高中数学三角函数复习专题(2)

合集下载

高中数学理科专题讲解高考大题专项(二)《三角函数与解三角形》教学课件

高中数学理科专题讲解高考大题专项(二)《三角函数与解三角形》教学课件

典例剖析
典例剖析
解题心得在含有边角关系的等式中,利用正弦定理的变形a=2Rsin A,b=2Rsin B,c=2Rsin C,可直接将等式两边的边化为角;也能利用余弦定理的变形如 将角化为边.在三角形中利用三角变换求三角式的值时,要注意角的范围的限制.
典例剖析
解:(1)在△ABD中,∵∠DAC=75°,∠CAB=45°,∴∠DAB=120°.又∠DBA=30°,∴∠ADB=30°,∴△ABD为等腰三角形,∴AB=AD=50 m.由余弦定理可得BD2=502+502-2×50×50cos 120°=3×502,∴BD=50 m.△ABC中,∠CAB=45°,∠ABC=∠ABD+∠CBD=30°+75°=105°,∴∠ACB=30°,
典例剖析
2.三角恒等变换和解三角形的结合,一般有两种类型:一是先利用三角函数的平方关系、和角公式等求符合正弦定理、余弦定理中的边与角,再利用正弦定理、余弦定理求值;二是先利用正弦定理、余弦定理确定三角形的边与角,再代入到三角恒等变换中求值.具体解题步骤如下:第一步,利用正(余)弦定理进行边角转化;第二步,利用三角恒等变换求边与角;第三步,代入数据求值;第四步,查看关键点、易错点.3.解三角形的问题总体思路就是转化思想和消元,要注重正弦定理、余弦定理多种表达形式及公式的灵活应用.
典例剖析
典例剖析
典例剖析
1.在历年的高考试题中,三角中的解答题一般考查简单三角函数式的恒等变形、解三角形,有时也考查正弦定理、余弦定理的实际应用.特别是涉及解三角形的问题,经常出现的题型有:正弦定理、余弦定理与三角变换的综合;正弦定理、余弦定理与三角形面积的综合;正弦定理、余弦定理与三角变换及三角形面积的综合.把握住高考命题规律,有针对性的训练是提高成绩的有效措施.

高考数学大一轮专题复习 专题二 三角函数与平面向量配套课件 文

高考数学大一轮专题复习 专题二 三角函数与平面向量配套课件 文

则cos∠MNP=|NN→→MM|··N|→N→PP|=
Hale Waihona Puke -6 5×25=-35.
由∠MNP∈[0,π],得sin∠MNP= 1-cos2∠MNP=45.
2 值;最后由点M在图象上求得φ的值,进而得到函数的解析 式;先由x的范围,求得2x+ π 的范围,把ωx+φ看作一个整
6 体,再求得fx的值域.
第十一页,共36页。
【互动(hù dònɡ)探究】
2.(2012年湖北八校联考)已知函数f(x)=Asin(ωx+φ) A>0,ω>0,|φ|<π2,x∈R图象的一部分如图2-1.
第七页,共36页。
题型 2 三角变换与三角函数(sānjiǎhánshù)性质的整合 例2:(2012年陕西西安模拟)已知函数f(x)=Asin(ωx+φ), x∈R 其中A>0,ω>0,0<φ<π2 的图象与x轴的交点中,相邻两 个交点之间的距离为π2,且图象上的一个最低点为M23π,-2. (1)求f(x)的解析式; (2)当x∈1π2,π2时,求f(x)的值域.
对广东的试题而言,2008 年、2009 年、2010 年、2011 年、 2012 年、2013 年连续六年都是考查三角变换及三角函数求值. 这个数据足以说明广东对该题型的情有独钟,但绝对不能因此
还有两个现象也应该引起(yǐnqǐ)我们备考时注意:①三角函数与 而放松对整章知识系统而全面地复习. 平面向量的综合,是近几年全国各地高考试题中的一种重要题 型,已成为热点.而广东高考仅在 2007 年、2009 年在三角函
第三页,共36页。
题型 1 三角变换(biànhuàn)与求值的整合
例1:(2012年广东)已知函数f(x)=Acos4x+π6

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。

高中数学三角函数经典例题及详解

高中数学三角函数经典例题及详解

高中数学三角函数专题复习考试要求三角函数是一类最典型的周期函数。

本单元的学习,可以帮助学生在用锐角三角函数刻画直角三角形中边角关系的基础上,借助单位圆建立一般三角函数的概念,体会引入弧度制的必要性;用几何直观和代数运算的方法研究三角函数的周期性、奇偶性(对称性)、单调性和最大(小)值等性质;探索和研究三角函数之间的一些恒等关系;利用三角函数构建数学模型,解决实际问题。

内容包括:角与弧度、三角函数概念和性质、同角三角函数的基本关系式、三角恒等变换、三角函数应用。

(1)角与弧度了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。

(2)三角函数概念和性质①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、奇偶性、最大(小)值。

借助单位圆的对称性,利用定义推导出诱导公式(α ±,α ±π的正弦、余弦、正切)。

②借助图象理解正弦函数在、余弦函数上、正切函数在 上的性质。

③结合具体实例,了解的实际意义;能借助图象理解参数ω,φ,A 的意义,了解参数的变化对函数图象的影响。

(3)同角三角函数的基本关系式理解同角三角函数的基本关系式。

(4)三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。

②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。

③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)。

(5)三角函数应用会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模2π[0,2]π(,)22ππ-sin()y A x ωϕ=+22sin sin cos 1,tan cos xx x x x+==型经 典 题 型一、求值化简型这类问题常常用到的公式包括三角函数定义、同角三角函数关系式、诱导公式、和差倍公式、降幂公式、辅助角公式 1、公式运用【例】(1)已知tan α=3,求:αα22cos 41sin 32+的值。

