筏板基础计算
筏板基础及钢筋计算
筏板基础:筏型基础又叫筏板型基础。
是把柱下独立基础或者条形基础全部用联系梁联系起来,下面再整体浇注底板。
一般说来地基承载力不均匀或者地基软弱的时候用筏板型基础。
而且筏板型基础埋深比较浅,甚至可以做不埋深式基础。
由底板、梁等整体组成。
建筑物荷载较大,地基承载力较弱,常采用砼底板,承受建筑物荷载,形成筏基,其整体性好,能很好的抵抗地基不均匀沉降。
筏板基础施工,混凝土浇筑完毕,应洒水养护的时间为(不少于7天)桩基础科技名词定义中文名称:桩基础英文名称:pile foundation定X 1:不用开挖而施工的一种细长型基础。
所属学科:|电力(一级学科);输电线路(二级学科)定义2:由桩和承台构成的深基础。
所属学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);岩土工程(水利)(三级学科)本内容由审定公布目录简介桩基础示意图由基桩和联接于桩顶的承台共同组成。
若桩身全部埋于土中,承台底面与土体接触,则称为低承台桩基;若桩身上部露出地面而承台底位于地面以上,则称为高承台桩基。
建筑桩基通常为低承台桩基础。
高层建筑中,桩基础应用广泛。
早在7000〜8000年前的新石器时代,人们为了防止猛兽侵犯,曾在湖泊和沼泽地里栽木桩筑平台来修建居住点。
这种居住点称为湖上住所。
在中国,最早的桩基是浙江省河姆渡的原始社会居住的遗址中发现的。
到宋代,桩基技术已经比较成熟。
在《营造法式》中载有临水筑基一节。
到了明、清两代,桩基技术更趋完善。
如清代《工部工程做法》一书对桩基的选料、布置和施工方法等方面都有了规定。
从北宋一直保存到现在的上海市龙华镇龙华塔(建于北宋太平兴国二年,977年)和山西太原市晋祠圣母殿(建于北宋天圣年间,1023〜1031年),都是中国现存的采用桩基的古建筑。
桩基是一种古老的基础型式。
桩工技术经历了几千年的发展过程。
现在, 无论是桩基材料和桩类型,或者是桩工机械和施工方法都有了巨大的发展,已经形成了现代化基础工程体系。
筏板基础计算方法和构造要求
当地基承载力很低,建筑物荷载又很大时,宜采用筏基。
沉积土层不均匀,有软弱土的不规则夹层,或者有坚硬的石芽出露,亦或石灰岩层中有不规则溶洞、溶曹时,采用筏基调节不均匀沉降或者跨越溶洞。
即使地基土相对较均匀时,对不均匀沉降敏感的结构也常采用筏基。
筏基的形式:等厚,局部加厚,上部加肋梁,下部加肋梁。
构造要求筏板厚度一般不小于柱网最大跨度的1/20,并不小于200mm,且应按抗冲切验算。
设置肋梁时宜取200-400mm。
筏基可适当加设悬臂部分以扩大基底面积和调整基底形心与上部荷载重心尽可能一致。
悬臂部分宜沿建筑物宽度方向设置。
当梁肋不外伸时板挑出长度不宜大于2m。
砼不低于c20,垫层100mm厚。
钢筋保护层不小于35mm。
地下水位以下的地下室底板应考虑抗渗,并进行抗裂度验算。
筏板配筋率一般在0.5-1.0%为宜。
当板厚小于300mm时单层配置,大于300mm时双层布置。
受力钢筋最小直径8mm,一般不小于12mm,间距100-200mm;分布钢筋8-10mm,间距200-300mm。
筏板配筋除符合计算配筋外,纵横方向支座钢筋尚应有0.15%、0.10%(全部受拉钢筋的1/2-1/3)的配筋率连通;跨中则按实际配筋率全部贯通。
双向悬臂挑出但肋梁不外伸时宜在板底放射状布附加钢筋。
平板式筏板柱下板带和跨中板带的底部钢筋应有1/2-1/3全部拉通,且配筋率不应小于0.15%;顶部按实际全部拉通。
当板厚小于250mm时分布筋为圆8间距250,板厚大于250mm时分不筋圆10间距200。
计算方法:1.简化方法倒梁法和到楼盖法(相对刚度较大);上部结构较柔时可用静力分析法。
2.考虑地基基础共同作用的方法2.考虑上部结构地基基础共同作用的方法。
筏板基础及侧壁计算书
a l 2 1b 2 筏板基础及侧壁计算书一、基本数据:根据 xx 省 xx 护国房地产开发有限公司护国广场岩土工程勘察报告,本工程以③层圆 砾层为持力层,地基承载力特征值为 220KP a 。
基础形式为筏板基础,混凝土强度等级为 C 40 , f c = 19.1N / mm 2 ;受力钢筋均采用HRB 400 级,f y =360 N / mm 2;根据地质 报告,地下水位取 − 1.700m 。
二、地基承载力修正及验算:f a = f ak + ηb γ (b − 3) + ηd γ m (d − 0.5) = 220 + 0.3 × 8 × (6 − 3) + 1.5 × 8 × (5.65 − 0.5) = 289.0kN / m 2上部荷载作用下地基净反力(由地下室模型竖向导荷得)f = 61.6kN / m 2 < f = 289.0kN / m 2地基承载力满足要求。
