;
教学流程 学生的书面表达能力还比较欠缺。
教学反思
教学目标
教材分析 学情分析 教学目标 教法学法 教学流程 教学反思
(1)通过回顾正弦、余弦函数在区间[0,2π]的图像, 能概括图象关键“五点”。
(2)借助三角函数的图象,进一步理解三角函数的性质 (如定义域、值域、最值、单调性等)。 (3)通过三角函数性质的研究,体验数形结合思想, 体会函数与方程、分类讨论思想,通过换元方法体会 化归的思想。 (4)通过让学生画图、观察、讨论等方式,体会三角 函数图像的优美和性质的重要性,激发学生学习的兴趣, 培养学生勇于探索,善于发现的创新思想,形成实事求 是的科学态度。
教材分析
一轮复习课和新课的区别与联系 教材分析
学情分析
教学目标
教法学法 本节一轮复习课的课时分配
教学流程 第一课时:复习回顾正、余弦、正切函数的定义、图象,研究
三角函数的定义域、值域和单调性等基本性质。
教学反思 第二课时:通过三角函数进一步研究函数的周期性、奇偶性,
并综合应用三角函数的图象与性质解决相关问题。
三角函数的图象与性质(1)(一轮复习课)
教材分析 学情分析 教学目标 教法学法 教学流程 教学反思
高三学生的认知分析

高三学生的能力分析

高三高考数学第一轮复习课件三角函数复习

高三高考数学第一轮复习课件三角函数复习

]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2

(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+

2023年新高考数学一轮复习5-3 三角函数的图象与性质(知识点讲解)含详解

2023年新高考数学一轮复习5-3 三角函数的图象与性质(知识点讲解)含详解

专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭例 4. 函数y =sin x -cos x 的定义域为 .【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线.(3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<-例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T 2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x ∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π= 3π例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( )A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-. 【解析】 【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =, 因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsinφ16,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤, 因此,当11236x ππ+=时,即34x π=时,32y =-, 当5232x ππ+=时,即1312x π=时,3y =. 所以该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值是3,最小值是32-.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)完善表格见解析;图象见解析;最大值为2,最小值为 【解析】 【分析】(1)利用最大值点和零点可确定最小正周期,由此可求得ω;利用()01f =可求得ϕ,由此可得()f x 解析式;令()222262k x k k Z πππππ-+≤+≤+∈即可求得单调递增区间;(2)令26X x π=+,利用五点作图法即可完善表格并得到图象,结合图象可求得最值.(1)若()12f x =,()20f x =,即1x 是()f x 的最大值点,2x 是()f x 的零点,且12x x -的最小值为4π,设()f x 的最小正周期为T ,则44T π=,即2T ππω==,解得:2ω=. 由()01f =可得:()02sin 1f ϕ==,即有1sin 2ϕ=, 26k πϕπ∴=+或()526k k Z ππ+∈,又2πϕ<,6πϕ∴=, 综上所述:()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;令()222Z 262k x k k πππππ-+≤+≤+∈,解得:()Z 36k x k k ππππ-+≤≤+∈,()f x ∴的单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)根据“五点作图法”的要求先完成表格:令2X x π=+.由图可知:当6x π=时,()f x 取到最大值2;当712x π=时,()f x 取到最小值3-. 【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭【答案】C 【解析】 【分析】利用关于正切型函数的不等式去求函数()f x =的定义域【详解】由πtan(2)14x,可得ππππ2π442k x k ,则π3πππ2428k k x则函数()f x 3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭ 故选:C例 4. 函数y =sin x -cos x 的定义域为 . 【答案】5{|22,}44x k x k k Z ππππ+≤≤+∈ 【解析】法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为4π,54π,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈. 法二:sin x -cos x =2sin (4x π-)≥0,将4x π-视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -4π≤π+2k π(k ∈Z ),解得2k π+4π≤x ≤2k π+54π (k ∈Z ),所以定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈ 【点睛】若定义域中含k π或2k π应注明k ∈Z . 【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线. (3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-【答案】A 【解析】709,,sin()1,363663x x x ππππππ∴≤≤∴-≤-≤≤-≤max min 2,y y ∴==故选A例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.【答案】16,8⎡⎤-⎢⎥⎣⎦【解析】 【分析】由x 的范围求出tan x 的范围,再根据二次函数的性质即可得出答案. 【详解】因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]tan 1,1x ∈-,22312tan 3tan 12tan 48y x x x ⎛⎫=-+-=--+ ⎪⎝⎭,则当3tan 4x =时,()max 18f x =,当tan 1x =-时,()min 6f x =-, 所以函数()f x 的值域为16,8⎡⎤-⎢⎥⎣⎦.故答案为:16,8⎡⎤-⎢⎥⎣⎦.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π,076x π=,03y =;(2)最大值0,最小值3-. 【解析】 【详解】试题分析:(1)由图可得出该三角函数的周期,从而求出00,x y ;(2)把26x π+看作一个整体,从而求出最(1)由题意知:()f x 的最小正周期为π,令y=3,则2+2k k 62x Z πππ+=∈,,解得+k k 6x Z ππ=∈,,所以076x π=,03y =. (2)因为[,]212x ππ∈--,所以52[,0]66x ππ+∈-,于是 当206x π+=,即12x π=-时,()f x 取得最大值0;当262x ππ+=-,即3x π=-时,()f x 取得最小值3-.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】 解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,CD 选项均不满足条件.例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】 【详解】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<- 【答案】A 【解析】 【分析】依题意可求ω=2,又当x 23π=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=A sin (2x 6π+),解:依题意得,函数f (x )的周期为π, ∵ω>0, ∴ω2ππ==2.又∵当x 23π=时,函数f (x )取得最小值, ∴223π⨯+φ=2k π32π+,k ∈Z ,可解得:φ=2k π6π+,k ∈Z , ∴f (x )=A sin (2x +2k π6π+)=A sin (2x 6π+).∴f (﹣2)=A sin (﹣46π+)=A sin (6π-4+2π)>0.f (2)=A sin (46π+)<0, f (0)=A sin 6π=A sin56π>0, 又∵326ππ->4+2π562ππ>>,而f (x )=A sin x 在区间(2π,32π)是单调递减的,∴f (2)<f (﹣2)<f (0). 故选A .例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【答案】D【解析】法一:(反子集法)∵x ∈⎝⎛⎭⎫π2,π,∴ωx +π4∈⎝⎛⎭⎫πω2+π4,πω+π4. ∵f (x )在⎝⎛⎭⎫π2,π上单调递减,∴⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,解得⎩⎨⎧ω≥4k +12,k ∈Z ,ω≤2k +54,k ∈Z.∴k =0,此时12≤ω≤54,故选D .法二:(子集法)由2k π+π2≤ωx +π4≤2k π+3π2,得2k πω+π4ω≤x ≤2k πω+5π4ω,k ∈Z ,因为f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减, 所以⎩⎨⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得⎩⎨⎧ω≥4k +12,ω≤2k +54.因为k ∈Z ,ω>0,所以k =0,所以12≤ω≤54,即ω的取值范围为⎣⎡⎦⎤12,54.故选D . 【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3【答案】A 【解析】 【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<, 322π⎛⎫324ππ2所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】 由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+【答案】A 【解析】 【分析】求出函数的周期,函数的奇偶性,判断求解即可. 【详解】 22πy =sin (2x 2π+)=cos2x ,函数是偶函数,周期为:π,不满足题意,所以B 不正确;y =sin2x +cos2x =(2x 4π+),函数是非奇非偶函数,周期为π,所以C 不正确;y =sin x +cosx =(x 4π+),函数是非奇非偶函数,周期为2π,所以D 不正确;故选A .例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.三角函数是奇、偶函数的充要条件(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π= 【答案】A 【解析】 【详解】试题分析:由题图知,2A =,最小正周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+.因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22()32k k Z ππϕπ+=+∈,令0k =,得6πϕ=-,所以2sin(2)6y x π=-,故选A. 例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】 【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( ) A .[]4,2-- B .[]2,0-C .[]0,2D .[]2,4【答案】A(1)4sin(1)14sin11f -=-+=-+,因为sin1sin 4π>4sin110-+<,(0)4sin10f =>,因此()f x 在[1,0]-上有零点,故在[2,0]-上有零点;(2)4sin524sin(25)2f π=-=---,而025ππ<-<,即sin(25)0π->,因此(2)0f <,故()f x 在[0,2]上一定存在零点;虽然(4)4sin1740f =-<,但99()4sin(1)4sin(1)844f πππππ=+-=+-,又21243πππ<+<,即3sin(1)42π+>,从而,于是()f x 在区间9[2,]8π上有零点,也即在[2,4]上有零点,排除B ,C ,D ,那么只能选A .例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据()f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈, 因为0>ω,所以当0k =时min 3ω=; 故答案为:3例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3求出36x π+的范围,再由函数值为零,得到36x π+的取值可得零点个数.【详解】 详解:0x π≤≤ 193666x πππ∴≤+≤由题可知3336262x x ,ππππ+=+=,或5362x ππ+=解得4x ,99ππ=,或79π故有3个零点.。

2025高考数学一轮复习-4.4-三角函数的图象与性质【课件】

2025高考数学一轮复习-4.4-三角函数的图象与性质【课件】
第四章 三角函数、解三角形
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
1.用五点法作正弦函数和余弦函数的简图 ((π1),正0弦),函_数_3_2π_y,_=_-_s_in1__x,,(x2∈π,[0,0).2π]的图象中,五个关键点是:(0,0),π2,1, (2)余弦函数 y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),π2,0, ____(π__,__-__1_)_____,32π,0,(2π,1).
f-π8= 2sin2×-π8+π4+1=1,则 f(x)的图象关于点-π8,1对称,故 C 正确; 当 x∈-π4,π4时,2x+π4∈-π4,34π,故当 2x+π4∈-π4,π2,即 x∈-π4,π8 时,函数单调递增; 当 2x+π4∈π2,34π,即 x∈π8,π4时,函数单调递减,故 D 错误.
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
{xx∈R,且 x≠kπ+π2}
值域
___[_-__1_,__1_]____ ___[_-__1_,__1_] __
R
最小正周期
___2_π__
__2_π___
__π__
奇偶性
_奇__函__数___
3.函数 y=3tan
2x+π 4
的定义域是(
C
)
A.xx≠kπ+π2,k∈Z
B.xx≠k2π-π8,k∈Z
C.xx≠k2π+π8,k∈Z
D.xx≠k2π,k∈Z
解析 要使函数有意义,则 2x+π4≠kπ+π2,k∈Z,
即 x≠k2π+π8,k∈Z,

高考数学一轮复习 第4章第3节 三角函数的图象与性质课件 文 新课标版

高考数学一轮复习 第4章第3节 三角函数的图象与性质课件 文 新课标版

=sin 2x+ 3cos 2x=2sin2x+3π,所以 T=π.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
解:(1)因为 y=2sin23x+1, 所以周期 T=22π=3π,
3 即 y=2sin23x+1的周期为 3π. (2)因为 y=|cos x|
=c-oscoxs,x,x∈x∈2kπ2-kππ+2,π22,kπ2+kπ2+π3k2π∈Zk∈;Z,
• 所以作出y=|cos x|的图象如图,
• 从图中可以看出y=|cos x|的周期为π.
k∈Z.
所以 2kπ≤x<2kπ+2π(k∈Z). 所以函数 y= cos x+ tan x的定义域是
x2kπ≤x<2kπ+π2,
k∈Z.
2sin x-1>0, (2)由函数式有意义得-tan x-1≥0,
cos2x+π8≠0,
sin
x>12,
所以tan x≤-1,
2x+π8≠kπ+2π,k∈Z,
解得ab==1122-36-32,3.
②当 a<0 时,fxmax=2a×- 23+b=1, fxmin=2a×1+b=-5,