高中数学 第一章 基本初等函数(II)1.3 三角函数的图象与性质 1.3.2 余弦函数、正切函数的

高中数学 第一章 基本初等函数(II)1.3 三角函数的图象与性质 1.3.2 余弦函数、正切函数的

1.3.2 余弦函数、正切函数的图象与性质第一课时 余弦函数的图象与性质1.余弦函数的图象(1)把正弦曲线向左平移π2个单位就可以得到余弦函数的图象.余弦函数y =cos x 的图象叫做余弦曲线.(2)余弦曲线.除了上述的平移法得到余弦曲线,还可以用:①描点法:按照列表,描点,连线顺序可作出余弦函数图象的方法.②五点法:观察余弦函数的图象可以看出,(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1)这五点描出后,余弦函数y =cos x ,x ∈[0,2π]的图象的形状就基本上确定了.【自主测试1】画出函数y =-cos x ,x ∈[0,2π]的简图.分析:运用五点作图法,首先要找出起关键作用的五个点,然后描点连线. 解:列表:ω>0)的周期为T =2πω.今后,可以使用这个公式直接求这类函数的周期.【自主测试2-1】函数y =2cos x +1的最大值和最小值分别是( ) A .2,-2 B .3,-1 C .1,-1 D .2,-1 答案:B【自主测试2-2】已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R ),下列结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=sin ⎝⎛⎭⎪⎫x -π2=-cos x (x ∈R ),f (-x )=f (x ),∴函数f (x )是偶函数. 答案:D正弦函数与余弦函数的图象和性质的区别与联系(4)sin x +cos x =1题型一 用“五点法”作函数y =A cos(ωx +φ)的图象 【例题1】用“五点法”画出函数y =2cos 2x 的简图.分析:先找出此函数图象上的五个关键点,画出其在一个周期上的函数图象,再进行扩展得到在整个定义域内的简图.解:因为y =2cos 2x 的周期T =2π2=π,所以先在区间[0,π]上按五个关键点列表如下.然后把y =2cos 2x 在[0,π]上的图象向左、右平移,每次平移π个单位长度,则得到y =2cos 2x 在R 上的简图如下.反思在用“五点法”画出函数y =A cos(ωx +φ)的图象时,所取的五点应由ωx +φ=0,π2,π,3π2,2π来确定,而不是令x =0,π2,π,3π2,2π.题型二 三角函数的图象变换【例题2】函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象平移得到,若使平移的距离最短,则应( )A .向左平移π8个单位长度B .向右平移7π8个单位长度C .向左平移π4个单位长度D .向右平移π8个单位长度解析:y =cos ⎝ ⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π4 =sin ⎝ ⎛⎭⎪⎫3π4-2x =-sin ⎝⎛⎭⎪⎫2x -3π4 =sin ⎝ ⎛⎭⎪⎫2x -3π4+π=sin ⎝ ⎛⎭⎪⎫2x +π4 =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8,故函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象向右平移π8个单位长度得到.故选D .答案:D反思一定要注意看清变换的顺序,即看清是以哪个函数图象作为基准. 题型三 函数的定义域问题【例题3】求函数y =36-x 2+lg cos x 的定义域.分析:首先根据函数解析式列出使函数有意义的条件不等式组,然后分别求解,最后求交集即可.解:要使函数有意义,只需⎩⎪⎨⎪⎧36-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-6≤x ≤6,2k π-π2<x <2k π+π2k ∈Z .利用数轴求解,如图所示:所以函数的定义域为⎣⎢⎡⎭⎪⎫-6,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,6. 反思利用数轴或者单位圆取解集的交集或并集非常简捷、清晰,但要注意区间的开闭情况.题型四 余弦函数的最值或值域【例题4】(1)求函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π3,2π3的值域;(2)求函数y =2+cos x2-cos x的最值;(3)求函数y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3的值域.分析:(1)结合y =cos x 的图象在区间⎣⎢⎡⎦⎥⎤-π3,2π3上先增后减即可求解;(2)利用|cos x |≤1这一性质;(3)利用配方法,结合二次函数的性质求解.解:(1)∵y =cos x 在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增,在区间⎣⎢⎡⎦⎥⎤0,2π3上单调递减,∴y ma x =cos 0=1,y min =cos 2π3=-12,∴y =cos x 的值域为⎣⎢⎡⎦⎥⎤-12,1. (2)由y =2+cos x 2-cos x ,求得cos x =2y -1y +1.∵|cos x |≤1,∴⎪⎪⎪⎪⎪⎪2y -1y +1≤1,∴[2(y -1)]2≤(y +1)2.解得13≤y ≤3,∴y ma x =3,y min =13.(3)y =3cos 2x -4cos x +1=3⎝⎛⎭⎪⎫cos x -232-13,∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,∴cos x ∈⎣⎢⎡⎦⎥⎤-12,12, 从而当cos x =-12,即x =2π3时,y ma x =154.当cos x =12,即x =π3时,y min =-14.∴函数y =3cos 2x -4cos x +1的值域为⎣⎢⎡⎦⎥⎤-14,154.反思求函数的最值的方法有以下几种:(1)直接法.根据函数值域的定义,由自变量的取值范围求出函数值的取值范围. (2)利用函数的单调性.(3)利用函数的图象,转化为求函数图象上最高点和最低点的纵坐标的问题.(4)利用换元法,转化为一次函数、二次函数、指数函数、对数函数等基本初等函数问题.题型五 余弦函数图象的应用【例题5】求函数y =cos ⎝⎛⎭⎪⎫2x +π4的对称中心、对称轴方程、单调递减区间和最小正周期.分析:利用整体换元,设t =2x +π4,则问题转化为考查函数y =cos t 的相关性质.解:设t =2x +π4,则函数y =cos t 的图象如图所示.令t =k π(k ∈Z ),则2x +π4=k π(k ∈Z ).故x =k ·π2-π8(k ∈Z )即为所求的对称轴方程.令t =k π+π2(k ∈Z ),则2x +π4=k π+π2(k ∈Z ),则x =k ·π2+π8(k ∈Z ).故⎝ ⎛⎭⎪⎫k ·π2+π8,0(k ∈Z )即为所求的对称中心.当t ∈[2k π,2k π+π](k ∈Z )时,2x +π4∈[2k π,2k π+π](k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). ∵cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π4+2π=cos ⎣⎢⎡⎦⎥⎤2x +π+π4, ∴最小正周期T =π.反思整体换元思想是解决较复杂三角函数问题常用的一种方法,它能将问题化归为对基本三角函数的考查.〖互动探究〗若将本例中的函数改为“y =⎪⎪⎪⎪⎪⎪cos ⎝⎛⎭⎪⎫2x +π4”呢? 解:设t =2x +π4,则问题转化为考查函数y =|cos t |,如图所示:解答过程同例题,可得无对称中心.令t =k ·π2(k ∈Z ),则2x +π4=k ·π2(k ∈Z ),∴对称轴为x =k ·π4-π8(k ∈Z );令t ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ), ∴2x +π4∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8故其单调递减区间为⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8(k ∈Z ).最小正周期T =π2.反思(1)若三角函数式子中带绝对值号,则通常通过观察图象得到周期和单调区间. (2)正弦函数y =sin x 和余弦函数y =cos x 取绝对值后,周期缩为原来的一半,即 ①y =|sin x |的周期为π; ②y =|cos x |的周期为π.1.下列说法不正确的是( )A .正弦函数、余弦函数的定义域是R ,值域是[-1,1]B .余弦函数当且仅当x =2k π(k ∈Z )时取得最大值1,当且仅当x =(2k +1)π(k ∈Z )时取得最小值-1C .正弦函数在每个区间⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z )上都是减函数 D .余弦函数在每个区间[2k π-π,2k π](k ∈Z )上都是减函数 答案:D2.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝ ⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin ⎝ ⎛⎭⎪⎫x +π2 D .y =cos ⎝⎛⎭⎪⎫x +π2答案:A3.(2012·重庆期末)把函数y =cos ⎝⎛⎭⎪⎫2x +π3图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到图象的解析式为( )A .y =cos ⎝ ⎛⎭⎪⎫x +π6B .y =cos ⎝ ⎛⎭⎪⎫x +π3C .y =cos ⎝ ⎛⎭⎪⎫4x +2π3D .y =cos ⎝⎛⎭⎪⎫4x +π3 答案:D4.若函数y =a cos x +b 的最小值为-12,最大值为32,则a =__________,b =__________.解析:由于y ma x =32,y min =-12,且-1≤cos x ≤1,则当a >0时,有⎩⎪⎨⎪⎧a +b =32,-a +b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.当a <0时,有⎩⎪⎨⎪⎧-a +b =32,a +b =-12,解得⎩⎪⎨⎪⎧a =-1,b =12.综上,a =±1,b =12.答案:±1 125.函数y =|cos x |的单调增区间为________,单调减区间为________,最小正周期为________.解析:函数y =|cos x |的图象,如图所示.由图可知它的最小正周期为π.又因为在一个周期⎣⎢⎡⎦⎥⎤-π2,π2上,函数的增区间是⎣⎢⎡⎦⎥⎤-π2,0,减区间是⎣⎢⎡⎦⎥⎤0,π2.而函数的周期是k π(k ∈Z ),因此函数y =|cos x |的增区间是⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ),减区间是⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) ⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) π 6.函数f (x )的定义域为[0,1],则f (cos x )的定义域是__________.解析:由已知0≤cos x ≤1,得2k π-π2≤x ≤2k π+π2(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ) 7.已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π4,x ∈R . (1)用“五点法”画出函数f (x )在长度为一个周期的闭区间上的简图; (2)求函数f (x )的最大值,并求出取得最大值时自变量x 的取值集合; (3)求函数f (x )的单调增区间. 解:(1)列表:(2)当2x -π4=2k π(k ∈Z ),即x =k π+π8(k ∈Z )时,y ma x =3,此时x 取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π8,k ∈Z. (3)当2k π-π≤2x -π4≤2k π(k ∈Z )时,k π-3π8≤x ≤k π+π8,k ∈Z ,故函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).。