三、地下室侧壁配筋计算:(1)双向板:l y 5.175 ① l x = 8.400m , l y = 5.175m , = x 8.4 = 0.62E 土 = rhK a = 8.0 × 5.175 × tan 2 45o = 41.4KN / m E 水 = rh = 10.0 × 3.475 = 34.75KN / mE 合 = 1.27E 土 + 1.27E 水 = 52.6 + 44.1 = 96.7KN / m查静力计算手册,得:M x max = 0.0072ql 2= 0.0072 × 96.7 × 5.1752 2= 18.6KN ·m M y max = 0.0209ql '= 0.0209 × 96.7 × 5.175 2= 54.1KN ·m 2Mx max' = −0.0354ql 2= 0.0354 × 96.7 × 5.1752= −91.7KN ·mM y= −0.0566ql = −0.0566 × 96.7 × 5.175 = −146.6KN ·m配筋计算:取弯矩最大处进行计算。
筏板基础计算
pkpm平板筏基建模方法目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。
具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列:1、首先要按地勘报告输入地质数据,用于沉降计算。
非常重要。
2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。
3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。
也可以不布置板带,直接定义地基梁形成梁元模型。
4、进入菜单3,按梁有限元法计算筏板。
首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。
程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。
一般软土取低值0~0.2,硬土取高值0.2~0.4。
其它参数不难理解,不赘述。
梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。
柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。
计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。
沉降计算是筏板计算的核心步骤。
4、基床系数k的合理性判断。
沉降计算完毕后,计算数据中会给出各区格的地基刚度,即基床系数。
这个系数一般要比建议值小很多。
基床系数的合理性,关键看沉降计算结果。
可用规范分层总和法手算地基中心点处的沉降值作比较。
如出入大,应调整基床系数使其接近手算值。
因此,用软件算连续基础,实际上就是对基床系数的校核。
筏板基础
3.11基础设计本工程采用筏板基础。
根据规范《建筑地基基础设计规范》(GB50007-2002),筏板基础底板厚不宜小于400mm ,考虑到结构荷载比较大,故取底板厚度为600mm 。
筏基底面尺寸:纵向长度:42.7m ,横向长度:12.7m ,外伸长度:1 m 。
底板厚度:由h/l n ≮1/14,且≮400mm (l n 短边尺寸), 取h/7200≮1/14, h ≮500mm ,取h=600mm 基础梁截面尺寸:应满足高跨比≮1/6,宽高比=1/2~1/3,则KL1,KL2:h=6000/6=1000,取h=1600mm ,b=800mm KL3,KL4:h=5100/6=850,取h=1600mm ,b=800mm材料:混凝土C30,底板钢筋采用Ⅱ级钢筋,基础梁纵筋Ⅲ级,箍筋Ⅰ级。
根据地质条件,取地基承载力设计值为fak=180kN/m 2 3.11.1 底面积的确定A=(42.7+1×2)×(5.1×2+1.8+2×1)=625.8m ² ∑Ni 近似按12榀中框架的柱底轴力考虑由N Gk ,N Qk 的组合计算∑Ni=96592 kNG=1207.76×0.6×25+4×3×42.7+2.5×42.7×5.1×2=19718 kN2(3)(0.5)1600.319(63)1.619(6.10.5)347.34/a a k bd m f f b d k N m ηγηγ=+-+-=+⨯⨯-+⨯⨯-= 基底净反力:22197189659220 4.2625.8270/347.34/id a G N P dAkN m f kN m γ+=++=+⨯=<=∑ (2—58)满足要求。