2025届高中数学一轮复习课件《三角函数的图象与性质》ppt

2025届高中数学一轮复习课件《三角函数的图象与性质》ppt

高考一轮总复习•数学
第28页
对点练 2(1)(2024·广东茂名模拟)下列四个函数中,最小正周期与其余三个函数不同的 是( )
A.f(x)=cos2x+sin xcos x B.f(x)=21s-incxocso2sxx C.f(x)=cosx+π3+cosx-π3 D.f(x)=sinx+π6cosx+π6 (2)若 f(x)=sin ωx(ω>0)在[0,1]上至少存在 50 个最小值点,则 ω 的取值范围是 ____1_92_9_π_,__+__∞__ ______.
32π,0 ,(2π,1).
高考一轮总复习•数学
第6页
二 正弦函数、余弦函数、正切函数的图象和性质
函数
y=sin x
y=cos x
y=tan x
图象
定义域
x∈R
x∈R
{x∣x∈R 且 x≠π2 +kπ,k∈Z}
高考一轮总复习•数学
第7页
函数
y=sin x
值域
[-1,1]
y=cos x [-1,1]
第22页
对点练 1 函数 y=lg sin 2x+ 9-x2的定义域为__-__3_,__-__π2_∪___0_,__π2__.
解析:由s9i-n 2xx2≥>00,,
得kπ<x<kπ+π2,k∈Z, -3≤x≤3,
∴-3≤x<-2π或 0<x<π2.∴函数 y=lg sin 2x+
9-x2的定
义域为-3,-π2∪0,π2.
高考一轮总复习•数学
第12页
1.判断下列结论是否正确. (1)正切函数 y=tan x 在定义域内是增函数.( ) (2)已知 y=ksin x+1,x∈R,则 y 的最大值为 k+1.( ) (3)y=sin|x|是偶函数.( √ ) (4)若非零实数 T 是函数 f(x)的周期,则 kT(k 是非零整数)也是函数 f(x)的周期.( √ )

专题4.3三角函数的图象与性质(2021年高考数学一轮复习专题)

专题4.3三角函数的图象与性质(2021年高考数学一轮复习专题)