高中数学 三角函数

高中数学 三角函数

高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。

它涉及的角度、边长、面积等,都是几何和代数的核心元素。

通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。

二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。

常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。

这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。

正切函数的周期性稍有不同,为π。

2、振幅:三角函数的振幅随着角度的变化而变化。

例如,当角度增加时,正弦函数的值也会增加。

3、相位:不同的三角函数具有不同的相位。

例如,正弦函数的相位落后余弦函数相位π/2。

4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。

5、导数:三角函数的导数与其自身函数有关。

例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。

四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。

例如,简谐振动可以用正弦或余弦函数来描述。

2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。

例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。

3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。

例如,使用正弦和余弦函数可以生成平滑的渐变效果。

4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。

例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。

(完整word版)高中数学三角函数基础知识点及答案(2),推举文档

(完整word版)高中数学三角函数基础知识点及答案(2),推举文档

(完整word版)高中数学三角函数基础知识点及答案(2),推举文档高中数学三角函数基础知识点及答案1、角的概念的推广:平面内一条射线绕着端点从一具位置旋转到另一具位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一具零角。

射线的起始位置称为始边,终止位置称为终边。

2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就讲那个角是第几象限的角。

假如角的终边在坐标轴上,就以为那个角别属于任何象限。

3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k kαθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角别一定相等.如与角ο1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。

弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,所以,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。

(答:25-o;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k kαθπ=+∈Z . (3)α终边与θ终边对于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边对于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边对于原点对称?2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.如α的终边与6π的终边对于直线x y =对称,则α=____________。

