2017中考复习特殊四边形综合题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊四边形综合题
1.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出(3)在平移变换过程中,设y=S
△OPB
y的最大值.
2.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE 上一定点(其中EP<PD)
(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.
①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA 于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
3.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.
(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;
(2)当△AEF是直角三角形时,求a、b的值;
(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.
4.如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.
(1)求证:=;
(2)求证:AF⊥FM;
(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.
5.如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.
(1)当E为BC中点时,求证:△BCF≌△DEC;
(2)当BE=2EC时,求的值;
(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.
6.如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
(1)求证:BE=DF;
(2)当t=秒时,DF的长度有最小值,最小值等于;
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E 的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.
7.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
8.如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.
(1)求证:BG=AE;
(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)
①求证:BG⊥GE;
②设DG与AB交于点M,若AG:AE=3:4,求的值.
9.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC 的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
10.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止
(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP∽△PCD(填:“≌”或“~”
(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;
(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.
11.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
12.如图,在正方形ABCD中,点E为对角线AC上的一点,连接BE,DE.
(1)如图1,求证:△BCE≌△DCE;
(2)如图2,延长BE交直线CD于点F,G在直线AB上,且FG=FB.
①求证:DE⊥FG;
②已知正方形ABCD的边长为2,若点E在对角线AC上移动,当△BFG为等边三角形时,求线段DE的长(直接写出结果,不必写出解答过程).
13.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
14.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2,求BE的长.
15.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3时,求线段DH的长.
16.如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.
(1)求证:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣.
①求KD的长度;
②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG
=时,求m的值.
交DG于点N,设PD=m,当S
△PMN
17.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB 的延长线上,连接EA、EC.
(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.
18.在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠AOB=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD为矩形时,如图1.求证:△AOC′≌△BOD′.
(2)当四边形ABCD为平行四边形时,设AC=kBD,如图2.
①猜想此时△AOC′与△BOD′有何关系,证明你的猜想;
②探究AC′与BD′的数量关系以及∠AMB与α的大小关系,并给予证明.
19.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.
20.在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.(1)问题猜想:如图1,若点E在线段CD上,试猜想AG与EG的数量关系是,位置关系是;
(2)类比探究:如图2,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;
(3)解决问题:若点E在线段DC的延长线上,且∠AGF=120°,正方形ABCD的边长为2,请在备用图中画出图形,并直接写出DE的长度.
21.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.
(1)求证:∠HEA=∠CGF;
(2)当AH=DG=2时,
求证:菱形EFGH为正方形;
(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.
22.如图1,四边形ABCD中,AD∥BC,AB⊥BC,点E在边AB上,∠DEC=90°,且DE=EC.(1)求证:△ADE≌△BEC;
(2)若AD=a,AE=b,DE=c,请用图1证明勾股定理:a2+b2=c2;
(3)线段AB上另有一点F(不与点E重合),且DF⊥CF(如图2),若AD=2,BC=4,求EF 的长.
23.如图1,正方形ABCD中,AC是对角线,等腰Rt△CMN中,∠CMN=90°,CM=MN,点M 在CD边上,连接AN,点E是AN的中点,连接BE.
(1)若CM=2,AB=6,求AE的值;
(2)求证:2BE=AC+CN;
(3)当等腰Rt△CMN的点M落在正方形ABCD的BC边上,如图2,连接AN,点E是AN的中点,连接BE,延长NM交AC于点F.请探究线段BE、AC、CN的数量关系,并证明你的结论.
24.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
25.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
26.如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CF.AD ⊥CF成立.
(1)正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由.
(2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:AD⊥CF.(3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD=时,求线段CG的长.
27.如图,在正方形ABCD与等腰直角三角形BEF中,∠BEF=90°,BE=EF,连接PF,点P是FD的中点,连接PE、PC.
(1)如图1,当点E在CB边上时,
求证:PE=CE;
(2)如图2,当点E在CB的延长线上时,线段PC、CE有怎样的数量关系,写出你的猜想,并给与证明.
28.已知:l1∥l2∥l3∥l4,平行线l1与l2、l2与l3、l3与l4之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l1、l2、l3、l4这四条平行线上的四边形称为“格线四边形”.(1)如图1,正方形ABCD为“格线四边形”,则正方形ABCD的边长为.
(2)矩形ABCD为“格线四边形”,其长:宽=2:1,求矩形ABCD的宽.