专题 三角函数的图象与性质一、题型全归纳题型一 三角函数的定义域【题型要点】三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域. (2)转化为求解简单的三角不等式来求复杂函数的定义域.【例1】(2020·昆山一中模拟)1.函数y =lg(3tan x -3)的定义域为 .【答案】:Z k k k ∈⎪⎭⎫⎝⎛++,2,6ππππ【解析】:要使函数y =lg(3tan x -3)有意义,则3tan x -3>0,即tan x >33.所以π6+k π<x <π2+k π,k ∈Z . 【例2】函数y =cos x -12的定义域为 .【答案】 ⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ【解析】 要使函数有意义,则cos x -12≥0,即cos x ≥12,解得-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ. 题型二 三角函数的单调性命题角度一 确定三角函数的单调性(单调区间)【题型要点】求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.【易错提醒】要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.【例1】(2020·广东省七校联考)函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是( ) A.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,342,322ππππ B.Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,344,324ππππ D.Z k k k ∈⎪⎭⎫ ⎝⎛+-,344,324ππππ 【解析】:由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ,故选B. 【例2】.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎪⎭⎫⎝⎛24ππ,单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |【解析】A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递增,故A正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.命题角度二 利用三角函数的单调性比较大小利用单调性比较大小的方法:首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.【例3】已知函数f (x )=2sin ⎪⎭⎫⎝⎛+3πx ,设a =⎪⎭⎫⎝⎛7πf ,b =⎪⎭⎫⎝⎛6πf ,c =⎪⎭⎫⎝⎛3πf ,则a ,b ,c 的大小关系是( ) A .a <c <b B .c <a <b C .b <a <cD .b <c <a【解析】 a =⎪⎭⎫⎝⎛7πf =2sin 10π21,b =⎪⎭⎫⎝⎛6πf =2sin π2=2,c =⎪⎭⎫⎝⎛3πf =2sin 2π3=2sin π3, 因为y =sin x 在⎥⎦⎤⎢⎣⎡20π,上单调递增,且π3<10π21<π2,所以c <a <b .命题角度三 已知三角函数的单调区间求参数【题型要点】已知函数单调性求参数——明确一个不同,掌握两种方法(1)明确一个不同:“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)抓住两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.【例4】(2020·湖南师大附中3月月考)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D .13【解析】 法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,所以⎩⎨⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎨⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B.命题角度四 利用三角函数的单调性求值域(最值)【题型要点】1.三角函数值域的求法 (1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域. (3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域. 2.换元法求三角函数的值域(最值)的策略(1)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值). (2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例5】 (2019·高考全国卷Ⅱ)函数f (x )=sin ⎪⎭⎫⎝⎛+32πx -3cos x 的最小值为 . 【解析】 f (x )=sin(2x +3π2)-3cos x =-cos 2x -3cos x =1-2cos 2x -3cos x =-2243cos ⎪⎭⎫ ⎝⎛+x +178,因为cosx ∈[-1,1],所以当cos x =1时,f (x )取得最小值,f (x )min =-4.【例6】(2020·河北省中原名校联盟联考)若函数f (x )=3sin ⎪⎭⎫⎝⎛+10πx -2在区间⎥⎦⎤⎢⎣⎡a ,2π上单调,则实数a 的最大值是 .【解析】:法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎥⎦⎤⎢⎣⎡5752ππ,上单调递减,所以a 的最大值为7π5.法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,而f (x )在⎥⎦⎤⎢⎣⎡a ,2π上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5.题型三 三角函数的周期性与奇偶性【题型要点】(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的最小正周期为2πω,函数y =A tan(ωx +φ)(ω>0)的最小正周期为πω求解.【例1】(2020·湖北宜昌联考)已知函数y =2sin(ωx +θ)(0<θ<π)为偶函数,其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,则( ) A .ω=2,θ=π2 B .ω=12,θ=π2 C .ω=12,θ=π4D .ω=2,θ=π4【答案】因为函数y =2sin(ωx +θ)的最大值为2,且其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,所以函数y =2sin(ωx +θ)的最小正周期是π. 由2πω=π得ω=2.因为函数y =2sin(ωx +θ)为偶函数,所以θ=π2+k π,k ∈Z . 又0<θ<π,所以θ=π2,故选A.【例2】(2020·石家庄市质量检测)设函数f (x )=sin ⎪⎭⎫ ⎝⎛-+4πϕωx ⎪⎭⎫⎝⎛<>2,0πϕω的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎪⎭⎫⎝⎛20π,上单调递增 B .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递减 C .f (x )在⎪⎭⎫⎝⎛20π,上单调递减 D .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递增 【解析】:.f (x )=sin ⎪⎭⎫⎝⎛-+4πϕωx ,因为f (x )的最小正周期为π,所以ω=2,所以f (x )=sin ⎪⎭⎫ ⎝⎛-+42πϕx .f (-x )=f (x ),即f (x )为偶函数,所以φ-π4=k π+π2(k ∈Z ),所以φ=k π+3π4(k ∈Z ).因为|φ|<π2,所以φ=-π4,所以f (x )=-cos 2x ,所以f (x )在⎪⎭⎫ ⎝⎛20π,上单调递增,在⎪⎭⎫⎝⎛02-,π上单调递减,故选A. 题型四 三角函数的对称性【题型要点】对称中心的求解思路和方法(1)思路:函数y =A sin(ωx +φ)图象的对称轴和对称中心可结合y =sin x 图象的对称轴和对称中心求解. (2)方法:利用整体代换的方法求解,令ωx +φ=k π+π2,k ∈Z ,解得x =(2k +1)π-2φ2ω,k ∈Z ,即对称轴方程;令ωx +φ=k π,k ∈Z ,解得x =k π-φω,k ∈Z ,即对称中心的横坐标(纵坐标为0).对于y =A cos(ωx +φ),y =A tan(ωx +φ),可以利用类似方法求解(注意y =A tan(ωx +φ)的图象无对称轴).【例1】(2020·北京西城区模拟)函数f (x )=A sin(ωx +φ)⎪⎭⎫⎝⎛<>>2,0,0πϕωA 的图象关于直线x =π3对称,它的最小正周期为π,则函数f (x )图象的一个对称中心是( )A.⎪⎭⎫⎝⎛13,π B.⎪⎭⎫ ⎝⎛012,π C.⎪⎭⎫ ⎝⎛0125,π D .⎪⎭⎫⎝⎛012-,π 【解析】 由题意可得2πω=π,所以ω=2,可得f (x )=A sin(2x +φ),再由函数图象关于直线x =π3对称,故⎪⎭⎫ ⎝⎛3πf =A sin ⎪⎭⎫⎝⎛+ϕπ32=±A ,故可取φ=-π6. 故函数f (x )=A sin ⎪⎭⎫⎝⎛-62πx ,令2x -π6=k π,k ∈Z , 可得x =k π2+π12,k ∈Z ,故函数的对称中心为⎪⎭⎫⎝⎛+0122,ππk ,k ∈Z . 所以函数f (x )图象的一个对称中心是⎪⎭⎫⎝⎛012,π. 【例2】已知函数f (x )=|sin x ||cos x |,则下列说法错误的是( )A .f (x )的图象关于直线x =π2对称B .f (x )的周期为π2C .(π,0)是f (x )的一个对称中心D .f (x )在区间⎥⎦⎤⎢⎣⎡24ππ,上单调递减【解析】:f (x )=|sin x ||cos x |=|sin x cos x |=12·|sin 2x |,则⎪⎭⎫ ⎝⎛2πf =12|sin π|=0,则f (x )的图象不关于直线x =π2对称,故A 错误;函数周期T =12×2π2=π2,故B 正确;f (π)=12|sin 2π|=0,则(π,0)是f (x )的一个对称中心,故C 正确;当x ∈⎥⎦⎤⎢⎣⎡24ππ,时,2x ∈⎥⎦⎤⎢⎣⎡ππ,2,此时sin 2x >0,且sin 2x 为减函数,故D 正确.题型五 三角函数的图象与性质的综合问题【题型要点】解决三角函数图象与性质综合问题的方法先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【例1】 已知函数f (x )=2sin ⎪⎭⎫⎝⎛-42πx . (1)求函数的最大值及相应的x 值的集合;(2)求函数f (x )的图象的对称轴方程与对称中心.【解析】:(1)当sin ⎪⎭⎫⎝⎛-42πx =1时,2x -π4=2k π+π2,k ∈Z , 即x =k π+3π8,k ∈Z ,此时函数取得最大值为2;故f (x )的最大值为2,使函数取得最大值的x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,83ππ(2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+12k π,k ∈Z .即函数f (x )的图象的对称轴方程为x =3π8+12k π,k ∈Z .由2x -π4=k π,k ∈Z 得x =π8+12k π,k ∈Z ,即对称中心为⎪⎭⎫⎝⎛+0,28ππk k ∈Z . 【例2】已知函数f (x )=sin(2π-x )·sin ⎪⎭⎫⎝⎛x -23π-3cos 2x + 3.(1)求f (x )的最小正周期和图象的对称轴方程;(2)当x ∈⎣⎡⎦⎤0,7π12时,求f (x )的最小值和最大值. 【解析】 (1)由题意,得f (x )=(-sin x )(-cos x )-3cos 2x +3=sin x cos x -3cos 2x +3=12sin 2x -32(cos 2x +1)+3=12sin 2x -32cos 2x +32=sin ⎪⎭⎫ ⎝⎛3-2πx +32, 所以f (x )的最小正周期T =2π2=π;令2x -π3=k π+π2(k ∈Z ),则x =k π2+5π12(k ∈Z ),故所求图象的对称轴方程为x =k π2+5π12(k ∈Z ).(2)当0≤x ≤7π12时,-π3≤2x -π3≤5π6,由函数图象(图略)可知,-32≤sin ⎪⎭⎫ ⎝⎛3-2πx ≤1,即0≤sin(2x -π3)+32≤2+32. 故f (x )的最小值为0,最大值为2+32.二、高效训练突破 一、选择题1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( )A.⎪⎭⎫⎢⎣⎡20π, B.⎥⎦⎤⎝⎛ππ,2 C.⎪⎭⎫⎢⎣⎡23ππ, D .⎥⎦⎤ ⎝⎛ππ223, 【解析】:法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎪⎭⎫⎢⎣⎡23ππ,.故选C.法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0B .3C .-1D .-2【解析】:因为f (b )=tan b +sin b +1=2,即tan b +sin b =1. 所以f (-b )=tan(-b )+sin(-b )+1=-(tan b +sin b )+1=0.3.已知函数f (x )=cos 2x +sin 2⎪⎭⎫ ⎝⎛+6πx ,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .f (x )的最大值为12D .f (x )的最小值为-12【解析】:.f (x )=1+cos 2x 2+1-cos ⎝⎛⎭⎫2x +π32=12+12cos 2x +12-12⎝⎛⎭⎫cos 2x cos π3-sin 2x sin π3=14cos 2x +34sin 2x +1=12sin⎪⎭⎫ ⎝⎛+62πx +1,则f (x )的最小正周期为π,最小值为-12+1=12,最大值为12+1=32. 