高考数学二轮复习 专题二 三角函数、平面向量与复数 第3讲 平面向量与复数教案-高三全册数学教案

高考数学二轮复习 专题二 三角函数、平面向量与复数 第3讲 平面向量与复数教案-高三全册数学教案

第3讲 平面向量与复数平面向量的概念与线性运算[核心提炼]1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;2.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[典型例题](1)(2019·杭州模拟)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b(2)(2019·金华市十校联考)已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足OP →=14(OA →+OB →+2OC →),则S △PAB S △OAB为( )A .32 B .23C .2D .12(3)(2019·嘉兴七校联考)在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则(λ+1)2+μ2的取值范围为________.【解析】 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)如图,延长CO ,交AB 中点D ,O 是△ABC 的重心,则OP →=14(OA →+OB →+2OC →)=14(2OD →+2OC →)=14(-OC →+2OC →)=14OC →,所以OP =14OC =14×23CD =16CD ;所以DP =DO +OP =13CD +16CD =12CD ,DO =13CD ;所以S △PAB S △OAB =DP DO =12CD13CD =32.(3)因为点E 在射线AD (不含点A )上,设AE →=kAD →(k >0),又BD →=34BC →,所以AE →=k (AB →+BD →)=k ⎣⎢⎡⎦⎥⎤AB →+34(AC →-AB →)=k 4AB →+3k 4AC →, 所以⎩⎪⎨⎪⎧λ=k 4μ=3k4,(λ+1)2+μ2=⎝ ⎛⎭⎪⎫k 4+12+916k 2=58⎝ ⎛⎭⎪⎫k +252+910>1,故(λ+1)2+μ2的取值范围为(1,+∞).【答案】 (1)D (2)A (3)(1,+∞)平面向量的线性运算技巧(1)对于平面向量的线性运算,要先选择一组基底,同时注意共线向量定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.[对点训练]1.(2019·瑞安市四校联考)设M 是△ABC 边BC 上的点,N 为AM 的中点,若AN →=λAB →+μAC →,则λ+μ的值为( )A.14B.13C.12D.1 解析:选C.因为M 在BC 边上,所以存在实数t ∈[0,1]使得BM →=tBC →. AM →=AB →+BM →=AB →+tBC →=AB →+t (AC →-AB →)=(1-t )AB →+tAC →,因为N 为AM 的中点, 所以AN →=12AM →=1-t 2AB →+t 2AC →,所以λ=1-t 2,μ=t 2,所以λ+μ=1-t 2+t 2=12,故C 正确.2.(2019·宁波诺丁汉大学附中期中考试)在△ABC 中,BC =7,AC =6,cos C =267.若动点P 满足AP →=(1-λ)AB →+2λ3AC →,(λ∈R ),则点P 的轨迹与直线BC ,AC 所围成的封闭区域的面积为( )A .5B .10C .2 6D .4 6解析:选A.设AD →=23AC →,因为AP →=(1-λ)AB →+2λ3AC →=(1-λ)AB →+λAD →,所以B ,D ,P 三点共线. 所以P 点轨迹为直线BC .在△ABC 中,BC =7,AC =6,cos C =267,所以sin C =57,所以S △ABC =12×7×6×57=15,所以S △BCD =13S △ABC =5.3.(2019·高考浙江卷)已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图,则A (0,0),B (1,0),C (1,1),D (0,1),所以λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当⎩⎪⎨⎪⎧λ1-λ3+λ5-λ6=0λ2-λ4+λ5+λ6=0时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最大值22+42=2 5.答案:0 2 5平面向量的数量积 [核心提炼]1.平面向量的数量积的两种运算形式(1)数量积的定义:a ·b =|a ||b |cos θ(其中θ为向量a ,b 的夹角);(2)坐标运算:a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 2.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. [典型例题](1)(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a与e 的夹角为π3,向量b 满足b 2-4e·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3(2)(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.【解析】 (1)设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A. (2)设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.【答案】 (1)A (2)⎣⎢⎡⎦⎥⎤-1,-12(1)平面向量数量积的计算①涉及数量积和模的计算问题,通常有两种求解思路(ⅰ)直接利用数量积的定义; (ⅱ)建立坐标系,通过坐标运算求解.②在利用数量积的定义计算时,要善于将相关向量分解为图形中模、夹角和已知的向量进行计算.(2)求解向量数量积最值问题的两种思路①直接利用数量积公式得出代数式,依据代数式求最值.②建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.[对点训练]1.(2019·嘉兴市高考一模)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3解析:选C.如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.3.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45平面向量与其他知识的交汇[核心提炼]平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、数列、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[典型例题](1)如图,已知点D 为△ABC 的边BC 上一点,BD →=3DC →,E n (n ∈N *)为边AC 上的列点,满足E n A →=14a n +1·E n B →-(3a n +2)E n D →,其中实数列{a n }中,a n >0,a 1=1,则数列{a n }的通项公式为a n =( )A .3·2n -1-2 B .2n-1 C .3n-1 D .2·3n -1-1(2)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sinB ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .①求B 的大小;②若b =2,△ABC 的面积为3,求a ,c .【解】 (1)选D.因为BD →=3DC →,所以E n C →=E n B →+BC →=E n B →+43BD →=E n B →+43(BE n →+E n D →)=-13E n B→+43E n D →.设mE n C →=E n A →,则由E n A →=14a n +1E n B →-(3a n +2)E n D →,得(14a n +1+13m )E n B →-(43m +3a n +2)E n D →=0,则-13m =14a n +1,43m =-(3a n +2),所以14a n +1=14(3a n +2),所以a n +1+1=3(a n +1).因为a 1+1=2,所以数列{a n +1}是以2为首项,3为公比的等比数列,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(2)①因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0,即3sin 2B -cos 2B -2=0,即sin 2B =34,又角B 是锐角三角形ABC 的内角,所以sin B =32,所以B =60°. ②由①得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B ,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B , 又b =2,所以a 2+c 2=8,② 联立①②,解得a =c =2.平面向量与其他知识的交汇点主要体现在与三角函数、立体几何、解析几何,求最值. (1)利用平面向量的知识给出三角函数之间的一些关系,解题的关键还是三角函数的知识.在解析几何中只是利用向量知识给出一些几何量的位置关系和数量关系,在解题中要善于根据向量知识分析解析几何中几何量之间的关系,最后的解题还要落实到解析几何知识上.(2)因为向量是沟通代数、几何的工具,有着极其丰富的实际背景,对于某些代数问题,可构造向量,使其转化为向量问题求解.[对点训练]1.(2019·杭州市高三二模)△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A.54 B.154 C.174D.174解析:选B.以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2. 设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.2.(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]解析:选B.|a |+|b |≥max{|a +b |,|a -b |}=4, (|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.3.(2019·江苏常州武进区高三上学期期中考试改编)已知数列{a n }中,a 1=2,点列P n (n =1,2,…)在△ABC 内部,且△P n AB 与△P n AC 的面积比为2∶1.若对n ∈N *都存在数列{b n }满足b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,求a 4.解:在线段BC 上取点D ,使得BD =2CD ,则P n 在线段AD 上, 因为b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,所以-12a n +1BP n →=b n AP n →+(3a n +2)CP n →=b n (BP n →-BA →)+(3a n +2)(BP n →-BC →),所以⎝ ⎛⎭⎪⎫-12a n +1-b n -3a n -2BP n →=-b n BA →-32×(3a n +2)BD →.因为A ,P n ,D 三点共线,所以-12a n +1-b n -3a n -2=-b n -32(3a n +2),即a n +1=3a n +2,所以a 2=3a 1+2=8,a 3=3a 2+2=26,a 4=3a 3+2=80.复 数 [核心提炼]1.复数的除法复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 2.复数运算中常见的结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i 1+i =-i.(2)-b +a i =i(a +b i). (3)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i.(4)i 4n+i4n +1+i 4n +2+i4n +3=0.[典型例题](1)(2019·杭州学军中学高考模拟)设复数z 满足1+z1-z =i ,则|z |=( )A .1B . 2C . 3D .2(2)设有下面四个命题p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4C .p 2,p 3D .p 2,p 4(3)(2019·浙江新高考冲刺卷)已知复数z =1+i ,其中i 为虚数单位,则复数1+z +z 2+…+z 2 017的实部为( )A .1B .-1C .21 009D .-21 009【解析】 (1)因为复数z 满足1+z1-z=i ,所以1+z =i -z i ,所以z (1+i)=i -1,所以z =i -1i +1=i ,所以|z |=1,故选A.(2)对于命题p 1,设z =a +b i(a ,b ∈R ),由1z =1a +b i =a -b ia 2+b 2∈R ,得b =0,则z ∈R成立,故命题p 1正确;对于命题p 2,设z =a +b i(a ,b ∈R ),由z 2=a 2-b 2+2ab i ∈R ,得ab =0,则a =0或b =0,复数z 可能为实数或纯虚数,故命题p 2错误;对于命题p 3,设z 1=a +b i(a ,b ∈R ),z 2=c +d i(c ,d ∈R ),由z 1·z 2=(ac -bd )+(ad +bc )i ∈R ,得ad +bc =0,不一定有z 1=z 2,故命题p 3错误;对于命题p 4,设z =a +b i(a ,b ∈R ),则由z ∈R ,得b =0,所以z =a ∈R 成立,故命题p 4正确.故选B.(3)因为z =1+i , 所以1+z +z 2+…+z2 017=1×(1-z 2 018)1-z=z 2 018-1z -1=(1+i )2 018-11+i -1=(2i )1 009-1i =(-1+21 009i )(-i )-i2=21 009+i. 所以复数1+z +z 2+…+z2 017的实部为21 009.故选C.【答案】 (1)A (2)B (3)C复数问题的解题思路(1)以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其他知识结合考查,则要借助其他的相关知识解决问题.[对点训练]1.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A.2.(2019·金丽衢十二校联考)设z 是复数,|z -i|≤2(i 是虚数单位),则|z |的最大值是( )A .1B .2C .3D .4解析:选C.因为|z -i|≤2,所以复数z 在复平面内对应点在以(0,1)为圆心,以2为半径的圆及其内部.所以|z |的最大值为3.故选C.3.