3.11.2 底板抗冲切验算图3.11.1 底板抗冲切验算00.7l hp t m F f h βμ≤ (2—59)270(5.12 1.32)(62 1.32)2232l F kN=⨯-⨯⨯-⨯= (2—60)21430/t f kN m =01400801320h mm =-=[](16.513.2)(5.1 1.320221.92m m μ=-+-⨯=0.95hp β=00.70.70.951430 1.3221.9227515hp t m lf h kN F βμ=⨯⨯⨯⨯=> (2—61)满足要求 3.11.3 底板抗剪切验算图3.11.2 底板抗剪切验算[]2200000.7(2)0.7(2)0.70.7951430(5.10.7)2 1.32 1.321849hs t n hs t n V f l h h f l h h kNββ≤-=-=⨯⨯⨯--⨯⨯=270 5.431466V kN =⨯=满足要求 3.11.4 基础底板和基础梁的内力和配筋计算按非地震组合计算,∑Ni=105140kNPn=Ni/A=105140/625.8=168kN①基础底板计算对3、4区格,lx=3.3m ,ly=1.8m , l= ly/ lx=0.545 按两端固定的单向板计算,单位板宽内的分布荷载 n q =142.65 kN/m ²支座弯矩 M=-1/12 Qnly ²=-1/12×142.65×1.8²=-38.52 kN·m 跨中弯矩 M=-1/24 Qnly ²=1/24×142.65×1.8²=19.26 kN·m 对1,2区格,lx=3.3m ,ly=5.1m 。
基础筏板手工算量计算方法
基础筏板手工算量计算方法:用CAD(PL画线命令闭合后在点Li命令)查询出异形筏板的周长L与面积S总。
演示一下2:S(962)总周长(152)L*(钢筋保护层)0.04=实有钢筋面积S2。
0.04是保护层厚度,见图纸说明。
此外说明一下有基础梁的筏板,应把基础梁在筏板中占的面积(钢筋量)去掉,(筏板钢筋与基础梁同方向的不设,只设穿过梁的筏板筋)看三维图。
3:根据筏板钢筋上下双层双向@200, 1/0.2=5M*2层*2双层=20M(每平方含量), 基础梁占有的钢筋每平方】=10米如果X向@200,Y向@250,则每平方钢筋含量[1M/0.2+1M/0.25]*2[双层]=18M.】4:用(3中)20M(每平方含量)】*实有钢筋面积S2】+周长L/2*2[最后周圈少这个L/2钢筋基础梁的占有面积*10基础梁部分每平方少放10米的筏板钢筋】=筏板筋长度。
注:主次梁相交处算了两次长度,所以已经减去。
]】。
5: 筏板筋周圈的钢筋查得(筏板筋弯钩长度)15d*(筏板弯钩筋个数)筏板周长(L/0.2+1)={筏板周围弯钩筋长度}。
6:马镫筋,按施工组织设计中的数量计算(支撑上层钢筋)以上是马凳筋两种形式图片,此工程量根据甲方签字的筏板上层钢筋支撑施工方案计算,如采用图-2钢筋支撑三级钢18钢筋,每2米间距设一排支撑,每2米设两只腿,见图图中的40是保护层厚度,具体以图纸总说明为主有时是20厚】根据上图,马凳筋计算方法:每2米段长含量0.528*2+2=3.058米。
根据以下CAD图2米排一排支撑钢筋,最后把支撑钢筋长度累加在一起L/2+1】*3.058米=支撑钢筋的量。
以上筏板筋4+5+6 =筏板筋总长度工程量。
7:搭接头的工程量:钢筋直径18以上,采用机械(螺母)连接,计量:筏板钢筋总长度/9M=接头总个数----套(机械接头定额)。
钢筋直径18以下(三级钢筋16 14 12等)采用搭接链接,搭接长度Ll=1.4* La钢筋直径安接头面积50%,例如一共有10根钢筋,同一截面上有5根钢筋通长,另5根钢筋绑扎搭接,此时钢筋搭接长度安Ll=1.4*La),注意计算时要统一单位。
筏板基础计算
筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。
(1 )地基承载力验算地基承载力验算方法同独立柱基,参见第17.1.1节内容。
对于非矩形筏板, 抵抗矩W采用积分的方法计算。
(2 )基础抗冲切验算按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。