4.(2020·福州市第一学期抽测)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是( ) A.π4 B.π2 C.3π8D .π【解析】:由题意,得f (x )=sin 2x -cos 2x =2sin⎪⎭⎫ ⎝⎛4-2πx ,由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ), 解得-π8+k π≤x ≤3π8+k π(k ∈Z ),当k =0时,-π8≤x ≤3π8,即函数f (x )在⎥⎦⎤⎢⎣⎡838-ππ,上单调递增.因为函数f (x )在[0,m ]上单调递增,所以0<m ≤3π8,即m 的最大值为3π8,故选C.5.若⎪⎭⎫⎝⎛08,π是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( ) A .2 B .4 C .6D .8【解析】:因为f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,由题意,知⎪⎭⎫ ⎝⎛8πf =2sin ⎪⎭⎫ ⎝⎛+48πωπ=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 6.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心 D .最小正周期为π【解析】:函数y =tan(2x -π3)是非奇非偶函数,A 错;在区间(0,π3)上单调递增,B 错;最小正周期为π2,D错;由2x -π3=k π2,k ∈Z 得x =k π4+π6,当k =0时,x =π6,所以它的图象关于(π6,0)中心对称,故选C.7.(2020·武汉市调研测试)已知函数f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在区间⎪⎭⎫ ⎝⎛80π,上单调递增,则ω的最大值为( ) A.12 B .1 C .2D .4【解析】:法一:因为x ∈⎪⎭⎫ ⎝⎛80π,,所以ωx +π4∈⎪⎭⎫ ⎝⎛+484πωππ,,因为f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在⎪⎭⎫ ⎝⎛80π,上单调递增,所以ωπ8+π4≤π2,所以ω≤2,即ω的最大值为2,故选C.法二:将选项逐个代入函数f (x )进行验证,选项D 不满足条件,选项A 、B 、C 满足条件f (x )在⎪⎭⎫⎝⎛80π,上单调递增,所以ω的最大值为2,故选C.8.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( ) A .当k =1,a =2时,f (sin A )<f (cos B ) B .当k =1,a =2时,f (cos A )>f (sin B ) C .当k =2,a =1时,f (sin A )>f (cos B ) D .当k =2,a =1时,f (cos A )>f (sin B )【解析】:A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin⎪⎭⎫ ⎝⎛-B 2π=cos B ,cos A <cos ⎪⎭⎫ ⎝⎛-B 2π=sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误; 当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cos B ),f (cos A )>f (sin B ),故C 错误,D 正确.9.已知函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=2,f (β)=2,且|α-β|的最小值是π2,则正数ω的值为( )A .1B .2C .3D .4【解析】:函数f (x )=sin ωx +3cos ωx =2sin ⎪⎭⎫ ⎝⎛+3πωx . 由f (α)=2,f (β)=2,且|α-β|的最小值是π2,所以函数f (x )的最小正周期T =π2,所以ω=2ππ2=4.10.(2020·江西八所重点中学联考)已知函数f (x )=2sin(ωx +φ)⎪⎭⎫⎝⎛<<<2,10πϕω的图象经过点(0,1),且关于直线x =2π3对称,则下列结论正确的是( )A .f (x )在⎥⎦⎤⎢⎣⎡3212ππ,上是减函数 B .若x =x 0是f (x )图象的对称轴,则一定有f ′(x 0)≠0 C .f (x )≥1的解集是⎥⎦⎤⎢⎣⎡+32,2πππk k ,k ∈Z D .f (x )图象的一个对称中心是⎪⎭⎫⎝⎛03-,π 【解析】:由f (x )=2sin(ωx +φ)的图象经过点(0,1),得sin φ=12,又|φ|<π2,所以φ=π6,则f (x )=2sin⎪⎭⎫ ⎝⎛+6πωx .因为f (x )的图象关于直线x =2π3对称,所以存在m ∈Z 使得2π3ω+π6=m π+π2,得ω=3m 2+12(m ∈Z ),又0<ω<1,所以ω=12,则f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx .令2n π+π2≤12x +π6≤2n π+3π2,n ∈Z ,得4n π+2π3≤x ≤4n π+8π3,n ∈Z ,故A 错误;若x =x 0是f (x )图象的对称轴,则f (x )在x =x 0处取得极值,所以一定有f ′(x 0)=0,故B 错误;由f (x )≥1得4k π≤x ≤4k π+4π3,k ∈Z ,故C 错误;因为⎪⎭⎫ ⎝⎛-3πf =0,所以⎪⎭⎫⎝⎛03-,π是其图象的一个对称中心,故D 正确.选D.二、填空题1.比较大小:sin ⎪⎭⎫ ⎝⎛18-π sin ⎪⎭⎫⎝⎛10-π. 【解析】:因为y =sin x 在⎥⎦⎤⎢⎣⎡02-,π上为增函数且-π18>-π10>-π2,故sin ⎪⎭⎫ ⎝⎛18-π>sin ⎪⎭⎫⎝⎛10-π. 2.已知函数f (x )=4sin⎪⎭⎫ ⎝⎛3-2πx ,x ∈[-π,0],则f (x )的单调递增区间是 . 【解析】:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤5π12+k π(k ∈Z ),又因为x ∈[-π,0],所以f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡127--ππ,和⎥⎦⎤⎢⎣⎡012-,π 3.设函数f (x )=cos ⎪⎭⎫ ⎝⎛6-πωx (ω>0).若f (x )≤⎪⎭⎫ ⎝⎛4πf 对任意的实数x 都成立,则ω的最小值为 . 【解析】:由于对任意的实数都有f (x )≤⎪⎭⎫⎝⎛4πf 成立,故当x =π4时,函数f (x )有最大值,故⎪⎭⎫⎝⎛4πf =1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin =23. 4.若函数y =cos ⎪⎭⎫ ⎝⎛+6πωx (ω∈N *)图象的一个对称中心是⎪⎭⎫⎝⎛06,π,则ω的最小值为 . 【解析】:由题意知πω6+π6=k π+π2(k ∈Z )∈ω=6k +2(k ∈Z ),又ω∈N *,所以ωmin =2.5.(2020·无锡期末)在函数∈y =cos|2x |;∈y =|cos 2x |;∈y =cos⎪⎭⎫ ⎝⎛+62πx ;∈y =tan 2x 中,最小正周期为π的所有函数的序号为 .【解析】:∈y =cos|2x |=cos 2x ,最小正周期为π;∈y =cos 2x ,最小正周期为π,由图象知y =|cos 2x |的最小正周期为π2;∈y =cos⎪⎭⎫ ⎝⎛+62πx 的最小正周期T =2π2=π;∈y =tan 2x 的最小正周期T =π2.因此∈∈的最小正周期为π.6.已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .【解析】:由函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,所以ω=k +23,又ω∈(1,2),所以ω=53,从而得函数f (x )的最小正周期为2π53=6π5.三 解答题1.已知函数f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡44-ππ,时,f (x )≥-12. 【解析】:(1)f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x =32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎪⎭⎫ ⎝⎛+32πx ,所以T =2π2=π. (2)证明:令t =2x +π3,因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,因为y =sin t 在⎥⎦⎤⎢⎣⎡26-ππ,上单调递增,在⎥⎦⎤⎢⎣⎡652ππ,上单调递减,且sin ⎪⎭⎫⎝⎛6-π<sin 5π6, 所以f (x )≥sin ⎪⎭⎫⎝⎛6-π=-12,得证. 2.已知f (x )=2sin⎪⎭⎫ ⎝⎛+62πx +a +1. (1)求f (x )的单调递增区间;(2)当x ∈⎥⎦⎤⎢⎣⎡20π,时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合.【解析】:(1)f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,可得k π-π3≤x ≤k π+π6,k ∈Z , 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z . (2)当x =π6时,f (x )取得最大值4,即⎪⎭⎫⎝⎛6πf =2sin π2+a +1=a +3=4,所以a =1. (3)由f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +2=1,可得sin⎪⎭⎫ ⎝⎛+62πx =-12, 则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.3.已知函数f (x )=sin(ωx +φ)⎪⎭⎫⎝⎛<<320πϕ的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎪⎪⎭⎫⎝⎛236,π,求f (x )的单调递增区间.【解析】:由f (x )的最小正周期为π,则T =2πω=π,所以ω=2,所以f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).所以sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0, 已知上式对∈x ∈R 都成立,所以cos φ=0.因为0<φ<2π3,所以φ=π2.(2)因为⎪⎭⎫ ⎝⎛6πf =32,所以sin⎪⎭⎫ ⎝⎛+⨯ϕπ62=32,即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z ), 故φ=2k π或φ=π3+2k π(k ∈Z ),又因为0<φ<2π3,所以φ=π3,即f (x )=sin ⎪⎭⎫ ⎝⎛+32πx ,由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得k π-5π12≤x ≤k π+π12(k ∈Z ), 故f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ).4.已知函数f (x )=sin ⎪⎭⎫⎝⎛x -2πsin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.【解】:(1)f (x )=cos x sin x -32(2cos 2x -1)=12sin 2x -32cos 2x =sin⎪⎭⎫ ⎝⎛3-2πx . 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),所以当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.所以x 1+x 2=56π,则x 1=56π-x 2,所以cos(x 1-x 2)=cos ⎪⎭⎫ ⎝⎛22-65x π=sin ⎪⎭⎫ ⎝⎛3-22πx ,又f (x 2)=sin⎪⎭⎫ ⎝⎛3-22πx =23,故cos(x 1-x 2)=23.。

三角函数的图象与性质-备战高考数学(理)一轮复习考点

三角函数的图象与性质-备战高考数学(理)一轮复习考点
2.求解三角函数的值域(最值)常见到以下几种类型的题目及求解方法
(1)形如y=asinx+bcosx+k的三角函数化为y=Asin(ωx+φ)+k的形式,再求最值(值域);
(2)形如y=asin2x+bsinx+k的三角函数,可先设sinx=t,化为关于t的二次函数求值域(最值);
(3)形如y=asinxcosx+b(sinx±cosx)+c的三角函数,可先设t=sinx±cosx,化为关于t的二次函数求值域(最值).
D.函数 的一个单调递减区间为
7.已知函数 (其中 , , )的部分图象如图所示,则下列结论正确的是()
A.函数 的最小正周期为 B.函数 的图象关于点 对称C.函数 在区间 上单调递减D.若 ,则 的值为
8.已知函数 的部分图象如图所示,下列结论正确的有()
A.函数 的最小正周期为
B.直线 为函数 的一条对称轴
【解析】由题图可知A=2,T=4π,故 =4π,解得ω= .所以f(x)=2sin .
把点 代入可得2sin =2,即sin =1,所以φ- =2kπ+ (k∈Z),
解得φ=2kπ+ (k∈Z).又0<φ<π,所以φ= .所以f(x)=2sin .
5.已知函数 ( )的部分图象如图所示,若 ,则 的最小值为。
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
解得 .
8.函数 的最小正周期为。
【答案】
【解析】因为 ,所以最小正周期为 .