(2019·高考浙江卷)复数z =11+i (i 为虚数单位),则|z |=________.解析:通解:z =11+i =1-i 2=12-i2,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22. 优解:|z |=⎪⎪⎪⎪⎪⎪11+i =1|1+i|=112+12=22.答案:22专题强化训练1.(2019·绍兴诸暨高考二模)已知复数z 满足z (1+i)=2i ,则z 的共轭复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选B.由z (1+i)=2i ,得z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,则z 的共轭复数z =1-i.故选B.2.在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( ) A.12AB →+12AD → B.34AB →+12AD →C.34AB →+14AD → D.12AB →+34AD → 解析:选B.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.3.(2019·嘉兴一中高考模拟)复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),则复数|zi|=( )A.253 B.2C.553D. 5解析:选D.复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),所以z ·(2-i)(2+i)=(3-4i)(2+i),化为:5z =10-5i ,可得z =2-i.则复数|z i |=⎪⎪⎪⎪⎪⎪2-i i =⎪⎪⎪⎪⎪⎪-i (2-i )-i·i=|-1-2i|=|1+2i|=12+22= 5.故选D.4.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则DE →·BF →=( )A .-52B .32C .-4D .-2解析:选C.通过建系求点的坐标,然后求解向量的数量积.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,以A 为坐标原点,AB ,AD 为坐标轴,建立平面直角坐标系,则B (2,0),D (0,2),E (2,1),F (1,2).所以DE →=(2,-1),BF →=(-1,2),所以DE →·BF →=-4.5.(2019·台州市书生中学检测)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x 、y ,使得AO →=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为( )A.23B.33C.23D.13解析:选A.设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.又因为x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理得,cos ∠BAC =32+42-322×3×4=23.故选A.6.在△ABC 中,AB =3,BC =2,∠A =π2,如果不等式|BA →-tBC →|≥|AC →|恒成立,则实数t 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1C .⎝⎛⎦⎥⎤-∞,12∪[1,+∞) D .(-∞,0]∪[1,+∞)解析:选C.在直角三角形ABC 中,易知AC =1,cos ∠ABC =32,由|BA →-tBC →|≥|AC →|,得BA →2-2tBA →·BC →+t 2BC →2≥AC →2,即2t 2-3t +1≥0,解得t ≥1或t ≤12.7.称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .b ⊥(a -b )C .a ⊥(a -b )D .(a +b )⊥(a -b )解析:选B.由于d (a ,b )=|a -b |,因此对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),即|a -t b |≥|a -b |,即(a -t b )2≥(a -b )2,t 2-2t a ·b +(2a ·b -1)≥0对任意的t ∈R 都成立,因此有(-2a ·b )2-4(2a ·b -1)≤0,即(a ·b -1)2≤0,得a ·b -1=0,故a ·b -b 2=b ·(a -b )=0,故b ⊥(a -b ).8.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1,则当max{c ·a ,c ·b }取最小值时,|c |=( )A.255B.223 C.1D.52解析:选A.如图,设OA →=a ,OB =b ,则a =(1,0),b =(0,2), 因为λ,μ≥0,λ+μ=1,所以0≤λ≤1. 又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1. 所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.9.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,则(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为( )A .43+37B .47+3 3C .(43+37)2D .(47+33)2解析:选D.设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ, 则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC , 因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°, 设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332,设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332, 所以h =3217,因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上, 所以A 到BC 的距离最大值为4+h =4+3217.所以S △ABC 的最大值为 12×7×⎝ ⎛⎭⎪⎫4+3217 =27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.故选D.10.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π3,23πB.⎣⎢⎡⎦⎥⎤2π3,5π6C.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ,且0<θ<π2.而由题意可得,b 与a -b 的夹角,即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.11.(2019·杭州市高考二模)已知复数z =1+a ii (a ∈R )的实部为1,则a =________,|z |=________.解析:因为z =1+a i i =(1+a i )(-i )-i 2=a -i 的实部为1, 所以a =1,则z =1-i ,|z |= 2. 答案:1212.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3.a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π313.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:1214.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)15.(2019·嘉兴一中高考适应性考试)在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析:在△ABC 中,∠ACB 为钝角,AC =BC =1,函数f (m )的最小值为32. 所以函数f (m )=|CA →-mCB →| =CA →2+m 2CB →2-2mCA →·CB →=1+m 2-2m cos ∠ACB ≥32, 化为4m 2-8m cos ∠ACB +1≥0恒成立.当且仅当m =8cos ∠ACB8=cos ∠ACB 时等号成立,代入得到cos ∠ACB =-12,所以∠ACB =2π3.所以|CO →|2=x 2CA →2+y 2CB →2+2xyCA →·CB →=x 2+y 2+2xy ×cos 2π3=x 2+(1-x )2-x (1-x )=3⎝ ⎛⎭⎪⎫x -122+14, 当且仅当x =12=y 时,|CO →|2取得最小值14,所以|CO →|的最小值为12.答案:1216.在△OAB 中,已知|OB →|=2,|AB →|=1,∠AOB =45°,若OP →=λOA →+μOB →,且λ+2μ=2,则OA →在OP →上的投影的取值范围是________.解析:由OP →=λOA →+μOB →,且λ+2μ=2, 则OA →·OP →=OA →·⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →=λOA →2+⎝⎛⎭⎪⎫1-λ2OA →·OB →,又|OB →|=2,|AB →|=1,∠AOB =45°, 所以由余弦定理求得|OA →|=1,所以OA →·OP →=λ+⎝ ⎛⎭⎪⎫1-λ2×1×2×22=1+λ2,|OP →|=⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →2= λ2|OA →|2+2λ⎝ ⎛⎭⎪⎫1-λ2OA →·OB →+⎝⎛⎭⎪⎫1-λ22|OB →|2=λ22+2,故OA →在OP →上的投影OA →·OP →|OP →|=1+λ2λ22+2=22·λ+2λ2+4(*). 当λ<-2时,(*)式=-22·(λ+2)2λ2+4=-221+4λλ2+4=-221+4λ+4λ∈⎝ ⎛⎭⎪⎫-22,0; 当λ≥-2时,(*)式可化为22(λ+2)2λ2+4;①λ=0,上式=22;②-2≤λ<0,上式=221+4λ+4λ∈⎣⎢⎡⎭⎪⎫0,22; ③λ>0,上式=221+4λ+4λ∈⎝⎛⎦⎥⎤22,1. 综上,OA →在OP →上的投影的取值范围是⎝ ⎛⎦⎥⎤-22,1.答案:⎝ ⎛⎦⎥⎤-22,1 17.已知OA →,OB →是非零不共线的向量,设OC →=1r +1·OA →+r r +1OB →,定义点集P =⎩⎪⎨⎪⎧K ⎪⎪⎪⎪KB →·KC →|KB →|=KA →·KC→|KA →|,⎭⎪⎬⎪⎫KC →≠0,当K 1,K 2∈P 时,若对于任意的r ≥3,不等式|K 1K 2→|≤c |AB→|恒成立,则实数c 的最小值为________.解析:由OC →=1r +1·OA →+r r +1OB →,可得A ,B ,C 三点共线,由KB →·KC →|KB →|=KA →·KC→|KA →|,可得|KC →|cos ∠AKC =|KC →|cos ∠BKC ,即有∠AKC =∠BKC ,则KC 为∠AKB 的角平分线. 由角平分线的性质定理可知|KA ||KB |=|AC ||BC |=r , 以AB 所在的直线为x 轴,以线段AB 上某一点为原点建立直角坐标系,设点K (x ,y ),A (-a ,0),B (b ,0),所以(x +a )2+y 2(x -b )2+y2=r 2,化简得(1-r 2)x 2+(1-r 2)y 2+(2a +2br 2)x +(a 2-b 2r 2)=0.由方程知K 的轨迹是圆心在AB 上的圆,当|K 1K 2|为直径时最大,方便计算,令K 1K 2与AB 共线,如图,由|K 1A |=r |K 1B |,可得|K 1B |=|AB |r +1,由|K 2A |=r |K 2B |,可得|K 2B |=|AB |r -1,可得|K 1K 2|=|AB |r +1+|AB |r -1=2r r 2-1|AB |=2r -1r|AB |,而易知r -1r ≥3-13=83,即有|K 1K 2|≤34|AB |,即|K 1K 2||AB |≤34,即c ≥⎝⎛⎭⎪⎫|K 1K 2||AB |max =34, 故c 的最小值为34.答案:3418.在△ABC 中,已知C =π6,向量p =(sin A ,2),q =(2,cos B ),且p ⊥q .(1)求角A 的值;(2)若BC →=2BD →,AD =7,求△ABC 的面积.解:(1)因为p ⊥q ,所以p ·q =0⇒p ·q =2sin A +2cos B =0,又C =π6,所以sin A +cos B =sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0,化简得tan A =33,A ∈(0,π),所以A =π6. (2)因为BC →=2BD →,所以D 为BC 边的中点, 设|BD →|=x ,|BC →|=2x ,由(1)知A =C =π6,所以|BA →|=2x ,B =2π3,在△ABD 中,由余弦定理,得|AD →|2=|BA →|2+|BD →|2-2|BA →|·|BD →|·cos 2π3=(2x )2+x 2-2·2x ·x ·cos 2π3=7,所以x =1,所以AB =BC =2,所以S △ABC =12BA ·BC ·sin B =12×2×2×sin 2π3= 3.19.已知m =(2sin x ,sin x -cos x ),n =(3cos x ,sin x +cos x ),记函数f (x )=m ·n .(1)求函数f (x )的最大值以及取得最大值时x 的取值集合;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c =3,求△ABC 面积的最大值.解:(1)由题意,得f (x )=m ·n =23sin x cos x +sin 2x -cos 2x =3sin 2x -(cos 2x -sin 2x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6,所以f (x )max =2;当f (x )取最大值时,即sin ⎝⎛⎭⎪⎫2x -π6=1,此时2x -π6=2k π+π2(k ∈Z ),解得x =k π+π3(k ∈Z ),所以x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π3,k ∈Z .(2)由f (C )=2,得sin ⎝ ⎛⎭⎪⎫2C -π6=1,又0<C <π,即-π6<2C -π6<11π6,所以2C -π6=π2,解得C =π3,在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C ,得3=a 2+b 2-ab ≥ab ,即ab ≤3,当且仅当a =b =3时,取等号,所以S △ABC =12ab sinC =34ab ≤334, 所以△ABC 面积的最大值为334.。