①梁板式筏基底板的抗冲切验算底板受冲切承载力按下式计算*50.70/认式中:F i ——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值;B hp——受冲切承载力截面高度影响系数;U m ――距基础梁边h°/2处冲切临界截面的周长;f t ――混凝土轴心抗拉强度设计值。
图17.1.5-1 底板冲切计算示意②平板式筏基柱(墙)对筏板的冲切验算计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力,距柱边h o/2处冲切临界截面的最大剪应力T max应按下列公式计算石匸和十aM影』- r max^0.7(0.4 +1.2/A)ApZ. 1乙二I----- 2 -- --------1 十3«)式中:F ——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重;U m ――距柱边h o/2处冲切临界截面的周长;M unb ――作用在冲切临界截面重心上的不平衡弯矩设计值;C A B――沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离;I s ――冲切临界截面对其重心的极惯性矩;B s——柱截面长边与短边的比值,当B s<2时,B s取2;当B s>4时,B s取4 ;c i——与弯矩作用方向一致的冲切临界截面的边长;C2——垂直于C i的冲切临界截面的边长;a s ――不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数;③平板式筏基短肢剪力墙对筏板的冲切验算短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2 。
筏基底板冲切计算计算书完整版
ln1(m) ln2(m) p(kPa) h(mm) as(mm) h0=h-as ft
8
8
120
350
55
295
1.57
4.底板冲 切高度计 算:
h<=800 因为: 所以:
b= hp 1
(GB5000 7-2002第 8.2.7条)
当底板区 格为矩形 双向板 时,底板 受冲切所 需的厚度
h0:
1.计算依 据:规范 《建筑地 基基础设 计规范》 GB50007 -2002第 8.4.5条
2.计算简 图:
筏板基础底板冲切、剪切计算
项目名称:
回目录
p— —相应于 荷载效应 基本组合 的地基土 平均净反 力设计值
ln1,ln2— —计算板 格的长边 和短边的 净长度
3.输入条 件: 混凝土C 35
b h =(800/ )1/4
hs
0
式8.4.53右侧 为:
受剪阴影 部分面积 为:
=1
(本式中 因h0<800 故h0为: 800 )
(GB5000 7-2002式
8.4.5-4)
2807.945 kN
(2*ln2ln12*h0)*(ln 1-2*h0)/4 = 13.7 m2
VS = p?阴影部分面积= 1647.2 kN
OK! 满足式8.4.5-3要求
(ln1+ ln2) -
(l
n1+l
n2)2
-
p
l l 4p n1 n2
+ 0.7 b
f
h0 =
hp t
4
OK! 底
板厚度
(GB5000 7-2002式 8.4.5-2)
筏板基础计算方法和构造要求
构造要求
筏板厚度一般不小于柱网最大跨度的1/20,并不小于200mm,且应按抗冲切验算。设置肋梁时宜取200-400mm。筏基可适当加设悬臂部分以扩大基底面积和调整基底形心与上部荷载重心尽可能一致。悬臂部分宜沿建筑物宽度方向设置。当梁肋不外伸时板挑出长度不宜大于2m。砼不低于c20,垫层100mm厚。钢筋保护层不小于35mm。地下水位以下的地下室底板应考虑抗渗,并进行抗裂度验算。
筏板配筋率一般在0.5-1.0%为宜。当板厚小于300mm时单层配置,大于300mm时双层布置。受力钢筋最小直径8mm,一般不小于12mm,间距100-200mm;分布钢筋8-10mm,间距200-300mm。筏板配筋除符合计算配筋外,纵横方向支座钢筋尚应有0.15%、0.10%(全部受拉钢筋的1/2-1/3)的配筋率连通;跨中则按实际配筋率全部贯通。双向悬臂挑出但肋梁不外伸时宜在板底放射状布附加钢筋。 平板式筏板柱下板带和跨中板带的底部钢筋应有1/2-1/3全部拉通,且配筋率不应小于0.15%;顶部按实际全部拉通。当板厚小于250mm时分布筋为圆8间距250,板厚大于250mm时分不筋圆10间距200。
按考虑等代上部结构刚度影响的弹性地定上部结构刚度是地基梁刚度的几倍。该值的大小直接关系到基础发生整体弯曲的程度。而上部结构刚度到底是地基梁刚度的几倍并不好确定。因此,只有当上部结构刚度较大、荷载分布不均匀,并且用模式1算不下来时方可采用,一般情况可不用选它。