高三数学一轮复习讲义 三角函数的图像与性质教案

高三数学一轮复习讲义 三角函数的图像与性质教案

芯衣州星海市涌泉学校三角函数的图象与性质根底梳理1.“五点法〞描图(1)y=sinx的图象在[0,2π]上的五个关键点的坐标为(0,0)(π,0)(2π,0)(2)y=cosx的图象在[0,2π]上的五个关键点的坐标为(0,1),,(π,-1),,(2π,1)2.三角函数的图象和性质函数性质y=sinx y=cosx y=tanx 定义域R R {x|x≠kπ+,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:__x=kπ+(k∈Z)___;对称中心:_(kπ,0)(k∈Z)___对称轴:x=kπ(k∈Z)___;对称中心:_(kπ+,0)(k∈Z)__对称中心:_(k∈Z)__周期2π_ 2ππ单调性单调增区间_[2kπ-,2kπ+](k∈Z)___;单调减区间[2kπ+,2kπ+](k∈Z)__单调增区间[2kπ-π,2kπ](k∈Z)____;单调减区间[2kπ,2kπ+π](k∈Z)______单调增区间_(kπ-,kπ+)(k∈Z)___奇偶性奇函数偶函数奇函数3.=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)对函数周期性概念的理解周期性是函数的整体性质,要求对于函数整个定义域范围的每一个x值都满足f(x+T)=f(x),其中T是不为零的常数.假设只有个别的x值满足f(x+T)=f(x),或者者找到哪怕只有一个x值不满足f(x+T)=f(x),都不能说T是函数f(x)的周期.函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.4.求三角函数值域(最值)的方法:(1)利用sinx、cosx的有界性;关于正、余弦函数的有界性由于正余弦函数的值域都是[-1,1],因此对于∀x∈R,恒有-1≤sinx≤1,-1≤cosx≤1,所以1叫做y=sinx,y=cosx的上确界,-1叫做y=sinx,y=cosx的下确界.(2)形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sinx或者者cosx看作一个整体,可化为求函数在区间上的值域(最值)问题.利用换元法求三角函数最值时注意三角函数有界性,如:y=sin2x-4sinx+5,令t=sinx(|t|≤1),那么y =(t-2)2+1≥1,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如y=Asin(ωx+φ)(ω>0)的形式,再根据根本三角函数的单调区间,求出x所在的区间.应特别注意,应在函数的定义域内考虑.注意区分以下两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x系数的正负号)(1)y=sin;(2)y=sin.热身练习:1.函数y=cos,x∈R().A.是奇函数B.既不是奇函数也不是偶函数C.是偶函数D.既是奇函数又是偶函数2.函数y=tan的定义域为().A. B.C.D.3.函数y=sin(2x+)的图象的对称轴方程可能是()A.x=-B.x=-C.x=D.x=【解析】令2x+=kπ+,那么x=+(k∈Z)∴当k=0时,x=,选D.4.y=sin的图象的一个对称中心是().A.(-π,0) B.C. D.解析∵y=sinx的对称中心为(kπ,0)(k∈Z),∴令x-=kπ(k∈Z),x=kπ+(k∈Z),由k=-1,x=-π得y=sin的一个对称中心是.答案B5.以下区间是函数y=2|cosx|的单调递减区间的是()A.(0,π)B.C.D.6.函数f(x)=sin(2x+φ),其中φ为实数,假设f(x)≤|f()|对任意x∈R恒成立,且f()>f(π),那么f(x)的单调递增区间是()A.[kπ-,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ-,kπ](k∈Z)【解析】当x∈R时,f(x)≤|f()|恒成立,∴f()=sin(+φ)=±1可得φ=2kπ+或者者φ=2kπ-,k∈Z∵f()=sin(π+φ)=-sinφ>f(π)=sin(2π+φ)=sinφ∴sinφ<0∴φ=2kπ-由-+2kπ≤2x-≤+2kπ得x∈[kπ+,kπ+](k∈Z),选C.7.函数f(x)=cos x∈R的最小正周期为___4π_____.8..y=2-3cos的最大值为___5_____,此时x=_____π+2kπ,k∈Z_________.9.函数y=(sinx-a)2+1,当sinx=1时,y取最大值;当sinx=a时,y取最小值,那么实数-1≤a≤0.10.函数f(x)=sin2x+sinxcosx在区间[,]上的最大值是.【解析】∵f(x)=+sin2x=sin2x-cos2x+=sin(2x-)+,又≤x≤,∴≤2x-≤.∴当2x-=即x=时,f(x)取最大值.题型一与三角函数有关的函数定义域问题例1求以下函数的定义域:(1)y=lgsin(cosx);(2)y=.解(1)要使函数有意义,必须使sin(cosx)>0.∵-1≤cosx≤1,∴0<cosx≤1.利用单位圆中的余弦线OM ,依题意知0<OM≤1, ∴OM 只能在x 轴的正半轴上,∴其定义域为{x|-+2kπ<x<+2kπ,k∈Z}. (2)要使函数有意义,必须使sinx -cosx≥0.利用图象.在同一坐标系中画出[0,2π]上y =sinx 和y =cosx 的图象,如下列图. 在[0,2π]内,满足sinx =cosx 的x 为,,再结合正弦、余弦函数的周期是2π, 所以定义域为.变式训练1(1)求函数y lg(2sin 1)tan 1cos()28x x x π-+--=+的定义域;解(1)要使函数有意义,那么 ⇒图①如图①利用单位圆得:∴函数的定义域为{x|2kπ+<x<2kπ+,k∈Z}. (2)求函数y 122log tan x x =++的定义域.要使函数有意义 那么⇒利用数轴可得图②图②∴函数的定义域是{x|0<x<或者者π≤x≤4}. 题型二、三角函数的五点法作图及图象变换 例2函数f(x)=4cosxsin(x +)-1. (1)用五点法作出f(x)在一个周期内的简图;(2)该函数图象可由y =sinx(x∈R)的图象经过怎样的平移变换与伸缩变换得到? 【解析】(1)y =f(x)=4cosxsin(x +)-1 =4cosx(sinx +cosx)-1=sin2x +2cos2x -1 =sin2x +cos2x =2sin(2x +)2x+0π2πx-y020-20∴函数y=f(x)在[-,]上的图象如下列图.【点评】“五点法作图〞应抓住四条:①化为y=Asin(ωx+φ)(A>0,ω>0)或者者y=Acos(ωx+φ)(A>0,ω>0)的形式;②求出周期T=;③求出振幅A;④列出一个周期内的五个特殊点.当画出某指定区间上的图象时,应列出该区间的特殊点.题型三三角函数图象与解析式的互相转化例3函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)的部分图象如下列图.(1)求f(x)的解析式;(2)设g(x)=[f(x-)]2,求函数g(x)在x∈[-,]上的最大值,并确定此时x的值.【解析】(1)由图可知A=2,=,那么=4×∴ω=.又f(-)=2sin[×(-)+φ]=2sin(-+φ)=0∴sin(φ-)=0∵0<φ<,∴-<φ-<∴φ-=0,即φ=∴f(x)=2sin(x+).(2)由(1)可得f(x-)=2sin[(x-)+]=2sin(x+)∴g(x)=[f(x-)]2=4×=2-2cos(3x+)∵x∈[-,]∴-≤3x+≤,∴当3x+=π,即x=时,g(x)max=4.【点评】根据y=Asin(ωx+φ)+K的图象求其解析式的问题,主要从以下四个方面来考虑:①A确实定:根据图象的最高点和最低点,即A=;②K确实定:根据图象的最高点和最低点,即K=;③ω确实定:结合图象,先求出周期,然后由T=(ω>0)来确定ω;④φ确实定:由函数y=Asin(ωx+φ)+K最开始与x轴的交点(最靠近原点)的横坐标为-(即令ωx +φ=0,x=-)确定φ.例4假设方程sinx+cosx=a在[0,2π]上有两个不同的实数根x1,x2,求a的取值范围,并求此时x1+x2的值.【解析】∵sinx+cosx=2sin(x+),x∈[0,2π],作出y=2sin(x+)在[0,2π]内的图象如图.由图象可知,当1<a<2或者者-2<a<1时,直线y=a与y=2sin(x+)有两个交点,故a的取值范围为a∈(-2,1)∪(1,2).当1<a<2时,x1++x2+=π.∴x1+x2=.当-2<a<1时,x1++x2+=3π,∴x1+x2=.【点评】利用三角函数图象形象直观,可使有些问题得到顺利、简捷的解决,因此我们必须准确把握三角函数“形〞的特征.例4函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的间隔为,且图象上一个最低点为M(,-2).(1)求f(x)的解析式;(2)将函数f(x)的图象向右平移个单位后,再将所得图象上各点的横坐标缩小到原来的,纵坐标不变,得到y=g(x)的图象,求函数y=g(x)的解析式,并求满足g(x)≥且x∈[0,π]的实数x的取值范围.【解析】(1)由函数图象的最低点为M(,-2),得A=2,由x轴上相邻两个交点间的间隔为,得=,即T=π,∴ω==2.又点M(,-2)在图象上,得2sin(2×+φ)=-2,即sin(+φ)=-1,故+φ=2kπ-,k∈Z,∴φ=2kπ-,又φ∈(0,),∴φ=.综上可得f(x)=2sin(2x+).(2)将f(x)=2sin(2x+)的图象向右平移个单位,得到f1(x)=2sin[2(x-)+],即f1(x)=2sin2x的图象,然后将f1(x)=2sin2x的图象上各点的横坐标缩小到原来的,纵坐标不变,得到g(x)=2sin(2·2x),即g(x)=2sin4x.由得.那么即.故≤x≤或者者≤x≤.题型四、三角函数的奇偶性与周期性及应用例1函数f(x)=sin(ωx+φ),其中ω>0,|φ|<.(1)假设cos cosφ-sin sinφ=0,求φ的值;(2)在(1)的条件下,假设函数f(x)的图象的相邻两条对称轴之间的间隔等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.【解析】(1)由cos cosφ-sin sinφ=0得cos(+φ)=0.∵|φ|<,∴φ=.(2)由得=,∴T=,ω=3∴f(x)=sin(3x+).设函数f(x)的图象向左平移m个单位后所对应的函数为g(x),那么g(x)=sin[3(x+m)+]=sin(3x+3m+)g(x)是偶函数当且仅当3m+=kπ+(k∈Z)即m=+(k∈Z)∴最小正实数m=.题型五三角函数的单调性与周期性例2写出以下函数的单调区间及周期:(1)y=sin;(2)y=|tanx|.解(1)y= sin,它的增区间是y=sin的减区间,它的减区间是y=sin的增区间.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.由2kπ+≤2x-≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z.故所给函数的减区间为,k∈Z;增区间为,k∈Z.最小正周期T==π.(2)观察图象可知,y=|tanx|的增区间是,k∈Z,减区间是,k∈Z.最小正周期:T=π.探究进步(1)求形如y=Asin(ωx+φ)或者者y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答.列不等式的原那么是:①把“ωx+φ(ω>0)〞视为一个“整体〞;②A>0(A<0)时,所列不等式的方向与y =sinx(x∈R),y=cosx(x∈R)的单调区间对应的不等式方向一样(反).(2)对于y=Atan(ωx+φ)(A、ω、φ为常数),其周期T=,单调区间利用ωx+φ∈,解出x的取值范围,即为其单调区间.(3)求含有绝对值的三角函数的单调性及周期时,通常要画出图象,结合图象断定.变式训练2(1)求函数y=sin+cos的周期、单调区间及最大、最小值;(2)函数f(x)=4cosxsin -1.①求f(x)的最小正周期;②求f(x)在区间上的最大值和最小值.解:y =sin +cos 11cos 4sin 4cos 4sin 42222x x x x =+++ (1)周期为T=242,232k x k k Z πππππ-+≤+≤+∈函数的递增区间为(k∈Z);3242,232k x k k Z πππππ+≤+≤+∈函数的递减区间为(k∈Z) ymax =2;ymin =-2 (2)f(x)=4cosxsin -114cos cos )12x x x =+-2cos 2cos 1x x x =+-2cos 22sin(26)x x x π=+=+x ∈,22[,]663x πππ+∈-最大值为2;最小值为-1题型六、三角函数的对称性与单调性及应用例2向量m =(sin2x -1,cosx),n =(1,2cosx),设函数f(x)=m n ⋅,x∈R. (1)求函数f(x)图象的对称轴方程;(2)求函数f(x)的单调递增区间. 【解析】(1)f(x)=m·n=sin2x -1+2cos2x =sin2x +cos2x =2sin(2x +) ∴对称轴方程为:2x +=kπ+,即x =+(k∈Z). (2)由-+2kπ≤2x+≤+2kπ得-+kπ≤x≤kπ+ ∴f(x)的单调递增区间为[kπ-,kπ+](k∈Z). 【点评】对于f(x)=Asin(ωx+φ)(A>0,ω>0):①假设求y =f(x)的对称轴,只需令ωx+φ=kπ+(k∈Z),求出x ; 假设求y =f(x)的对称中心的横坐标,只零令ωx+φ=kπ(k∈Z),求出x ; ②假设求y =f(x)的单调增区间,只需令2kπ-≤ωx+φ≤2kπ+,求出x ; 假设求y =f(x)的单调减区间,只需令2kπ+≤ωx+φ≤2kπ+,求出x. 题型七三角函数的对称性与奇偶性例3(1)f(x)=sinx +cosx(x∈R),函数y =f(x +φ)的图象关于直线x =0对称,那么φ的值是________. (2)假设函数y =3cos(2x +φ)的图象关于点中心对称,那么|φ|的最小值为() A.B.C.D.(1)f (x)=2sin π()3x +,y =f(x +φ)=2sin ()3x πϕ++图象关于x =0对称, 即f(x +φ)为偶函数.∴+φ=+kπ,k∈Z, 即φ=kπ+,k∈Z,所以当k =0时,φ=. (2)A 3cos 4(2)3πϕ⨯+=3cos 2π(2π)3ϕ++=3cos 2()0,3πϕ+= ∴+φ=kπ+,k∈Z,∴φ=kπ-,k∈Z, 取k =0,得|φ|的最小值为.应选探究进步假设f(x)=Asin(ωx+φ)为偶函数,那么当x =0时,f(x)获得最大或者者最小值.假设f(x)=Asin(ωx+φ)为奇函数,那么当x =0时,f(x)=0. 假设求f(x)的对称轴,只需令ωx+φ=+kπ(k∈Z),求x. 假设求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.变式训练3(1)函数f(x)=sinx +acosx 的图象的一条对称轴是x =,那么函数g(x)=asinx +cosx 的最大值是()A.B.C.D.由题意得f(0)=f 10()3π,∴a=--.∴a=-,g(x)=-sinx +cosx =sin 2()3x π+, ∴g(x)max=.(2)假设函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是x =,函数f′(x)的图象的一个对称中心是,那么f(x)的最小正周期是________.(1)B(2)π 由题设,有π()4f ω=±,即(a +b)=±,由此得到a =b. 又()08f π'=,所以aω(cos sin )88πωπω-=0,从而tan =1,=kπ+,k∈Z,即ω=8k +2,k∈Z,而0<ω<5,所以ω=2, 于是f(x)=a(sin2x +cos2x)=asin (2)4x π+故f(x)的最小正周期是π.题型八三角函数的值域与最值的求法及应用 例3(1)求函数y =的值域;(2)求函数y =sinxcosx +sinx +cosx 的最值;(3)假设函数f(x)=1cos 24sin()2x x π++-asin ·cos(π-)的最大值为2,试确定常数a 的值.【解析】22sin (1sin )11sin x x x-+()y==2sinx(1-sinx)=2sinx -2sin2x =-2(sinx -)2+. ∵1+sinx≠0,∴-1<sinx≤1.∴-4<y≤.故函数y =的值域为(-4,].(2)令t =sinx +cosx ,那么sinxcosx =,且|t|≤. ∴y=(t2-1)+t =(t +1)2-1,∴当t =-1时,ymin =-1;当t =时,ymax =+. (3)f(x)=+asincos =cosx +sinx =sin(x +φ),(其中tanφ=) 由得=2,解得a =±.【点评】求三角函数的最值问题,主要有以下几种题型及对应解法. (1)y =asinx +bcosx 型,可引用辅角化为y =sin(x +φ)(其中tanφ=).(2)y =asin2x +bsinxcosx +ccos2x 型,可通过降次整理化为y =Asin2x +Bcos2x +C. (3)y =asin2x +bcosx +c 型,可换元转化为二次函数. (4)sinxcosx 与sinx±cosx 同时存在型,可换元转化.(5)y =(或者者y =)型,可用别离常数法或者者由|sinx|≤1(或者者|cosx|≤1)来解决,也可化为真分式去求解.(6)y =型,可用斜率公式来解决.