5.2.1 三角函数的概念(2)--新人教版高中数学第一册

5.2.1  三角函数的概念(2)--新人教版高中数学第一册

(2)sin73πcos-236π+tan-154πcos133π.
解:(1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)
=tan
45°-sin
90°+cos
30°=1-1+
23=
3 2.
(2)原式=sin2π+π3cos-4π+π6+tan-4π+π4·cos4π+π3
[解析] 由题意知 r=|OP|=
- 232+122=1,
1
3
所以
sin
α=yr=21=12,cos
α=xr=-
2 1
=-
23,
1
tan
α=xy=-223=-
3 3.
[答案]
1 2

3 2

3 3
(2)已知角 θ 的终边上有一点 P(x,3)(x≠0),且 cos θ= 1100x,
则 sin θ+tan θ 的值为________.
6 .
(2)



sin
-2π+π6

cos
2π+25π
·tan(4π

0)

sin
π 6

cos25π×0=12.
[方法技巧] 利用诱导公式一进行化简求值的步骤
(1)定形:将已知的任意角写成 2kπ+α 的形式,其中 α∈ [0,2π),k∈Z ;
(2)转化:根据诱导公式,转化为求角 α 的某个三角函数值. (3)求值:若角为特殊角,可直接求出该角的三角函数值.
则 sin θ+tan θ=3
10-30 10 .
[答案]
3
1100+30或3

人教高中数学必修一A版《三角恒等变换》三角函数说课教学课件复习(第2课时两角和与差的正弦、余弦公式)

人教高中数学必修一A版《三角恒等变换》三角函数说课教学课件复习(第2课时两角和与差的正弦、余弦公式)

的值为(
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
)
60°=12.]
A.0
B.12
C.
3 2
D.cos 54°
栏目导航
2.sin 245°sin 125°+sin 155°sin
B [∵sin 245°=sin(155°+90°)
35°的值是( )
2 2 sin
α-
2 2 cos
α
= 22×-45- 22×-35=- 102.]
栏目导航

课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件



提素养
栏目导航
给角求值问题
课件
课件
课件
课件
课件
课件
【例 1】 (1)cos 70°sin 50°-cos 200°sin 40°的值为( 课件
课件 课件
5×3课件
课件
课件
10-2

5 10 5
1100= 102.
②cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
= 55×31010+255× 1100= 22, 又因为β∈0,π2,所以β=π4.
栏目导航
给值求值问题的解题策略 课件 课件 课件 课件 课件 课件 课件 课件 课件

高中数学三角函数专题复习(内附类型题以及历年高考真题含答案免费)

高中数学三角函数专题复习(内附类型题以及历年高考真题含答案免费)

1.已知 tanx=2,求 sinx , cosx 的值.解: 因为 tan x = Sin X =2,又 sin 2x + cos 2x=1 , cosxsin x = 2cosx联立得丿2 2 ,sin x +cos x =1sin x -cosx _2 sin x cosx所以 sinx — cosx=2(sinx + cosx),22得到sinx= — 3cosx ,又sin x + cos x=1,联立方程组,解得3+10sin,COSX = -〒0- C ——3 所以 sin xcosx — 10法二:因为叱叱=2,sin x cosx所以 sinx — cosx=2(sinx + cosx),所以(sinx — cosx)2=4(sinx + cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,3所以有 sinxcosx — ■10求证:tan 2x sin 2x=tan 2x — sin 2x . I.F , [ ]22 2 22 2 2 22证明:法一:右边=tan' x — sin x=tan x — (tan x cos x)=tan x(1 — cos x)=tan x sin x , 法二:左边 =ta n 2x sin 2x=ta n 2x(1 — cos 2x)=ta n 2x — ta n 2x cos 2 x=ta n 2x — si n 2x ,问题得证.sinx =2.5解这个方程组得cosx =245sin x = --------- i 靠 cosx I 5tan(-120)cos(210)sin(-480)2 .求——tan(-690 ') sin(-150 丨 cos(330 )的值.解:原式tan( -120 180 )cos(18030 )sin( -360 -120 )o~tan(-720 30o )sin(-150 )cos(360 -30 )tan 60 (-cos30 )(-sin 120) 弋 3 tan30(—sin150 )cos303.卄 sin x - cosx右sin x cosx=2,,求 sinxcosx 的值. 解:法一:因为 3110 sinx 10- 尿,cosx4.问题得证.3 x =84[0 2兀]0x2 f(x)x1如sin(2 ■ 6)[-?,1], y [1 2]2(1)y sin x cosx+2(1)y=si n 2x t=cosx t(2)y 2sin xcosx[- 2, 2]cosx 2 [-1,1],2 cos x cosx (2)y 2sin xcosx (sinx2= (cos 2x cosx) 3 cosx)一 (t 2t) 3-(t 丄)2213 +— 4(sinx cosx)=(s in xy =t 2 -t -1,y=As in( + )( (6 0)(2, 2) 匚=4T=164、2 = . 2 sin(- 2)84f(x)=cos x f(x) 一 sinxcosx)20)© =一842sinxcosx sin x(si nx cosx) t=sinxcosx= 42 sin((2「2)..y _2 sin(_ x ).48 4()xwy f(x)42222f(x)=cos x 2sinxcosx sin4x (cos x sin x)(cos x sin x)_ 2= (cos x -sin x) -sin 2x =cos2x -sin 2xsin2x-2x) - - 2 sin(2x -;))x 可Og](2x--)%-丄]4 4 4x=0 f(x)tan - 21 cos 日 +sin 日cos : -sin -2 si n 2°—si n B . cos 日+2cos 2 &1 + si n 日 (1)cos ,Sinn _ cos^ cos 日 +si ne . sin 日1 ------ cos :-1十¥ =」—2逅;1 - tan v 1_22 2sinsin rcos v 2cos r2 2sin sin vcos v 2 cos 二2 2sin cos 二2 si nr sin 二 22=COS d COSdsin -彳1cos 二说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到) 程简化。