文献来源
3、2 岩石地基基床系数取值分析式(1)中的k称为基床系数,它是反映地基性质的基本参数,也是文克尔模型中唯一的岩土参数
按SATWE或TAT的上部刚度进行弹性地基梁计算
从理论上讲,这种方法最理想,因为它考虑的上部结构的刚度最真实,但这也只对纯框架结构而言。对于带剪力墙的结构,由于剪力墙的刚度凝聚有时会明显地出现异常,尤其是采用薄壁柱理论的TAT软件,其刚度只能凝聚到离形心最近的节点上,因此传到基础的刚度就更有可能异常。所以此种计算模式不适用带剪力墙的结构。
筏板基础底板冲切、剪切计算表格
8
8
200
500
55
445 #VALUE!
4.底板冲 切高度计 算:
h<=800 所以: 因为:
当底板区 格为矩形 双向板 时,底板 受冲切所 需的厚度 h0:
b= hp 1
(GB5000 7-2002第 8.2.7条)
(ln1+ ln2) -
(l
n1+l
n2)2
-
p
l l 4p n1 n2
+ 0.7 b
1.计算依 据:规范 《建筑地 基基础设 计规范》 GB50007 -2002第 8.4.5条
2.计算简 图:
筏板基础底板冲切、剪切计算
项目名称:
p— —相应于 荷载效应 基本组合 的地基土 平均净反 力设计值
ln1,ln2— —计算板 格的长边 和短边的 净长度
3.输入条 件: 混凝土C 35
ln1(m) ln2(m) p(kPa) h(mm) as(mm) h0=h-as ft
b h = (800/ )1/ 4
hs
0
式8.4.53右侧 为:
受剪阴影 部分面积 为:
=1
(本式中 因h0<800 故h0为: 800 )
(GB5000 7-2002式
8.4.5-4)
kN #VALUE!
(2*ln2ln12*h0)*(ln 1-2*h0)/4 = 12.6 m2
VS = p?阴影部分面积= 2527.6 kN
f
h0 =
hp t
4
= ######## mm
#VALUE!
(GB5000 7-2002式 8.4.5-2)
5.底板斜 截面受剪 承载力验 算:
基础埋深计算公式
基础埋深计算公式
基础埋深计算公式包括以下几种:
1.计算筏板基础埋深的公式。
筏板基础埋深=(荷载/(地基强度系数×筏板面积)+网格基础深度)/γ。
其中,荷载为承受荷载,地基强度系数为土壤的承载力系数,筏板面积为筏板的面积,网格基础深度为基础下面的深度,γ为土壤重度。
2.计算桩基础埋深的公式。
桩基础埋深=荷载/(桩身截面积×承载力系数)+桩长。
其中,荷载为承载荷载,桩身截面积为桩的截面积,承载力系数为土壤的承载能力系数,桩长为桩的长度。
3.计算地挖基础埋深的公式。
地挖基础埋深=(荷载/(土壤容重×可用地面积))+地基深度。
其中,荷载为承载荷载,土壤容重为土壤的密度,可用地面积为基础的面积,地基深度为基础下面的深度。
筏板基础计算知识讲解
筏板基础计算筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。
(1)地基承载力验算地基承载力验算方法同独立柱基,参见第17.1.1节内容。
对于非矩形筏板,抵抗矩W采用积分的方法计算。
(2)基础抗冲切验算按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。
①梁板式筏基底板的抗冲切验算底板受冲切承载力按下式计算式中:F l——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值;βhp——受冲切承载力截面高度影响系数;u m——距基础梁边h0/2处冲切临界截面的周长;f t——混凝土轴心抗拉强度设计值。
图17.1.5-1 底板冲切计算示意②平板式筏基柱(墙)对筏板的冲切验算计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力,距柱边h0/2处冲切临界截面的最大剪应力τmax应按下列公式计算。
式中:F l——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重;u m ——距柱边h0/2处冲切临界截面的周长;M unb——作用在冲切临界截面重心上的不平衡弯矩设计值;c AB——沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离;I s——冲切临界截面对其重心的极惯性矩;βs——柱截面长边与短边的比值,当βs<2时,βs取2;当βs>4时,βs取4;c1——与弯矩作用方向一致的冲切临界截面的边长;c2——垂直于c1的冲切临界截面的边长;a s——不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数;③平板式筏基短肢剪力墙对筏板的冲切验算短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。