(3)如图1,EG过正方形ABCD的顶点D且垂直l1于点E,分别交l2,l4于点F,G.将∠AEG 绕点A顺时针旋转30°得到∠AE′D′(如图2),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上,求菱形AB′C′D′的边长.
29.正方形ABCD边长为4cm,点E,M分别是线段AC,CD上的动点,连接DE并延长,交正方形ABCD的边于点F,过点M作MN⊥DF于H,交AD于N.
(1)如图1,若点M与点C重合,
求证:DF=MN;
(2)如图2,若点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0);
①当点F是边AB的中点时,求t的值;
②连结FM,FN,当t为何值时△MNF是等腰三角形(直接写出t值).
30.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边长分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.
特殊四边形综合题答案
1.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设y=S
,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出
△OPB
y的最大值.
解:(1)四边形APQD为平行四边形;
(2)OA=OP,OA⊥OP,理由如下:
∵四边形ABCD是正方形,
∴AB=BC=PQ,∠ABO=∠OBQ=45°,
∵OQ⊥BD,∴∠PQO=45°,
∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,
在△AOB和△OPQ中,
∴△AOB≌△POQ(SAS),
∴OA=OP,∠AOB=∠POQ,
∴∠AOP=∠BOQ=90°,
∴OA⊥OP;
(3)如图,过O作OE⊥BC于E.
①如图1,当P点在B点右侧时,
则BQ=x+2,OE=,
∴y=וx,即y=(x+1)2﹣,
又∵0≤x≤2,
∴当x=2时,y有最大值为2;
②如图2,当P点在B点左侧时,
则BQ=2﹣x,OE=,
∴y=וx,即y=﹣(x﹣1)2+,
又∵0≤x≤2,
∴当x=1时,y有最大值为;
综上所述,∴当x=2时,y有最大值为2;
2.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE 上一定点(其中EP<PD)
(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.
①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA 于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
【分析】(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得
证;
②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH 即可得;
(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=DP.
解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,
∴∠PDF=∠ADP=45°,
∴△HPD为等腰直角三角形,
∴∠DHP=∠PDF=45°,
在△HPG和△DPF中,
∵,
∴△HPG≌△DPF(ASA),
∴PG=PF;
②结论:DG+DF=DP,
由①知,△HPD为等腰直角三角形,△HPG≌△DPF,
∴HD=DP,HG=DF,
∴HD=HG+DG=DF+DG,
∴DG+DF=DP;
(2)不成立,数量关系式应为:DG﹣DF=DP,
如图,过点P作PH⊥PD交射线DA于点H,
∵PF⊥PG,
∴∠GPF=∠HPD=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,
∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,
∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,
∴∠GHP=∠FDP=180°﹣45°=135°,
在△HPG和△DPF中,
∵
∴△HPG≌△DPF,
∴HG=DF,
∴DH=DG﹣HG=DG﹣DF,
∴DG﹣DF=DP.
3.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.
(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;
(2)当△AEF是直角三角形时,求a、b的值;
(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.
【分析】(1)当∠EAF被对角线AC平分时,易证△ACF≌△ACE,因此CF=CE,即a=b.(2)分两种情况进行计算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE (CE+4)②,两式联立解方程组即可;
(3)先判断出∠AFD=∠CEF,再判断出AF=EF,从而得到△ADF≌△FCE即可.
解:(1)∵四边形ABCD是正方形,
∴∠BCF=∠DCE=90°
∵AC是正方形ABCD的对角线,
∴∠ACB=∠ACD=45°,
∴∠ACF=∠ACE,
∵∠EAF被对角线AC平分,
∴∠CAF=∠CAE,
在△ACF和△ACE中,
,
∴△ACF≌△ACE,
∴CE=CE,
∵CE=a,CF=b,
∴a=b,
∵△ACF≌△ACE,
∴∠AEF=∠AFE,
∵∠EAF=45°,
∴∠AEF=∠AFE=67.5°,
∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,∵∠CAF=∠CAE=22.5°,
∴∠CAE=∠CEA,
∴CE=AC=4,
即:a=b=4;
(2)当△AEF是直角三角形时,
①当∠AFE=90°时,∴∠AFD+∠CFE=90°,
∵∠CEF+∠CFE=90°,
∴∠AFD=∠CEF
∵∠AFE=90°,∠EAF=45°,
∴∠AEF=45°=∠EAF
∴AF=EF,
在△ADF和△FCE中
∴△ADF≌△FCE,
∴FC=AD=4,CE=DF=CD+FC=8,
∴a=8,b=4
②当∠AEF=90°时,
同①的方法得,CF=4,CE=8,
∴a=4,b=8.