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。

(完整版)高中数学三角函数复习专题

(完整版)高中数学三角函数复习专题

高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。

(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。

2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。

(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。

(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。

新教材高中数学第5章三角函数2

新教材高中数学第5章三角函数2

同角三角函数的基本关系课后篇巩固提升必备知识基础练1.已知cos θ=,且<θ<2π,则的值为()A. B.- C. D.-cosθ=,且<θ<2π,所以sinθ=-=-.所以tanθ=-,故=-.2.已知,则tan θ的值为()A.-4B.-C.D.4可得,解得tanθ=-4.故选A.3.已知tan α=2,则=()A.-5B.C.D.-故选B.4.(多选题)(2021江苏常熟高一月考)已知sin α=-,cos α>0,则()A.tan α<0B.sin αcos α>0C.sin2α>cos2αD.tan2α<1sinα=-,cosα>0,∴cosα=,∴tanα==-<0,故A正确,tan2α=>1,故D错误;sinαcosα<0,故B错误;sin2α==cos2α,故C正确.故选AC.5.(多选题)若α是第二象限角,则下列各式中成立的是()A.tan α=-B.=sin α-cos αC.cos α=-D.=sin α+cos α,知tanα=,所以A错误;=|sinα-cosα|,因为α是第二象限角,所以sinα>0,cosα<0,所以原式=sinα-cosα,所以B正确;α是第二象限角,所以sinα>0,cosα<0,所以有cosα=-,所以C正确;=|sinα+cosα|,但是α是第二象限角,sinα+cosα符号不确定,所以D错误.故选BC.6.(2021北京人大附中朝阳学校高一月考)已知sin α+cos α=-,α∈(0,π),则sin α·cos α=,tan α=.-sinα+cosα=-得(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=, 解得sinα·cosα=-;由sinαcosα=-=-,解得tanα=-或-.∵α∈(0,π)时,sinα>0,∴若sinα+cosα=-,则cosα<0且-cosα>sinα,即tanα>-1,∴tanα=-.关键能力提升练7.已知角θ的始边为x轴非负半轴,终边经过点P(1,2),则的值为()A.-B.C.-D.角θ的始边为x轴非负半轴,终边经过点P(1,2),∴tanθ=2.则.故选D.8.已知=-,则的值是()A. B.-C. D.-sin2α+cos2α=1,得1-cos2α=sin2α,∴.∵=-,∴=-,则=-.故选D.9.化简的结果为()A.-cos 160°B.cos 160°C. D.===|cos160°|=-cos160°.故选A.10.(多选题)以下各式化简结果为sin α的有()A.cos αtan αB.C.sin3α+sin αcos4α+sin3αcos2αD.A,原式=cosα·=sinα,故A正确;对B,原式==|sinα|,故B错误;对C,原式=sin3α+sinαcos2α(cos2α+sin2α)=sin3α+sinαcos2α=sinα(sin2α+cos2α)=sinα,故C正确;对D,原式==-2tan2α,故D错误.故选AC.11.若cos α+2sin α=-,则tan α=.方法1)由联立消去cosα,得(--2sinα)2+sin2α=1.化简得5sin2α+4sinα+4=0,∴(sinα+2)2=0,∴sinα=-.∴cosα=--2sinα=-.∴tanα==2.(方法2)∵cosα+2sinα=-,∴cos2α+4sinαcosα+4sin2α=5.∴=5.∴=5,∴tan2α-4tanα+4=0.∴(tanα-2)2=0,∴tanα=2.12.1626年,阿贝尔特格洛德最早推出简写的三角符号:sin、tan、sec(正割),1675年,英国人奥屈特最早推出余下的简写三角符号:cos、cot、csc(余割),但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来,其中sec θ=,csc θ=.若α∈(0,π),且=2,则tan α=.=2,得3sinα+2cosα=2,又sin2α+cos2α=1,联立解得(舍)或∴tanα==-.13.在平面直角坐标系xOy中,以x轴非负半轴为始边作角α∈,β∈,它们的终边分别与单位圆相交于A,B两点,已知点A,B的横坐标分别为,-,则tan α=,cos β的值为.-1+cosα=,又α∈,所以sinα>0,sinα=,tanα=7,cosβ=-,又β∈,所以sinβ>0,从而sinβ=;cosβ=cosβ=cosβ=-(1-sinβ)=-1+.14.(2020甘肃武威十八中高一期末)已知tan α=-2,求下列各式的值.(1);=-.(2)==3.15.已知sin θ+cos θ=,其中θ是△ABC的一个内角.(1)求sin θcos θ的值;(2)判断△ABC是锐角三角形还是钝角三角形.因为sinθ+cosθ=,所以(sinθ+cosθ)2=1+2sinθcosθ=,解得sinθcosθ=-.(2)因为θ是△ABC的一个内角,sinθcosθ=-<0,所以cosθ<0,即<θ<π,所以△ABC为钝角三角形.学科素养创新练16.已知sin α,cos α是关于x的方程8x2+6mx+2m+1=0的两根,求的值.sinα,cosα是方程8x2+6mx+2m+1=0的两根,∴sinα+cosα=-,sinαcosα=.∴-2×=1,整理得9m2-8m-20=0,即(9m+10)(m-2)=0.∴m=-或m=2.又sinα,cosα为两根,∴Δ=36m2-32(2m+1)≥0.即9m2-16m-8≥0,∴m=2不合题意,舍去.故m=-.∴=-.。

高中数学试题:三角函数单元复习题(二)

高中数学试题:三角函数单元复习题(二)
20.(本小题满分15分)已知cosα=- ,cos(α+β)= ,且α∈(π, π),α+β∈( π,2π),求β.
【分析】要求β就必须先求β的某一个三角函数值,对照已知与欲求的目标,宜先求出cosβ的值,再由β的范围得出β.
【解】∵π<α< π, π<α+β<2π,∴0<β<π.
又∵cosα=- ,cos(α+β)= ,∴sinα=- ,sin(α+β)=-
三角函数单元复习题(二)答案
一、选择题(本大题共10小题,每小题5分,共50分)
1.D2.C3.C4.B5.C6.D7.C8.A9.B10.A
二、填空题(本大题共6小题,每小题5分,共30分)
11.2- 12.4+ 13.- 14.
15.【解析】∵tan(α+ )=tan[(α+β)-(β- )]=
【分析】这是一道探索性问题的题目,要求根据(1)、(2)联解,若能求出锐角α和β,则说明存在,否则,不存在.由于条件(2)涉及到 与β的正切,所以需将条件(1)变成 +β= ,然后取正切,再与(2)联立求解.
【解】由(1)得: +β=
∴tan( +β)= =
将(2)代入上式得tan +tanβ=3- .
三角函数单元复习题(二)
一、选择题(本大题共10小题,每小题5分,共50分)
1.已知x∈(- ,0),cosx= ,则tan2x等于()
A. B.- C. D.-
2. cos -sin 的值是()
A.0B.- C. D.2
3.已知α,β均为锐角,且sinα= ,cosβ= ,则α+β的值为()
A. 或 B. C. D.2kπ+ (k∈Z)
14.sin( -3x)cos( -3x)-cos( +3x)sin( +3x)=_____________.

高中数学的三角函数复习专题

高中数学的三角函数复习专题

高中数学三角函数复习专题一、知识点整理:1、角的概念的推广:正负,范围,象限角,坐标轴上的角; 2、角的集合的表示:①终边为一射线的角的集合:⇔{}Z k k x x ∈+=,2απ={}|360,k k Z ββα=+⋅∈ ②终边为一直线的角的集合:⇔{}Z k k x x ∈+=,απ;③两射线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,22απβπ ④两直线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,απβπ;3、任意角的三角函数:(1) 弧长公式:R a l = R 为圆弧的半径,a 为圆心角弧度数,l 为弧长。

(2) 扇形的面积公式:lR S 21= R 为圆弧的半径,l 为弧长。

(3) 三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==αα xy =αtan r=22b a +反过来,角α的终边上到原点的距离为r 的点P 的坐标可写为:()cos ,sin P r r αα比如:公式βαβαβαsin sin cos cos )cos(+=- 的证明 (4)特殊角的三角函数值 α 06π 4π 3π2π π23π 2π sin α21 22 23 1-1cos α 123 22 21 0 -1 0 1tan α 0 33 1 3不存在0 不存在(5)三角函数符号规律:第一象限全正,二正三切四余弦。

(6)三角函数线:(判断正负、比较大小,解方程或不等式等) 如图,角α的终边与单位圆交于点P ,过点P 作x 轴的垂线, 垂足为M ,则过点A(1,0)作x 轴的切线,交角终边OP 于点T ,则 。

(7)同角三角函数关系式:①倒数关系: 1cot tan =a a ②商数关系:aaa cos sin tan =③平方关系:1cos sin 22=+a a(8)诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限:比如sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭sin cos tan-α-αsin +αcos -αtan π-α+αsin -αcos -αtan π+α-αsin -αcos +αtan 2π-α-αsin +αcos -αtan2k π+α +αsin +αcos +αtansin con tanαπ-2 +αcos +αsin +αcot απ+2+αcos -αsin -αcot απ-23 -αcos -αsin +αcot απ+23 -αcos +αsin -αcotx y o M TPA4.两角和与差的三角函数: (1)两角和与差公式:βββαsin sin cos cos )cos(a a =± βββsin cos cos sin )sin(a a a ±=±βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形......... (2)二倍角公式:a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a aa 2tan 1tan 22tan -=(3)几个派生公式: ①辅助角公式:)cos()sin(cos sin 2222ϕϕ-+=++=+x b a x b a x b x a例如:sin α±cos α=2sin ⎪⎭⎫ ⎝⎛±4πα=2cos ⎪⎭⎫ ⎝⎛±4πα.sin α±3cos α=2sin ⎪⎭⎫ ⎝⎛±3πα=2cos ⎪⎭⎫ ⎝⎛±3πα等.②降次公式: ααα2sin 1)cos (sin 2±=±221cos 21cos 2cos ,sin 22αααα+-== ③)tan tan 1)(tan(tan tan βαβαβα⋅-+=+5、三角函数的图像和性质:(其中z k ∈) 三角函数x y sin = x y cos =x y tan =定义域(-∞,+∞)(-∞,+∞)2ππ+≠k x值域 [-1,1][-1,1](-∞,+∞)最小正周期 π2=Tπ2=Tπ=T奇偶性奇偶奇单调性]22,22[ππππ+-k k 单调递增]232,22[ππππ++k k 单调递减]2,)12[(ππk k - 单调递增 ])12(,2[(ππ+k k 单调递减)2,2(ππππ+-k k 单调递增对称性2ππ+=k x)0,(πkπk x =)0,2(ππ+k)0,2(πk 零值点πk x = 2ππ+=k xπk x =最值点2ππ+=k x 1max =y2ππ-=k x1min -=yπk x 2=, 1max =y ;π)12(+=k x , 1min -=y无6、.函数)sin(ϕω+=x A y 的图像与性质:(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质) (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T (3) 五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2π、π、23π、π2来求相应x 的值以及对应的y 值再描点作图。