筏板基础工程量计算
筏板基础工程量计算
筏板基础工程量计算通常需要考虑以下几个方面:
1. 筏板面积:筏板基础的面积通常是建筑物底部的面积,也就是建筑平面的面积。
2. 筏板厚度:筏板的厚度一般根据设计要求和地基条件而定。
3. 钢筋数量:在筏板中,需要添加钢筋以增强结构强度,钢筋数量要按照设计要求计算。
4. 混凝土用量:混凝土用量与筏板面积和厚度有关,同时还和混凝土强度等因素有关。
5. 模板材料用量:在施工过程中需要模板来形成筏板的形状,因此模板材料用量也是需要考虑的。
综合考虑这些因素,能够计算出筏板基础的总工程量。
具体计算公式如下:
筏板基础工程量 = 筏板面积 x 筏板厚度 x 混凝土浇筑系数 + 钢筋用量 + 模板材料用量。
筏板基础计算
pkpm平板筏基建模方法目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。
具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列:1、首先要按地勘报告输入地质数据,用于沉降计算。
非常重要。
2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。
3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。
也可以不布置板带,直接定义地基梁形成梁元模型。
4、进入菜单3,按梁有限元法计算筏板。
首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。
程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。
一般软土取低值0~0.2,硬土取高值0.2~0.4。
其它参数不难理解,不赘述。
梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。
柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。
计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。
沉降计算是筏板计算的核心步骤。
4、基床系数k的合理性判断。
沉降计算完毕后,计算数据中会给出各区格的地基刚度,即基床系数。
这个系数一般要比建议值小很多。
基床系数的合理性,关键看沉降计算结果。
可用规范分层总和法手算地基中心点处的沉降值作比较。
如出入大,应调整基床系数使其接近手算值。
因此,用软件算连续基础,实际上就是对基床系数的校核。
筏板基础计算方法和构造要求[总结]
当地基承载力很低,建筑物荷载又很大时,宜采用筏基。
沉积土层不均匀,有软弱土的不规则夹层,或者有坚硬的石芽出露,亦或石灰岩层中有不规则溶洞、溶曹时,采用筏基调节不均匀沉降或者跨越溶洞。
即使地基土相对较均匀时,对不均匀沉降敏感的结构也常采用筏基。
筏基的形式:等厚,局部加厚,上部加肋梁,下部加肋梁。
构造要求筏板厚度一般不小于柱网最大跨度的1/20,并不小于200mm,且应按抗冲切验算。
设置肋梁时宜取200-400mm。
筏基可适当加设悬臂部分以扩大基底面积和调整基底形心与上部荷载重心尽可能一致。
悬臂部分宜沿建筑物宽度方向设置。
当梁肋不外伸时板挑出长度不宜大于2m。
砼不低于c20,垫层100mm厚。
钢筋保护层不小于35mm。
地下水位以下的地下室底板应考虑抗渗,并进行抗裂度验算。
筏板配筋率一般在0.5-1.0%为宜。
当板厚小于300mm时单层配置,大于300mm时双层布置。
受力钢筋最小直径8mm,一般不小于12mm,间距100-200mm;分布钢筋8-10mm,间距200-300mm。
筏板配筋除符合计算配筋外,纵横方向支座钢筋尚应有0.15%、0.10%(全部受拉钢筋的1/2-1/3)的配筋率连通;跨中则按实际配筋率全部贯通。
双向悬臂挑出但肋梁不外伸时宜在板底放射状布附加钢筋。
平板式筏板柱下板带和跨中板带的底部钢筋应有1/2-1/3全部拉通,且配筋率不应小于0.15%;顶部按实际全部拉通。