(3)ab=32,
理由:如图,
∵AB∥CD
∴∠BAG=∠AFC,
∵∠BAC=45°,
∴∠BAG+∠CAF=45°,
∴∠AFC+∠CAF=45°,
∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,
∴∠CAF=∠AEC,
∵∠ACF=∠ACE=135°,
∴△ACF∽△ECA,
∴,
∴EC×CF=AC2=2AB2=32
∴ab=32.
4.(2016•淄博)如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.(1)求证:=;
(2)求证:AF⊥FM;
(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.
【分析】(1)先证明A、B、M、F四点共圆,根据圆内接四边形对角互补即可证明∠AFM=90°,根据等腰直角三角形性质即可解决问题.
(2)由(1)的结论即可证明.
(3)由:A、B、M、F四点共圆,推出∠BAM=∠EFM,因为∠BAM=∠FMN,所以∠EFM=∠FMN,推出MN∥BD,得到=,推出BM=DN,再证明△ABM≌△ADN即可解决问题.(1)证明:∵四边形ABCD是正方形,
∴∠ABD=∠CBD=45°,∠ABC=90°,
∵∠MAN=45°,
∴∠MAF=∠MBE,
∴A、B、M、F四点共圆,
∴∠ABM+∠AFM=180°,
∴∠AFM=90°,
∴∠FAM=∠FMA=45°,
∴AM=AF,
∴=.
(2)由(1)可知∠AFM=90°,
∴AF⊥FM.
(3)结论:∠BAM=22.5时,∠FMN=∠BAM
理由:∵A、B、M、F四点共圆,
∴∠BAM=∠EFM,
∵∠BAM=∠FMN,
∴∠EFM=∠FMN,
∴MN∥BD,
∴=,∵CB=DC,
∴CM=CN,
∴MB=DN,
在△ABM和△ADN中,
,
∴△ABM≌△ADN,
∴∠BAM=∠DAN,
∵∠MAN=45°,
∴∠BAM+∠DAN=45°,
∴∠BAM=22.5°.
5.(2016•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;
(2)当BE=2EC时,求的值;
(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.
【分析】(1)由矩形和直角三角形斜边上的中线性质得出CF=DE=EF,由等腰三角形的性质得出∠FEC=∠FCE,证出CF=CE,由ASA证明△BCF≌△DEC即可;
(2)设CE=a,则BE=2a,BC=3a,证明△BCF∽△DEC,得出对应边成比例=,得出ED2=6a2,由勾股定理得出DC=a,即可得出结果;
(3)过C′作C′H⊥AF于点H,连接CC′交EF于M,由直角三角形斜边上的中线性质得出∠FEC=∠FCE,证出∠ADF=∠BCF,由SAS证明△ADF≌△BCF,得出∠AFD=∠BFC=90°,证出四边形C′MFH是矩形,得出FM=C′H=,设EM=x,则FC=FE=x+,由勾股定理得出方程,解
方程求出EM=
,FC=FE=+;由(2)得:,把CE=1,BE=n 代入计算即可
得出n 的值. (1)证明;∵在矩形ABCD 中,∠DCE=90°,F 是斜边DE 的中点,
∴CF=DE=EF ,
∴∠FEC=∠FCE ,
∵∠BFC=90°,E 为BC 中点,
∴EF=EC ,∴CF=CE ,
在△BCF 和△DEC 中,
,
∴△BCF ≌△DEC (ASA );
(2)解:设CE=a ,由BE=2CE ,得:BE=2a ,BC=3a ,
∵CF 是Rt △DCE 斜边上的中线,
∴CF=DE ,
∵∠FEC=∠FCE ,∠BFC=∠DCE=90°,
∴△BCF ∽△DEC , ∴=, 即:=,
解得:ED 2=6a 2 由勾股定理得:222265DC DE EC a a a =-=-=,
∴==;
(3)解:过C′作C′H ⊥AF 于点H ,连接CC′交EF 于M ,如图所示:
∵CF 是Rt △DCE 斜边上的中线,
∴FC=FE=FD ,
∴∠FEC=∠FCE ,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠ADF=∠CEF,
∴∠ADF=∠BCF,
在△ADF和△BCF中,,
∴△ADF≌△BCF(SAS),
∴∠AFD=∠BFC=90°,
∵CH⊥AF,C′C⊥EF,∠HFE=∠C′HF=∠C′MF=90°,
∴四边形C′MFH是矩形,
∴FM=C′H=,
设EM=x,则FC=FE=x+,
在Rt△EMC和Rt△FMC中,
由勾股定理得:CE2﹣EM2=CF2﹣FM2,
∴12﹣x2=(x+)2﹣()2,
解得:x=,或x=﹣(舍去),
∴EM=,FC=FE=+;
由(2)得:,
把CE=1,BE=n代入上式计算得:CF=,
∴,
解得:n=4.