例4函数f(x)=sin2x +acos2x(a∈R,a 为常数),且是函数y =f(x)的一个零点. (1)求a 的值,并求函数f(x)的最小正周期;(2)当x∈[0,]时,求函数f(x)的最大值和最小值及相应的x的值.【解析】(1)由是y=f(x)的零点得f()=sin+acos2=0,求解a=-2,那么f(x)=sin2x-2cos2x=sin2x-cos2x-1=sin(2x-)-1,故f(x)的最小正周期为T==π.(2)由x∈[0,]得2x-∈[-,],那么-≤sin(2x-)≤1,因此-2≤sin(2x-)-1≤-1,故当x=0时,f(x)取最小值-2,当x=时,f(x)取最大值-1.设a∈R,f(x)=cosx(asinx-cosx)+cos2(-x)满足f(-)=f(0),求函数f(x)在[,]上的最大值和最小值.【解析】f(x)=asinxcosx-cos2x+sin2x=sin2x-cos2x由f(-)=f(0)得-·+=-1,解得a=2.∴f(x)=sin2x-cos2x=2sin(2x-)当x∈[,]时,2x-∈[,],f(x)为增函数.当x∈[,]时,2x-∈[,],f(x)为减函数.∴f(x)在[,]上的最大值为f()=2又∵f()=,f()=∴f(x)在[,]上的最小值为f()=.题型九分类讨论及方程思想在三角函数中的应用例题:函数f(x)=-2asin+2a+b的定义域为,函数的最大值为1,最小值为-5,(1)求a和b的值.(2)假设a>0,设g(x)=f且lgg(x)>0,求g(x)的单调区间.点评①求出2x+的范围,求出sin(2x+)的值域.②系数a的正、负影响着f(x)的值,因此要分a>0,a<0两类讨论.③根据a>0或者者a<0求f(x)的最值,列方程组求解.解(1)∵x∈,∴2x+∈.∴sin∈,∴-2asin∈[-2a,a].∴f(x)∈[b,3a+b],又∵-5≤f(x)≤1,∴b=-5,3a+b=1,因此a=2,b=-5.(2)由(1)得a=2,b=-5,∴f(x)=-4sin-1,g(x)=f=-4sin-1=4sin-1,又由lgg(x)>0得g(x)>1,∴4sin-1>1,∴sin>,∴2kπ+<2x+<2kπ+,k∈Z,其中当2kπ+<2x+≤2kπ+,k∈Z时,g(x)单调递增,即kπ<x≤kπ+,k∈Z,∴g(x)的单调增区间为,k∈Z.又∵当2kπ+<2x+<2kπ+,k∈Z时,g(x)单调递减,即kπ+<x<kπ+,k∈Z.三角函数的图象与性质练习一一、选择题1.对于函数f(x)=2sinxcosx,以下选项正确的选项是()A.f(x)在(,)上是递增的B.f(x)的图象关于原点对称C.f(x)的最小正周期为2πD.f(x)的最大值为2【解析】f(x)=sin2xf(x)在(,)上是递减的,A错;f(x)的最小正周期为π,C错;f(x)的最大值为1,D错;选B.2.假设α、β∈(-,),那么“α<β〞是“tanα<tanβ〞的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】α、β∈(-,),tanx在此区间上单调递增.当α<β时,tanα<tanβ;当tanα<tanβ时,α<β.应选C.3.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,将该函数的图象向左平移个单位后,得到的图象对应的函数为奇函数,那么f(x)的图象()A.关于点(,0)对称B.关于直线x=对称C.关于点(,0)对称D.关于直线x=对称【解析】由得ω=2,那么f(x)=sin(2x+φ)设平移后的函数为g(x),那么g(x)=sin(2x++φ)(|φ|<)且为奇函数∴φ=-,f(x)=sin(2x-)∴图象关于直线x=对称,选B.4.f(x)=sinx,x∈R,g(x)的图象与f(x)的图象关于点(,0)对称,那么在区间[0,2π]上满足f(x)≤g(x)的x的取值范围是()A.[,] B.[,]C.[,] D.[,]【解析】设(x,y)为g(x)的图象上任意一点,那么其关于点(,0)对称的点为(-x,-y),由题意知该点必在f(x)的图象上.∴-y=sin(-x),即g(x)=-sin(-x)=-cosx,由得sinx≤-cosx⇒sinx+cosx=sin(x+)≤0又x∈[0,2π]∴≤x≤.5.函数f(x)=3sin(ωx+φ),g(x)=3cos(ωx+φ),假设对任意x∈R,都有f(+x)=f(-x),那么g()=____.【解析】由f(+x)=f(-x),知y=f(x)关于直线x=对称,∴sin(ω·+φ)=±1.∴g()=3cos(ω·+φ)=3=0.6.设函数f(x)=2sin(+),假设对任意x∈R,都有f(x1)≤f(x)≤f(x2)恒成立,那么|x2-x1|的最小值为____.【解析】由“f(x1)≤f(x)≤f(x2)恒成立〞,可得f(x1)、f(x2)分别是f(x)的最小值、最大值.∴|x2-x1|的最小值为函数f(x)的半周期,又T==4.∴|x2-x1|min=2.7.函数f(x)=sinx+cosx,f′(x)是f(x)的导函数.(1)求f′(x)及函数y=f′(x)的最小正周期;(2)当x∈[0,]时,求函数F(x)=f(x)f′(x)+f2(x)的值域.【解析】(1)f′(x)=cosx-sinx=-sin(x-)∴y=f′(x)的最小正周期为T=2π.(2)F(x)=cos2x-sin2x+1+2sinxcosx=1+sin2x+cos2x=1+sin(2x+)∵x∈[0,],∴2x+∈[,]∴sin(2x+)∈[-,1],∴函数F(x)的值域为[0,1+].8.设函数f(x)=2cosx(sinx+cosx)-1,将函数f(x)的图象向左平移α个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)假设0<α<,且g(x)是偶函数,求α的值.【解析】(1)∵f(x)=2sinxcosx+2cos2x-1=sin2x+cos2x=sin(2x+),∴f(x)的最小正周期T==π.(2)g(x)=f(x+α)=sin[2(x+α)+]=sin(2x+2α+),g(x)是偶函数,那么g(0)=±=sin(2α+),∴2α+=kπ+,k∈Z.α=+(k∈Z),∵0<α<,∴α=.三角函数的图象与性质练习二1.函数f(x)=sin 图象的对称轴方程可以为() A.x = B.x =C.x = D.x =解析令2x +=kπ+(k∈Z),得x =+(k∈Z),令k =0得该函数的一条对称轴为x =.此题也可用代入验证法来解.答案D2.y =sin 的图象的一个对称中心是() A.(-π,0) B.C. D.3.函数y =3cos(x +φ)+2的图象关于直线x =对称,那么φ的可能取值是() A. B.-C. D.二、填空题4.函数y =lg(sinx)+的定义域为____(2k ,2k ]3πππ+(k∈Z)_________. 5.函数f(x)=3sin(ωx-)(ω>0)和g(x)=2cos(2x +φ)+1的图象的对称轴完全一样.假设x∈[0,],那么f(x)的取值范围是____32⎡⎤-⎢⎥⎣⎦,3___________. 4.函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,那么ω等于________.解析因为f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,所以2sin ω=,且0<ω<,因此ω=.答案6.关于函数f(x)=4sin (x∈R),有以下命题:①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;②y=f(x)的表达式可改写为y =4cos ;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x =-对称.其中正确命题的序号是___________.②③解析函数f(x)=4sin 的最小正周期T =π,由相邻两个零点的横坐标间的间隔是=知①错.利用诱导公式得f(x)=4cos =4cos =4cos ,知②正确.由于曲线f(x)与x 轴的每个交点都是它的对称中心,将x =-代入得f(x)=4sin =4sin0=0,因此点是f(x)图象的一个对称中心,故命题③正确.曲线f(x)的对称轴必经过图象的最高点或者者最低点,且与y 轴平行,而x =-时y =0,点不是最高点也不是最低点,故直线x =-不是图象的对称轴,因此命题④不正确.答案②③三、解答题7.设函数f(x)=sin(-π<φ<0),y=f(x)图象的一条对称轴是直线x=.(1)求φ;(2)求函数y=f(x)的单调增区间.解(1)-(2)由(1)得:f(x)=sin,令-+2kπ≤2x-≤+2kπ,k∈Z,可解得+kπ≤x≤+kπ,k∈Z,因此y=f(x)的单调增区间为,k∈Z.8.(1)求函数y=2sin(-<x<)的值域;(2)求函数y=2cos2x+5sinx-4的值域.解(1)∵-<x<,∴0<2x+<,∴0<sin≤1,∴y=2sin的值域为(0,2].(2)y=2cos2x+5sinx-4=2(1-sin2x)+5sinx-4=-2sin2x+5sinx-2=-22+.∴当sinx=1时,ymax=1,当sinx=-1时,ymin=-9,∴y=2cos2x+5sinx-4的值域为[-9,1].三角函数的图象与性质练习三一、选择题1.定义在R上的函数f(x)既是偶函数又是周期函数,假设f(x)的最小正周期是π,且当x∈时,f(x)=sinx,那么f的值是()A.-B.C.-D.2.函数f(x)=2sinωx(ω>0)在区间上的最小值是-2,那么ω的最小值等于()A. B. C.2 D.33.函数f(x)=cos2x+sin是()A.非奇非偶函数B.仅有最小值的奇函数C.仅有最大值的偶函数D.有最大值又有最小值的偶函数二、填空题4.设定义在区间(0,)上的函数y=6cosx的图象与y=5tanx的图象交于点P,过点P作x轴的垂线,垂足为P1,直线PP1与函数y=sinx的图象交于点P2,那么线段P1P2的长为___________.5.函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,那么ω=___________.解析因为f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,所以2sinω=,且0<ω<,因此ω=.答案6.给出以下命题:①函数y=cos是奇函数;②存在实数α,使得sinα+cosα=;③假设α、β是第一象限角且α<β,那么tanα<tanβ;④x=是函数y=sin的一条对称轴;⑤函数y=sin的图象关于点成中心对称图形.其中正确的序号为___________.三、解答题7.假设函数f(x)=sin2ax-sinax·cosax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为的等差数列.(1)求m的值;(2)假设点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.7.解(1)f(x)=(1-cos2ax)-sin2ax=-(sin2ax+cos2ax)+=-sin+.∵y=f(x)的图象与y=m相切,∴m为f(x)的最大值或者者最小值,即m=或者者m=.(2)∵切点的横坐标依次成公差为的等差数列,∴f(x)的最小正周期为.T==,a>0,∴a=2,即f(x)=-sin+.由题意知sin=0,那么4x0+=kπ(k∈Z),∴x0=-(k∈Z).由0≤-≤(k∈Z)得k=1或者者2,因此点A的坐标为,.三角函数的图象与性质练习四一、选择题1.函数f(x)=2sinxcosx是().A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数解析f(x)=2sinxcosx=sin2x.∴f(x)是最小正周期为π的奇函数.答案C2.函数y=sin2x+sinx-1的值域为().A.[-1,1]B.C.D.解析(数形结合法)y=sin2x+sinx-1,令sinx=t,那么有y=t2+t-1,t∈[-1,1],画出函数图象如下列图,从图象可以看出,当t=-及t=1时,函数取最值,代入y=t2+t-1可得y∈.答案C3.假设函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,那么ω=().A.B.C.2D.3解析由题意知f(x)的一条对称轴为x=,和它相邻的一个对称中心为原点,那么f(x)的周期T=,从而ω=.答案B4.函数f(x)=(1+tanx)cosx的最小正周期为().A.2πB.C.πD.解析依题意,得f(x)=cosx+sinx=2sin.故最小正周期为2π.答案A5.以下函数中,周期为π,且在上为减函数的是().A.y=sin B.y=cosC.y=sin D.y=cos解析(挑选法)∵函数的周期为π.∴排除C、D,∵函数在上是减函数,∴排除B.答案A【点评】此题采用了挑选法,表达了挑选法的方便、快捷、准确性,在解选择题时应注意应用.6.函数f(x)=sin(x∈R),下面结论错误的选项是().A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数解析∵y=sin =-cosx ,∴T=2π,在上是增函数,图象关于y 轴对称,为偶函数.答案D二、 填空题7.y=-|sin 〔x+4π〕|的单调增区间为___[kπ+π4,kπ+3π4]〔k∈Z〕_____. 8.要得到⎪⎭⎫ ⎝⎛-=42cos 3πx y 的图象,可以将函数y=3sin2x 的图象向左平移_8π__单位. 9.假设动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,那么MN 的最大值为____.10函数(02x π≤≤)的值域是_____[-1,0]_____. 11.()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,那么ω=__________.14312、给出下面的3个命题:〔1〕函数|)32sin(|π+=x y 的最小正周期是2π;〔2〕函数)23sin(π-=x y 在区间)23,[ππ上单调递增;〔3〕45π=x 是函数)252sin(π+=x y 的图象的一条对称轴.其中正确命题的序号是. 13.假设函数f(x)=cosωxcos(ω>0)的最小正周期为π,那么ω的值是________.解析f(x)=cosωxcos=cosωxsinωx=sin2ωx,∴T==π.∴ω=1.答案114.函数y =tan 的图象与x 轴交点的坐标是______.解析由2x +=kπ,k∈Z,得:x =-,k∈Z,故交点坐标为(k∈Z).答案(k∈Z)15.函数f(x)=sin(x +θ)+cos(x +θ)是偶函数,那么θ的值是________.解析(回忆检验法)据可得f(x)=2sin ,假设函数为偶函数,那么必有θ+=kπ+(k∈Z),又由于θ∈,故有θ+=,解得θ=,经代入检验符合题意.答案三、解答题16.f(x)=sinx +sin.(1)假设α∈[0,π],且sin2α=,求f(α)的值;(2)假设x∈[0,π],求f(x)的单调递增区间.解(1)由题设知f(α)=sinα+cosα.∵sin2α==2sinα·cosα>0,α∈[0,π],∴α∈,sinα+cosα>0.由(sinα+cosα)2=1+2sinα·cosα=,得sinα+cosα=,∴f(α)=.(2)由(1)知f(x)=sin ,又0≤x≤π,∴f(x)的单调递增区间为.17.设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)图象的一条对称轴是直线x =.(1)求φ;(2)求函数y =f(x)的单调增区间.解(1)令2×+φ=kπ+,k∈Z,∴φ=kπ+,k∈Z,又-π<φ<0,那么-<k <-,k∈Z,∴k=-1,那么φ=-.(2)由(1)得:f(x)=sin ,令-+2kπ≤2x-≤+2kπ,k∈Z,可解得+kπ≤x≤+kπ,k∈Z,因此y =f(x)的单调增区间为,k∈Z.18、设函数2()sin()2cos 1468x x f x πππ=--+.〔1〕求()f x 的最小正周期. 〔2〕假设函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值. 解:〔Ⅰ〕()f x =sin cos cos sin cos 46464x x x πππππ--=3cos 424x x ππ-sin()43x ππ- 故()f x 的最小正周期为T=24ππ=8(Ⅱ)解法一:在()y g x =的图象上任取一点(,())x g x ,它关于1x =的对称点(2,())x g x -.由题设条件,点(2,())x g x -在()y f x =的图象上,从而=sin[]243x πππ--cos()43x ππ+ 当304x ≤≤时,23433x ππππ≤+≤,因此()y g x =在区间4[0,]3上的最大值为 解法二: 因区间4[0,]3关于x=1的对称区间为2[,2]3,且()y g x =与()y f x =的图象关于x=1对称,故()y g x =在4[0,]3上的最大值为()y f x =在2[,2]3上的最大值由〔Ⅰ〕知()f x sin()43x ππ-当223x ≤≤时,6436ππππ-≤-≤因此()y g x =在4[0,]3上的最大值为max 6g π== 19、设函数()f x =·a b ,其中向量(cos2)m x =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,. 〔1〕务实数m 的值;〔2〕求函数()f x 的最小值及此时x 值的集合.(3)求函数的单调区间;(4)函数图象沿向量c 平移得到x y 2sin 2=的图象,求向量c 。