当板厚小于250mm时分布筋为圆8间距250,板厚大于250mm时分不筋圆10间距200。
计算方法:1.简化方法倒梁法和到楼盖法(相对刚度较大);上部结构较柔时可用静力分析法。
2.考虑地基基础共同作用的方法2.考虑上部结构地基基础共同作用的方法常用简化方法——刚性板方法当柱荷载相对比较均匀(相邻柱荷载变化不超过20%),柱距相对比较一致(相邻柱距变化不大于20%),若果满足公式:或者筏基支撑着刚性的上部结构时,筏基可认为是刚性的,基底反力呈直线分布,反力的形心与作用在板上全部荷载的合力作用线相吻合。
筏板基础计算
筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。
(1)地基承载力验算地基承载力验算方法同独立柱基,参见第17.1.1节内容。
对于非矩形筏板,抵抗矩W采用积分的方法计算。
(2)基础抗冲切验算按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。
①梁板式筏基底板的抗冲切验算底板受冲切承载力按下式计算式中:F l——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值;βhp——受冲切承载力截面高度影响系数;u m——距基础梁边h0/2处冲切临界截面的周长;f t——混凝土轴心抗拉强度设计值。
图17.1.5-1 底板冲切计算示意②平板式筏基柱(墙)对筏板的冲切验算计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力,2处冲切临界截面的最大剪应力τmax应按下列公式计算。
距柱边h0/式中:F l——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重;u m ——距柱边h0/2处冲切临界截面的周长;M unb——作用在冲切临界截面重心上的不平衡弯矩设计值;c AB——沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离;I s——冲切临界截面对其重心的极惯性矩;βs——柱截面长边与短边的比值,当βs<2时,βs取2;当βs>4时,βs取4;c1——与弯矩作用方向一致的冲切临界截面的边长;c2——垂直于c1的冲切临界截面的边长;a s——不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数;③平板式筏基短肢剪力墙对筏板的冲切验算短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。
(1 )地基承载力验算
地基承载力验算方法同独立柱基,参见第17.1.1节内容。
对于非矩形筏板, 抵抗矩W采用积分的方法计算。
(2 )基础抗冲切验算
按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。
①梁板式筏基底板的抗冲切验算
底板受冲切承载力按下式计算
*50.70/认
式中:
F i ——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值;
B hp——受冲切承载力截面高度影响系数;
U m ――距基础梁边h°/2处冲切临界截面的周长;
f t ――混凝土轴心抗拉强度设计值。
图17.1.5-1 底板冲切计算示意
②平板式筏基柱(墙)对筏板的冲切验算
计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力, 距柱边h o/2处冲切临界截面的最大剪应力T max应按下列公式计算。
石=E / %瓜 - a / l s
r max^0.7(0.4 + 1.2/A)ApZ
1
式中:
F i——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重;
U m ――距柱边h o/2处冲切临界截面的周长;M unb ――作用在冲切临界截面重心上的不平衡弯矩设计值;
C A B――沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离;
I s ――冲切临界截面对其重心的极惯性矩;
B s——柱截面长边与短边的比值,当B s<2时,B s取2;当B s>4时,B s取4 ;
c i——与弯矩作用方向一致的冲切临界截面的边长;
C2——垂直于C i的冲切临界截面的边长;a s ――不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数;