6.如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
(1)求证:BE=DF;
(2)当t=6+6秒时,DF的长度有最小值,最小值等于12;
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E
的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.
【分析】(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;(2)当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;
②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6;
(4)连接GF分别角直线AD、BC于点M、N,过点F作FH⊥AD于点H,证△DCE≌△GCF 可得∠3=∠4=∠1=∠2,即GF∥CD,从而知四边形CDMN是平行四边形,由平行四边形得MN=CD=6;再由∠CGN=∠DCN=∠CNG知CN=CG=CD=6,根据tan∠ABC=tan∠CGN=2可得GM=6+12,由GF=DE=t得FM=t﹣6﹣12,
利用tan∠FMH=tan∠ABC=2即可得FH.
解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
∴∠DCF=∠BCE,
∵四边形ABCD是菱形,
∴DC=BC,
在△DCF和△BCE中,
∵,
∴△DCF≌△BCE(SAS),
∴DF=BE;
(2)如图1,
当点E运动至点E′时,DF=BE′,此时DF最小,
在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,
∴AB=x=6,
则AE′=6
∴DE′=6+6,DF=BE′=12,
故答案为:6+6,12;
(3)∵CE=CF,
∴∠CEQ<90°,
①当∠EQP=90°时,如图2①,
∵∠ECF=∠BCD,BC=DC,EC=FC,
∴∠CBD=∠CEF,
∵∠BPC=∠EPQ,
∴∠BCP=∠EQP=90°,
∵AB=CD=6,tan∠ABC=tan∠ADC=2,
∴DE=6,
∴t=6秒;
②当∠EPQ=90°时,如图2②,
∵菱形ABCD的对角线AC⊥BD,
∴EC与AC重合,
∴DE=6,
∴t=6秒;
如图3,连接GF分别角直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,
又∵∠1+∠DCE=∠2+∠GCF,
∴∠DCE=∠GCF,
在△DCE和△GCF中,
∵,
∴△DCE≌△GCF(SAS),
∴∠3=∠4,
∵∠1=∠3,∠1=∠2,
∴∠2=∠4,
∴GF∥CD,
又∵AH∥BN,
∴四边形CDMN是平行四边形,
∴MN=CD=6,
∵∠BCD=∠DCG,
∴∠CGN=∠DCN=∠CNG,
∴CN=CG=CD=6,
∵tan∠ABC=tan∠CGN=2,
∴GN=12,
∴GM=6+12,
∵GF=DE=t,
∴FM=t﹣6﹣12,
∵tan∠FMH=tan∠ABC=2,
即y=t﹣12﹣.
7.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.
(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.
(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.
(1)解:结论AE=EF=AF.
理由:如图1中,连接AC,
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等边三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等),
∴△AEF是等边三角形,
∴AE=EF=AF.
(2)证明:如图2中,
∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAE,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF.
(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,
∵∠EAB=15°,∠ABC=60°,
∴∠AEB=45°,
在RT△AGB中,∵∠ABC=60°AB=4,
∴BG=2,AG=2,
在RT△AEG中,∵∠AEG=∠EAG=45°,
∴AG=GE=2,
∴EB=EG﹣BG=2﹣2,
∵△AEB≌△AFC,
∴AE=AF,EB=CF=2﹣2,
在RT△CHF中,∵∠HCF=180°﹣∠BCD=60°,CF=2﹣2,
∴FH=CF•sin60°=(2﹣2)•=3﹣.
∴点F到BC的距离为3﹣.
8.如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.
(1)求证:BG=AE;
(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)
①求证:BG⊥GE;
②设DG与AB交于点M,若AG:AE=3:4,求的值.