高考数学一轮复习全套课时作业4-4三角函数的图像和性质

高考数学一轮复习全套课时作业4-4三角函数的图像和性质

题组层级快练4.4三角函数的图像和性质一、单项选择题1.函数y =3sin2x +cos2x 的最小正周期为()A.π2B.2π3C .πD .2π2.函数y =tan(π4-x)的定义域是()A .{xx ≠π4}B .{xx ≠-π4}C .{xx ≠k π+π4,k ∈Z }D .{xx ≠k π+3π4,k ∈Z }3.下列函数中,既是奇函数,又是周期函数的是()A .y =sin|x|B .y =cos2xC .y =D .y =x 34.(2018·课标全国Ⅲ)函数f(x)=tanx1+tan 2x 的最小正周期为()A.π4B.π2C .πD .2π5.(2021·南昌大学附中)设f(x)=sin(ωx +φ),其中ω>0,则f(x)是偶函数的充要条件是()A .f(0)=1B .f(0)=0C .f ′(0)=1D .f ′(0)=06.函数f(x)=sin 在区间0,π2上的最小值为()A .-1B .-22C.22D .07.已知f(x)=sin 2x +sinxcosx ,则f(x)的最小正周期和一个单调递增区间分别为()A .π,[0,π]B .2π,[-π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]8.(2021·安徽皖江名校高三联考)已知函数f(x)=3sin(2x +φ)+cos(2x +φ)为偶函数,且在0,π4上是增函数,则φ的一个可能值为()A.π3B.2π3C.4π3D.5π39.(2020·辽宁大连一模)若方程2sin(2x +π6)=m 在区间[0,π2]上有两个不相等实根,则m 的取值范围是()A .(1,3)B .[0,2]C .[1,2)D .[1,3]二、多项选择题10.(2017·课标全国Ⅲ,改编)设函数f(x)=cos(x +π3),则下列结论正确的是()A .f(x)的一个周期为-2πB .y =f(x)的图象关于直线x =8π3对称C .f(x +π)的一个零点为x =π6D .f(x)在(π2,π)上单调递减11.已知函数f(x)=sinx +cosx ,g(x)=22sinx ·cosx ,则下列结论中正确的是()A -π4,B .两函数的图象均关于直线x =-π4成轴对称C -π4,D .两函数的最大值相同三、填空题与解答题12.函数y =cos ________.13.(2020·保定市一模)设函数f(x)=2sinxsin(x +π3+φ)是奇函数,其中φ∈(0,π),则φ=________.14.已知函数f(x)=sinx +acosx 的图象的一条对称轴是x =5π3,则函数g(x)=asinx +cosx 的初相是________.15.已知函数f(x)=(1+cos2x)sin 2x(x ∈R ),则f(x)的最小正周期为________;当x ∈0,π4时,f(x)的最小值为________.16.已知函数f(x)=3cos 2ωx +sin ωxcos ωx -32(ω>0)的最小正周期为π.(1)求函数f(x)的单调递减区间;(2)若f(x)>22,求x 的取值集合.17.(2017·北京)已知函数f(x)=3cos(2x -π3)-2sinxcosx.(1)求f(x)的最小正周期;(2)求证:当x ∈[-π4,π4]时,f(x)≥-12.18.(2021·衡水中学调研)已知函数y =sin ωx 在[-π3,π3]上是增函数,则ω的取值范围是()A .[-32,0)B .[-3,0)C .(0,32]D .(0,3]19.(2018·北京,理)设函数f(x)=cos(ωx -π6)(ω>0).若f(x)≤f(π4)对任意的实数x 都成立,则ω的最小值为________.4.4三角函数的图像和性质参考答案1.答案C 2.答案D解析y =tan(π4-x)=-tan(x -π4),由x -π4≠π2+k π,k ∈Z ,得x ≠k π+3π4,k ∈Z .故选D.3.答案C 4.答案C解析f(x)=tanx 1+tan 2x =sinx cosx 1+sin 2x cos 2x=sinxcosx cos 2x +sin 2x=sinxcosx =12sin2x ,所以f(x)的最小正周期T =2π2=π.故选C.5.答案D解析若f(x)=sin(ωx +φ)是偶函数,则有φ=k π+π2,k ∈Z .∴f(x)=±cos ωx.而f ′(x)=∓ωsin ωx ,∴f ′(0)=0,故选D.6.答案B 7.答案C解析由f(x)=12(1-cos2x)+12sin2x =2sin (2x -π4)+12,得该函数的最小正周期是π.当2k π-π2≤2x-π4≤2k π+π2,k ∈Z ,即k π-π8≤x ≤k π+3π8,k ∈Z 时,函数f(x)是增函数,即函数f(x)的单调递增区间是[k π-π8,k π+3π8],其中k ∈Z .由k =0得函数f(x)的一个单调递增区间是[-π8,3π8],结合各选项知,选C.8.答案C解析根据题意,f(x)=3sin(2x +φ)+cos(2x +φ)=+φ若f(x)为偶函数,则有φ+π6=k π+π2,即φ=k π+π3,k ∈Z ,所以可以排除B 、D ,对于A ,当φ=π3时,f(x)=2cos2x ,在0,π4上是减函数,不符合题意,对于C ,当φ=4π3时,f(x)=2cos2x ,在0,π4上是增函数,符合题意.故选C.9.答案C解析因为x ∈[0,π2],所以2x +π6∈[π6,7π6].当2x +π6∈[π6,π2]时,函数f(x)=2sin(2x +π6)单调递增,此时,m ∈[1,2];当2x +π6∈(π2,7π6]时,函数f(x)=2sin(2x +π6)单调递减,此时,m ∈[-1,2),因此要有两个不相等实根,即m 与函数f(x)=2sin 在π6,7π6上有两个交点,结合图象可知,m 的取值范围是[1,2).故选C.10.答案ABC解析由三角函数的周期公式可得T =2π1=2π,所以周期是-2π也正确,所以A 正确;由于三角函数在对称轴上取得最值,所以把对称轴x =8π3代入函数,得f(x)=cos(8π3+π3)=cos3π=-1,所以B 正确;f(x +π)=cos(x +π+π3)=-cos(x +π3)=0,解得其中一个解是x =π6,所以C 正确;函数f(x)在区间(π2,π)有增有减,D 不正确.11.答案CD解析f(x)=sinx +cosx =2sing(x)=2sin2x ,因为=2sin -π4+=2sin0=0,所以f(x)-π4,因为=2sin 2=2sin =-2≠0,所以g(x)-π4,A 错误.由于f(x)-π4,g(x)关于x =-π4成轴对称,故B 错误.若-π4<x<π4,则0<x +π4<π2,此时函数f(x)为增函数,若-π4<x<π4,则-π2<2x<π2,此时函数g(x)为增函数,-π4,C 正确.两函数的最大值相同,都为2,故D 正确.12.答案k π+π8,k π+5π8(k ∈Z )13.答案π6解析因为f(x)=2sinxsin +π3+y =sinx 也是奇函数,所以函数y =sin +π3+函数,所以π3+φ=k π+π2(k ∈Z ),则φ=k π+π6(k ∈Z ),又φ∈(0,π),所以φ=π6.14.答案2π3解析f ′(x)=cosx -asinx ,∵x =5π3为函数f(x)=sinx +acosx 的一条对称轴,∴f ′(5π3)=cos 5π3-asin 5π3=0,解得a =-33.∴g(x)=-33sinx +cosx =233(-12sinx +32cosx)=233sin(x +2π3).15.答案π216.答案(1)π12+k π,7π12+k π,k ∈Z|-π24+k π<x<5π24+k π,k ∈解析(1)f(x)=3cos 2ωx +sin ωxcos ωx -32=32(1+cos2ωx)+12sin2ωx -32=32cos2ωx +12sin2ωx =因为最小正周期为2π2ω=π,所以ω=1,所以f(x)=由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π12+k π≤x ≤7π12+k π,k ∈Z ,所以函数f(x)的单调递减区间为[π12+k π,7π12+k π],k ∈Z .(2)f(x)>22,即>22,由正弦函数的性质得π4+2k π<2x +π3<3π4+2k π,k ∈Z ,解得-π24+kπ<x<5π24+k π,k ∈Z ,则x -π24+k π<x<5π24+k π,k ∈17.答案(1)π(2)证明见解析解析(1)f(x)=32cos2x +32sin2x -sin2x =12sin2x +32cos2x =sin(2x +π3).所以f(x)的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6.所以sin(2x +π3)≥sin(-π6)=-12.所以当x ∈[-π4,π4]时,f(x)≥-12.18.答案C解析方法一:由于y =sinx 在[-π2,π2]上是增函数,为保证y =sin ωx 在[-π3,π3]上是增函数,所以ω>0且π3·ω≤π2,则0<ω≤32.故选C.方法二(特值法):取ω=-1,则y =sin(-x)=-sinx ,不合题意,故A 、B 不对.取ω=2,则y =sin2x ,不合题意,故D 不对,所以选C.19.答案23解析由于对任意的实数都有f(x)≤f(π4)成立,故当x =π4时,函数f(x)有最大值,故f(π4)=1,即πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ),又ω>0,∴ωmin =23.。