③平板式筏基短肢剪力墙对筏板的冲切验算
短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。
十字形短肢墙L形短肢墙T形短肢墙
图17.1.5-2 短肢剪力墙等效外接矩形柱
④平板式筏基内筒对筏板的冲切验算验算公式
/丿珀5 ().7几丿切
式中:
F i ――相应于荷载效应基本组合时的内筒所承受的轴力设计值减
去筏板冲切破坏锥体内的地基反力设计值,地基反力值应扣除板的自重;
B hp——受冲切承载力截面高度影响系数;
U m ――距内筒外表面h o/2处冲切临界截面的周长;
h o ---------- 距内筒外表面h o/2处筏板的截面有效高度;
n ――内筒冲切临界截面周长影响系数,取1.25。
(3 )筏板抗剪切验算
①梁板式筏基底板抗剪切验算
\/L
丿
l n2
L
/451
- Q _
—J
图17.1.5-3 底板剪切计算示意
底板斜截面抗剪切计算公式:
匚三°703际-2方皿
,I
亠(800y
式中:
V s――距梁边缘h。
处,底板底部部分面积上的地基土平均净反力设计值;
B hs ――受剪切承载力截面高度影响系数,当板的有效高度
h o小于800 mm 时,h。
取800mm;h。
大于2000 mm 时,h。
取2000mm。
②平板式筏基筏板抗剪切验算
a验算距内筒边缘或柱(墙)边缘h°处筏板的受剪承载力,验算公式式:
匕"7九仇九
式中:
V s——荷载效应基本组合下,地基土净反力平均值产生的距内筒或柱边缘h。
处筏板单位宽度的剪力设计值;
b w ――筏板计算截面单位宽度;B hs——受剪切承载力截面高度影响
系数;h o 距内筒或柱边缘h0处筏板的截面有效高度。
b、验算短肢剪力墙边缘h o处筏板的受剪承载力将短肢剪力墙等效成外接矩形柱来计算筏板的受剪承载力,计算方法完全同柱。
短肢剪力墙等效外接矩形参见图17.1.5-2。
③筏板变厚度处抗剪切验算变厚度处筏板截面抗剪验算公式同"平板式筏基筏板抗剪切
验算"。
(4)筏基局部受压计算当筏板或肋梁的混凝土强度等级低于柱(墙)混凝土强度等级时,需要
验算柱下基础顶面的局部受压承载力,计算方法参见第17.1.1节柱下独基局部受压承载力的计算。
(5 )地下室抗浮验算根据GB50007-2002规范第3.0.2条第6款规定,当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮问题时,尚应进行抗浮验算。
W/F > 1.0
式中:
W ――基础自重与其上作用的永久荷载标准值之和,不考虑活荷载;
F ―― 地下水浮力标准值,F= p hA;p s ——地下水容重(kN/m3);
h——抗浮验算水头至基础底面的距离;A——基础底面面积。
建筑物重量及水浮力的分项系数均取1.0。
(6)筏板基础内力计算
一、梁板式筏基
a、板元法分析
板板元法分析适用的边界条件只有弹性地基,可以考虑上部结构刚度影响,对于肋梁和筏板采用不同厚度的板单元分析,分析后内力结果可以按肋梁和底板分别来输出。
对于弹性地基基床反力系数K值的计算参见第9.2节的说明,
板元法分析原理参见第17.3节介绍。
b、梁元法分析
梁元法分析时,需要先确定肋梁的翼缘宽度;梁元法分析适用的边界条件有弹性地基和倒楼盖,当边界条件选择为倒楼盖时,分析时不考虑上部结构刚度的影响;当边界条件选择为弹性地基时,分析时可以考虑上部结构刚度的影响。
选择梁元法分析时,筏板部分按弹性(塑性)查表法计算,异形板块程序默认按有限元法分析。
最后分析结果分别按肋梁和底板来输出,梁元法分析原理参见第17.3节介绍
二、平板式筏基
a、板元法分析
板板元法分析适用的边界条件有弹性地基和倒楼盖,边界条件为弹性地基时,分析时可以考虑上部结构刚度的影响;边界条件选择为倒楼盖时,分析时不考虑上部结构刚度的影响。
板元法分析结果可以按板带、单元及构件(即房间板块)来输出,板元法分析原理参见第17.3节介绍。
b、板带法分析
板带法实际就是梁元法,分析时需要先划分板带,边界条件只有倒楼盖,分析时不考虑上部结构刚度的影响;分析结果分别按柱上板带和跨中板带输出,柱上板带和跨中板带的弯矩分配系数按《钢筋混凝土升板结构技术规程》
GBJ130-90 第3.2.4 条表3.2.4 执行。
柱上板带与跨中板带弯矩分配系数
板带法分析完后,需要划分柱上板带和跨中板带,划分方法见图
17.1.5-5。
带
板
丄
图17.1.5-4 板带划分示意
L壮上小昨X牡上r k杯由柱上用d h柱上rl $ 十叩T 1 T r 图17.1.5-5 柱上板带与跨中板带划分示意。