【分析】(1)如图①,根据等腰直角三角形的性质得AD=BD,再根据正方形的性质得∠GDE=90°,DG=DE,则可根据“SAS“判断△BDG≌△ADE,于是得到BG=AE;
(2)①如图②,先判断△DEG为等腰直角三角形得到∠1=∠2=45°,再由△BDG≌△ADE得到∠3=∠2=45°,则可得∠BGE=90°,所以BG⊥GE;
②设AG=3x,则AE=4x,即GE=7x,利用等腰直角三角形的性质得DG=GE=x,由(1)的结论得BG=AE=4x,则根据勾股定理得AB=5x,接着由△ABD为等腰直角三角形得到∠4=45°,BD=AB=x,然后证明△DBM∽△DGB,则利用相似比可计算出DM=x,所以GM=x,于是可计算出的值.
(1)证明:如图①,
∵AD为等腰直角△ABC的高,
∴AD=BD,
∵四边形DEFG为正方形,
∴∠GDE=90°,DG=DE,
在△BDG和△ADE中
,
∴△BDG≌△ADE,
∴BG=AE;
(2)①证明:如图②,
∵四边形DEFG为正方形,
∴△DEG为等腰直角三角形,
∴∠1=∠2=45°,
由(1)得△BDG≌△ADE,
∴∠3=∠2=45°,
∴∠1+∠3=45°+45°=90°,即∠BGE=90°,
∴BG⊥GE;
②解:设AG=3x,则AE=4x,即GE=7x,
∴DG=GE=x,
∵△BDG≌△ADE,∴BG=AE=4x,
在Rt△BGA中,
2222
=+=+=,
AB BG AG x x x
(4)(3)5
∵△ABD为等腰直角三角形,
∴∠4=45°,BD=AB=x,
∴∠3=∠4,
而∠BDM=∠GDB,
∴△DBM∽△DGB,
∴BD:DG=DM:BD,即x:x=DM:x,解得DM=x,∴GM=DG﹣DM=x﹣x=x,
∴==.
9.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC 的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系AF=AE;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.
(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.
(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.
解:(1)如图①中,结论:AF=AE.
理由:∵四边形ABFD是平行四边形,∴AB=DF,
∵AB=AC,
∴AC=DF,
∵DE=EC,
∴AE=EF,
∵∠DEC=∠AEF=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
故答案为AF=AE.
(2)如图②中,结论:AF=AE.
理由:连接EF,DF交BC于K.
∵四边形ABFD是平行四边形,
∴AB∥DF,
∴∠DKE=∠ABC=45°,
∴EKF=180°﹣∠DKE=135°,EK=ED,
∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,
∵∠DKC=∠C,
∴DK=DC,
∵DF=AB=AC,
∴KF=AD,
在△EKF和△EDA中,
,
∴△EKF≌△EDA,
∴EF=EA,∠KEF=∠AED,
∴∠FEA=∠BED=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
(3)如图③中,结论不变,AF=AE.
理由:连接EF,延长FD交AC于K.
∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,
∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,
∴∠EDF=∠ACE,
∵DF=AB,AB=AC,
∴DF=AC
在△EDF和△ECA中,
,
∴△EDF≌△ECA,
∴EF=EA,∠FED=∠AEC,
∴∠FEA=∠DEC=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
10.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止
(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP∽△PCD(填:“≌”或“~”
(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;
(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.
【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过角的计算得出∠BAP=∠CPD,由此即可得出△ABP∽△PCD;
(2)过点F作FH⊥PC于点H,根据矩形的性质以及角的计算找出∠B=∠FHP=90°、∠BEP=∠HPE,由此即可得出△BEP∽△HPE,根据相似三角形的性质,找出边与边之间的关系即可得出结论;
(3)分点E在AB和AD上两种情况考虑,根据相似三角形的性质找出各边的长度,再利用分割图形求面积法找出S与t之间的函数关系式,令S=4.2求出t值,此题得解.
解:(1)∵四边形ABCD为矩形,
∴∠B=∠C=90°,∴∠BAP+∠BPA=90°.
∵∠MPN=90°,∴∠BPA+∠CPD=90°,
∴∠BAP=∠CPD,∴△ABP∽△PCD.
故答案为:∽.
(2)是定值.如图3,过点F作FH⊥PC于点H,
∵矩形ABCD中,AB=2,
∴∠B=∠FHP=90°,HF=AB=2,
∴∠BPE+∠BEP=90°.
∵∠MPN=90°,
∴∠BPE+∠HPE=90°,
∴∠BEP=∠HPE,
∴△BEP∽△HPE,
∴,∵BP=1,
∴.