2022届高考数学统考一轮复习第四章三角函数的图象与性质学案文含解析新人教版

2022届高考数学统考一轮复习第四章三角函数的图象与性质学案文含解析新人教版

高考数学统考一轮复习:第三节三角函数的图象与性质【知识重温】一、必记2个知识点1.周期函数(1)周期函数的定义对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有①________________,那么函数f(x)就叫做周期函数.②________________叫做这个函数的周期.(2)最小正周期,如果在周期函数f(x)的所有周期中存在一个③________________,那么这个④________________就叫做f(x)的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易受基本函数影响,遗漏问题的多解,同时也可能忽视“k∈Z”这一条件.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)y =sin x 在第一、第四象限是增函数.( ) (2)余弦函数y =cos x 的对称轴是y 轴.( ) (3)正切函数y =tan x 在定义域内是增函数.( )(4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (5)y =sin|x |是偶函数.( )(6)若sin x >22,则x >π4.( )二、教材改编2.下列关于函数y =4sin x ,x ∈[0,2π]的单调性的叙述,正确的是( ) A .在[0,π]上单调递增,在[π,2π]上单调递减B .在[0,π2]上单调递增,在[3π2,2π]上单调递减C .在[0,π2]及[3π2,2π]上单调递增,在[π2,3π2]上单调递减D .在[π2,3π2]上单调递增,在[0,π2]及[3π2,2π]上单调递减3.函数y =-32cos(12x -π6)的最大值为________,此时x 的集合为________.三、易错易混4.关于三角函数的图象,有下列说法: ①y =sin|x |与y =sin x 的图象关于y 轴对称; ②y =cos(-x )与y =cos|x |的图象相同;③y =|sin x |与y =sin(-x )的图象关于x 轴对称; ④y =cos x 与y =cos(-x )的图象关于y 轴对称. 其中正确的是________.(写出所有正确说法的序号)5.函数y =1+2sin(π6-x )的单调增区间是________.四、走进高考6.[2019·全国卷Ⅱ]下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos |x |D .f (x )=sin |x |考点一 三角函数的定义域[自主练透型]1.y =cos x -12的定义域为________.2.函数y =1tan x -1的定义域为________.3.函数y =lg(sin x )+ cos x -12的定义域为________.悟·技法求与三角函数有关的函数定义域的基本方法是“数形结合”,也就是在求这类函数定义域时,往往需要解有关的三角不等式,而解三角不等式的方法是:要么利用正、余弦曲线,正切曲线,要么利用单位圆等图形的直观形象来解决问题.考点二 三角函数的值域与最值[互动讲练型][例1] (1)[2019·全国卷Ⅰ]函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________. (2)函数y =sin x -cos x +sin x ·cos x ,x ∈[0,π]的值域为________. 悟·技法三角函数最值或值域的三种求法(1)直接法:利用sin x ,cos x 的值域.(2)化一法:化为y =A sin(ωx +φ)+k 的形式,确定ωx +φ的范围,根据正弦函数单调性写出函数的值域.(3)换元法:把sin x 或cos x 看作一个整体,转化为二次函数,求给定区间上的值域(最值)问题.[变式练]——(着眼于举一反三)1.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0C .-1D .-1- 32.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 考点三 三角函数的性质[互动讲练型] 考向一:三角函数的周期性[例2] 函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2 D .2π考向二:三角函数的对称性[例3] 已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( ) A .关于直线x =π4对称 B .关于直线x =π8对称C .关于点⎝⎛⎭⎫π4,0对称D .关于点⎝⎛⎭⎫π8,0对称 考向三:三角函数的单调性[例4] 已知f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f (x )的单调递增区间为________. 悟·技法1.奇偶性与周期性的判断方法(1)奇偶性:由正、余弦函数的奇偶性可判断y =A sin ωx 和y =A cos ωx 分别为奇函数和偶函数.(2)周期性:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.2.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[变式练]——(着眼于举一反三)3.[2021·贵阳市监测考试]已知函数f (x )=cos 2x +3sin 2x ,则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )4.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π5.若函数f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.第三节 三角函数的图象与性质【知识重温】①f (x +T )=f (x ) ②T ③最小正数 ④最小正数 ⑤{y |-1≤y ≤1} ⑥{y |-1≤y ≤1}⑦R ⑧⎣⎡⎦⎤-π2+2k π,π2+2k π ⑨⎣⎡⎦⎤π2+2k π,3π2+2k π ⑩[(2k -1)π,2k π] ⑪[2k π,(2k +1)π] ⑫⎝⎛⎭⎫-π2+k π,π2+k π ⑬π2+2k π ⑭-π2+2k π ⑮2k π ⑯π+2k π ⑰奇函数 ⑱偶函数 ⑲奇函数 ⑳(k π,0),k ∈Z ○21⎝⎛⎭⎫k π+π2,0,k ∈Z ○22⎝⎛⎭⎫k π2,0,k ∈Z ○23x =k π+π2,k ∈Z ○24x =k π,k ∈Z ○252π ○262π ○27π 【小题热身】1.答案:(1)× (2)× (3)× (4)× (5)√ (6)×2.解析:结合正弦函数y =sin x ,x ∈[0,2π]的图象可知C 正确. 答案:C3.解析:当cos(12x -π6)=-1,即12x -π6=π+2k π,k ∈Z ,即x =4k π+7π3,k ∈Z 时,函数y 有最大值32.答案:32 {x |x =4k π+7π3,k ∈Z }4.解析:对于②,y =cos(-x )=cos x ,y =cos|x |=cos x ,故其图象相同;对于④,y =cos(-x )=cos x ,故其图象关于y 轴对称;由图象(图略)可知①③均不正确.故正确的说法是②④.答案:②④5.解析:y =1+2sin(π6-x )=1-2sin(x -π6).令u =x -π6,根据复合函数的单调性知,所给函数的单调递增区间就是y =sin u 的单调递减区间,解π2+2k π≤x -π6≤3π2+2k π(k ∈Z ),得2π3+2k π≤x ≤5π3+2k π(k ∈Z ),故函数y =1+2sin(π6-x )的单调递增区间是[2π3+2k π,5π3+2k π](k ∈Z ).答案:[2π3+2k π,5π3+2k π](k ∈Z )6.解析:当x ∈(π4,π2)时,2x ∈(π2,π),由于f 1(x )=cos 2x 在x ∈(π4,π2)上单调递减,且cos2x <0,故f (x )=|cos 2x |在(π4,π2)上单调递增.f 1(x )=cos 2x 的周期为π,f (x )=|cos 2x |的周期为π2,故A 符合题意.而f (x )=|sin 2x |以π2为周期,在(π4,π2)上单调递减;f (x )=cos|x |=cos x 的周期为2π;f (x )=sin|x |不是周期函数,故选A.答案:A 课堂考点突破考点一1.解析:要使函数有意义,则cos x ≥12,由三角函数图象可得:-π3+2k π≤x ≤π3+2k π,k ∈Z .故函数y 的定义域为{x |-π3+2k π≤x ≤π3+2k π,k ∈Z }.答案:{x |-π3+2k π≤x ≤π3+2k π,k ∈Z }2.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z故函数的定义域为{x |x ≠π4+k π,且x ≠π2+k π,k ∈Z }.答案:{x |x ≠π4+k π且x ≠π2+k π,k ∈Z }3.解析:要使函数有意义,则⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12, 解得⎩⎪⎨⎪⎧2k π<x <π+2k π,k ∈Z ,-π3+2k π≤x ≤π3+2k π,k ∈Z . 所以2k π<x ≤π3+2k π(k ∈Z ).所以函数的定义域为{x |2k π<x ≤2k π+π3,k ∈Z }.答案:{x |2k π<x ≤2k π+π3,k ∈Z }考点二例1 解析:(1)f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1, 令cos x =t ,则t ∈[-1,1]. f (t )=-2t 2-3t +1=-2⎝⎛⎭⎫t +342+178, 易知当t =1时,f (t )min =-2×12-3×1+1=-4. 故f (x )的最小值为-4.(2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t 22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时y min =-1 ∴函数的值域为[-1,1]. 答案:(1)-4 (2)[-1,1] 变式练1.解析:∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. 答案:A2.解析:由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π4上的最小值为-22. 答案:-22考点三例2 解析:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x=2sin ⎝⎛⎭⎫2x +π3, ∴T =2π2=π.故选B.答案:B例3 解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π4的最小正周期为π, ∴2πω=π,ω=2, ∴f (x )=sin ⎝⎛⎭⎫2x +π4.当x =π4时,2x +π4=3π4, ∴A 、C 两项错误;当x =π8时,2x +π4=π2,∴B 项正确,D 项错误. 答案:B例4 解析:由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z .又x ∈[0,π],所以f (x )的单调递增区间为⎣⎡⎦⎤0,π4. 答案:⎣⎡⎦⎤0,π4 变式练3.解析:f (x )=cos 2x + 3 sin 2x =2sin(2x +π6),则由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),得-π3+k π≤x ≤π6+k π(k ∈Z ),即函数f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z ),故选A.答案:A4.解析:y =tan ⎝⎛⎭⎫2x -π3是非奇非偶函数,A 错误;y =tan ⎝⎛⎭⎫2x -π3在区间⎝⎛⎭⎫0,π3上单调递增,B 错误;由2x -π3=k π2得x =k π4+π6(k ∈Z ),得函数y =tan ⎝⎛⎭⎫2x -π3的对称中心为⎝⎛⎭⎫k π4+π6,0,k ∈Z ,故C 正确;函数y =tan ⎝⎛⎭⎫2x -π3的最小正周期为π2,D 错误. 答案:C5.解析:解法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.解法二 由题意,得f (x )max =f ⎝⎛⎭⎫π3=sin π3ω=1. 由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k=0时,ω=32.答案:32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
???-π2,π2???上是增函数,在???-π,-π2???和???π2,π???上是减函数.
答案:B
3.函数 y= cos x-12的定义域为
A.???-π3,π3???
?
B.?k
?
π -π3 ,k π +π3 ???,k ∈ZΒιβλιοθήκη C.??2k
?
π-π3,2k
π+π3???,k
∈Z
D.R
解析:∵cosx-12≥0,得 cos x≥12,
义域;
(2)求函数 y=2cos2x+5sin x-4 的值域.
[自主解答 ] (1)要使函数有意义,必须有
??2sin x-1>0,
?
??1-2cos x≥0,
??sin x>12,
即? ??cos
x≤12,
解得
?π ?6 ??π ?3
+2k +2k
π< x<56π+2kπ, π ≤x ≤ 53π + 2k π
?
+π2,2k
π
+32π????
[2kπ,2kπ+π]
(k∈Z)
(k ∈Z)
(k∈Z)
函数
y=sin x
y=cos x
y=tan x
x= 2kπ+π2(k∈Z) x= 2kπ(k∈Z)


时, ymax =1 x= 2kπ-π2(k∈Z)
时,ymax=1 x= 2kπ+π(k∈Z)
无最值
时, ymin =- 1
(k ∈ Z) ,
即 π3+ 2k π ≤ x < 56π + 2k π( k ∈ Z) .
故所求函数的定义域为
???π3+2k
π

5π 6
+2k
π
?
?(k
?

Z)

(2)y=2cos2x+5sin x-4
=2(1-sin2x)+5sin x-4
=-2sin2x+5sin x-2
?
=-2?sin
?
π
[探究] 1.正切函数y=tan x在定义域内是增函数吗? 提示: 不是.正切函数 y=tan x 在每一个区间
?
?k
?
π-π2,k
π+π2???(k
∈Z)
上都是增函数,但在定义域内不
是单调函数,故不是增函数. 2.当函数y=Asin( ωx +φ)分别为奇函数和偶函数时,
φ的取值是什么?对于函数 y=A cos(ωx +φ)呢?
2.三角函数值域的求法
求解三角函数的值域 (最值)常见到以下几种类型的题目: (1) 形如 y=asin x+bcos x+c 的三角函数化为 y=Asin(ωx+φ)+k 的 形式,再求最值(值域);(2)形如 y=asin2x+bsin x+c 的三角函数, 可先设 sin x=t,化为关于 t 的二次函数求值域(最值);(3)形如 y =asin xcos x+b(sin x±cos x)+c 的三角函数,可先设 t=sin x±cos x,化为关于 t 的二次函数求值域 (最值).
时, ymin =- 1
奇偶性 奇函数
偶函数
奇函数
函数
y=sin x
y=cos x
y=tan x
对称中心
(kπ,0),k∈Z
对称
对称中心
对称中心
???kπ+π2,0???, ???k2π,0???(k∈Z) k∈Z

对称轴 l:
x=kπ+π2,k∈Z
对称轴 l:
x=kπ,k∈Z
无对称轴
周期


[ -1,1]
y=cos x R
[ -1,1]
y=tan x
? ? ?
?
x?? ?
x
≠π2+k
π
,k
∈Z
}
R
递增区间:
?
??2kπ
?
-π2
,2k
π
+π2????
递增区间: [2kπ-π,2kπ]
递增区间:
单调性 (k∈Z) 递减区间:
(k∈Z) 递减区间:
?
??k
?
π
-π2
,k
π
+π2????
?
??2kπ
x -54???2+98.
故当 sin x=1 时,ymax =1,
当 sin x=-1 时,ymin =-9,
故 y=2cos2x+5sin x-4 的值域为 [-9,1].
—————
————————————
1.三角函数定义域的求法
求三角函数的定义域实际上是解简单的三角不等式,常
借助三角函数线或三角函数图象来求解.
2.以选择题或填空题的形式考查三角函数的值域或最值 问题.如2012年湖南T6等.
3.与三角恒等变换相结合出现在解答题中.如 2012年北 京T15等.
[归纳·知识整合] 正弦函数、余弦函数、正切函数的图象和性质
函数
y=sin x
y=cos x
y=tan x
图象
函数 定义域 值域
y=sin x R
[备考方向要明了] 考什么
1.能画出 y=sin x,y=cos x,y=tan x 的图象,了解三角 函数的周期性.
2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调 性、最大值和最小值以及与 x 轴的交点等),理解正切 函数在区间???-π2,π2???内的单调性.
怎么考
1.以选择题或填空题的形式考查三角函数的单调性、周 期性及对称性.如2012年新课标全国T9等.
提示:函数 y=Asin(ωx+φ),当 φ=kπ(k∈Z)时是奇函数,当
φ=kπ+π2(k∈Z)时是偶函数;函数 y=Acos(ωx+φ),当 φ=kπ(k∈
Z)时是偶函数,当 φ=kπ+π2(k∈Z)时是奇函数.
[自测·牛刀小试]
1.(教材习题改编 )设函数 f(x)=sin???2x-π2???,x∈R,则 f(x)是
A.最小正周期为 π 的奇函数
()
B.最小正周期为 π 的偶函数
C.最小正周期为 π2的奇函数
D.最小正周期为 π2的偶函数
解析:∵f(x)=sin
?
?2x
?
-π2???=-cos
2x

∴f(x)是最小正周期为 π 的偶函数.
答案:B
2.(教材习题改编)函数 y=4sin x,x∈[-π,π]的单调性是( ) A.在[-π,0]上是增函数,在 [0,π]上是减函数 B.在???-π2,π2???上是增函数,在???-π,-π2???和???π2,π???上都是减 函数 C.在[0,π]上是增函数,在[-π,0]上是减函数 D.在???π2,π???∪???-π ,-π2???上是增函数,在 ???-π2,π2???上是减函数 解析:由函数 y=4sin x,x∈[-π,π]的图象可知,该函数在
∴2k π -π3≤ x ≤2k π +π3 ,k ∈Z. 答案:C
()
4.(教材习题改编)函数 f(x)= 3sin???x2-π4???,x∈R 的最小 正周期为________.
解析:函数 f(x)= 3sin???x2-π4???的最小正周期为
T =21π =4π . 2
答案: 4π
5.函数
?
y=3-2cos?x
?
+π4???的最大值为____________
,此时
x=____________.
解析:函数
?
y=3-2cos?x
?
+π4???的最大值为
3+2=5,此
时 x+π4=π+2kπ,即 x=34π+2kπ(k∈Z). 答案:5 34π+2kπ(k∈Z)
三角函数的定义域和值域
[例 1] (1)求函数 y=lg(2sin x-1)+ 1-2cos x的定
相关文档
最新文档