(3)分两种情况:
①如图3,当点E在AB上时,0≤t≤2.
∵AE=t,AB=2,
∴BE=2﹣t.
由(2)可知:△BEP∽△HPE,
∴,即,
∴HP=4﹣2t.
∵AF=BH=PB+BH=5﹣2t,
∴S=S
矩形ABHF ﹣S
△AEF
﹣S
△BEP
﹣S
△PHF
=AB•AF﹣AE•AF﹣BE•PB﹣PH•FH
=t2﹣4t+5(0≤t≤2).
当S=4.2时,t2﹣4t+5=4.2,
解得:t=2±.
∵0≤t≤2,
∴t=2﹣;
②如图4,当点E在AD上时,0≤t≤1,过点E作EK⊥BP于点K,
∵AE=t ,BP=1,
∴PK=1﹣t .
同理可证:△PKE ∽△FCP , ∴,即,
∴FC=2﹣2t .
∴DF=CD ﹣FC=2t ,DE=AD ﹣AE=5﹣t ,
∴S=S 矩形EKCD ﹣S △EKP ﹣S △EDF ﹣S △PCF =CD•DE ﹣EK•KP ﹣DE•DF ﹣PC•FC=t 2﹣2t +5(0≤t ≤1). 当S=4.2时,t 2﹣2t +5=4.2,
解得:t=1±
. ∵0≤t ≤1,
∴t=1﹣.
综上所述:当点E 在AB 上时,S=t 2﹣4t +5(0≤t ≤2),当S=4.2时,t=2﹣
;当点E 在AD 上时,S=t 2﹣2t +5(0≤t ≤1),当S=4.2时,t=1﹣.
11.(2016•龙东地区)已知:点P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F ,点O 为AC 的中点.
(1)当点P 与点O 重合时如图1,易证OE=OF (不需证明)
(2)直线BP 绕点B 逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF 、AE 、OE 之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
【分析】(1)由△AOE ≌△COF 即可得出结论.
(2)图2中的结论为:CF=OE +AE ,延长EO 交CF 于点G ,只要证明△EOA ≌△GOC ,△OFG
是等边三角形,即可解决问题.
图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.解:(1)∵AE⊥PB,CF⊥BP,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,
,
∴△AOE≌△COF,
∴OE=OF.
(2)图2中的结论为:CF=OE+AE.
图3中的结论为:CF=OE﹣AE.
如图2中的结论证明如下:
延长EO交CF于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,
,
∴△EOA≌△GOC,
∴EO=GO,AE=CG,
在Rt△EFG中,∵EO=OG,
∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等边三角形,
∴OF=GF,∵OE=OF,
∴OE=FG,∵CF=FG+CG,
∴CF=OE+AE.
选图3的结论证明如下:
延长EO交FC的延长线于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,
,
∴△AOE≌△COG,
∴OE=OG,AE=CG,
在Rt△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等边三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG﹣CG,
∴CF=OE﹣AE.
12.如图,在正方形ABCD中,点E为对角线AC上的一点,连接BE,DE.(1)如图1,求证:△BCE≌△DCE;
(2)如图2,延长BE交直线CD于点F,G在直线AB上,且FG=FB.
①求证:DE⊥FG;
②已知正方形ABCD的边长为2,若点E在对角线AC上移动,当△BFG为等边三角形时,求线段DE的长(直接写出结果,不必写出解答过程).
【分析】(1)利用判定定理(SAS)可证;
(2)①利用(1)的结论与正方形的性质,只需证明∠FDE+∠DFG=90°即可;
②由DE⊥FG可构造直角三角形,利用等边三角形的性质及三角函数可求DE的长.
解:(1)∵四边形ABCD是正方形,AC是其对角线,
∴∠DCE=∠BCE,CD=CB
在△BCE与△DCE中,
∴△BCE≌△DCE(SAS).
(2)①证明:∵由(1)可知△BCE≌△DCE,
∴∠FDE=∠FBC
又∵四边形ABCD是正方形,
∴CD∥AB,
∴∠DFG=∠BGF,∠CFB=∠GBF,
又∵FG=FB,
∴∠FGB=∠FBG,
∴∠DFG=∠CFB,
又∵∠FCB=90°,
∴∠CFB+∠CBF=90°,
∴∠EDF+∠DFG=90°,
∴DE⊥FG
②解:如下图所示,。