高中数学第三章三角恒等变换3.3二倍角的三角函数(2)课件2北师大版必修4

高中数学第三章三角恒等变换3.3二倍角的三角函数(2)课件2北师大版必修4
第四页,共50页。
3.计算tan22.5°=________. 【解析(jiě xī)】tan22.5°= 答案: -1
第五页,共50页。
4.若
=________.
【解析】因为(yīn wèi)
所以
答案:
第六页,共50页。
5.化简:
=________.
【解析(jiě xī)】原式=
答案:
第七页,共50页。
答案:-cos 2
第二十四页,共50页。
2.(变换条件(tiáojiàn))典例1中若将条件(t3iáojiàn)“ <θ<2π”改为“π<θ< ” 3
结果如何?
2
2
第二十五页,共50页。
【解析( jiě xī)】原式= 因为 故 又 故原式= 答案:2cos
2
第二十六页,共50页。
【方法技巧(jìqiǎo)】利用半角(倍角)公式化简三角函数的要求及方法 (1)对于三角函数式的化简有下面的要求: ①能求出值的应求出值.②使三角函数种数尽量少.③使三角函数式中的项数尽量 少.④尽量使分母不含有三角函数.⑤尽量使被开方数不含三角函数. (2)化简的方法: ①弦切互化,异名化同名,异角化同角.②降幂或升幂.
【延伸探究】典例2中f(x)在区间 上的最大值和最小值是什么?
【解析】因为(yīn wèi)
所以
所以f(x)在区间
上的最大值为2,最小值为-1.
[0, ] 2
第三十七页,共50页。
【方法技巧】较复杂三角函数性质(xìngzhì)问题研究流程
第三十八页,共50页。
【变式训练】函数y=-acos2x- as3in2x+2a+b,x∈ 值域是[-5,1],求常数(chángshù)a,b的值. 【解析】y=-a( s3in2x+cos2x)+2a+b

高中数学复习点睛—基本初等函数Ⅱ(三角函数)

高中数学复习点睛—基本初等函数Ⅱ(三角函数)

高中数学复习点睛—基本初等函数Ⅱ(三角函数)一、考点(必考)概要:1、任意角的有关概念:(1)任意角:①角是旋转量,可以不论方向,不论大小;②正角的取值范围:(0,+∞),负角的取值范围:(-∞,0),零角=0;③任意角的取值范围:(-∞,+∞);(2)终边相同的角:①一条终边有无数个角,它们都相差360°的整数倍,∴终边相同的角是任意角;②表示为k×360°+α(k∈Z),或2kπ+α(k∈Z);③终边相同的角的集合是,或;(3)象限角:①象限角是任意角③半角:(4)界限角:也称为终边落在坐标轴上的角①界限角是任意角②终边落在x轴上的角:α=kπ(k∈Z);③终边落在y轴上的角:(k∈Z);(5)区间角:给定区间内的角,不是任意角,如锐角、钝角、(0°,360°)、(-π,π)等(6)角的度量:①角度制:角度制不是10进位制,∴用角度制所表示的角不是实数;②弧度制:,∵弧长 L与半径R都是实数,∴用弧度制表示的角是实数,且弧度数与实数是一一对应的;③两种制度的转换:180°=π弧度,1°≈0.01745弧度, 1弧度=57°18';④弧度制的意义:弧度把长度的单位和角度的单位统一起来;(7)三角函数线:单位圆中有向线段AT与MP、OM分别叫做角α的正切线、正弦线、余弦线。

2、任意角三角函数:(1)定义:①任意角α终边上一点P(x,y),P点到原点的距离为r,,三个量x、y、r两两相比,有六个比值。

角α与这一组比值之间是单值对应是关系,因此构成函数关系:三角函数是以角为自变量,以比值为函数值的函数,当角α取弧度制时,三角函数的定义域是R。

②角α与每一个比值之间也是单值对应是关系,因此也构成函数关系:③角α的正弦、余弦、正切、余切、正割、余割函数统称为三角函数。

(2)三角函数值的符号:规律记忆口诀:一全,二弦,三切,四余(只记正号);即:第一象限全为正,第二象限正弦为正,第三象限切(正切和余切)为正,第四象限余弦为正;(3)特殊角的三角函数值:(4)同角三角函数的基本关系:①倒数关系:ⅰ ;ⅱ ;ⅲ ;②商数关系:ⅰ ;ⅱ ;③平方关系:ⅰ ;ⅱ ;ⅲ ;(5)诱导公式:①表一:记忆口诀:“函数同名称,符号看象限”;例:,,其它的公式以此类推;②表二:③表一、表二合起来记忆的口诀:“奇变偶不变,符号看象限”;例:,,其它的公式以此类推;④诱导公式的作用:是把任意角的三角函数转化为锐角三角函数,然后求值;3、三角函数的图像和性质(1)正弦、余弦、正切函数的图像:①几何画法:利用单位圆和正弦线作图②“五点法”作正弦函数、余弦函数的图像:③正切、余切函数的图像:(2)正弦、余弦、正切函数的性质:4、正弦型函数的图像:(1)振幅:(2)周期:(3)初相:(4)函数的图像:(5)特殊点间的关系:①A、B间距离为周期T的,A、C间的距离为周期T的,A、D间距离为周期T的。

高中数学三角函数2

高中数学三角函数2

[学以致用] 1. [2012· 天津高考]在△ABC中,内角A,B,C所对的边分别 是a,b,c.已知8b=5c,C=2B,则cosC=( 7 A. 25 7 C. ± 25 7 B. - 25 24 D. 25 )
b c 解析:在△ABC中,由正弦定理: = , sinB sinC sinC c sin2B 8 4 ∴sinB=b,∴ sinB =5,∴cosB=5. 7 ∴cosC=cos2B=2cos B-1= . 25
因此,S+3cosBcosC=3(sinBsinC+cosBcosC) =3cos(B-C). π-A π 所以,当B=C,即B= 2 = 12 时,S+3cosBcosC取最大 值3.
03破译5类高考密码
误区警示系列4——正、余弦定理求解三角形应注意的问题 [2013· 辽宁高考]在△ABC中,内角A,B,C的对边分别为 1 a,b,c.若asinBcosC+csinBcosA=2b,且a>b,则∠B=( π A. 6 2π C. 3 π B. 3 5π D. 6 )
解三角形问题的技巧 解三角形问题的两重性:①作为三角形问题,它必须要用 到三角形的内角和定理,正弦、余弦定理及其有关三角形的性 质,及时进行边角转化,有利于发现解题的思路;②它毕竟是 三角变换,只是角的范围受到了限制,因此常见的三角变换方 法和原则都是适用的,注意“三统一”(即“统一角、统一函 数、统一结构”)是使问题获得解决的突破口.
2B
a2+c2-b2 a ∴ 2ac =c ,∴c2=a2+b2. ∴△ABC为直角三角形.
答案:B
4. 在△ABC中,已知a,b,c分别是角A,B,C的对边,若 a cosB b=cosA,试确定△ABC的形状.
a cosB 解:法一:由 = ,得acosA=bcosB, b cosA b2+c2-a2 a2+c2-b2 ∴a· 2bc =b· 2ac , ∴a2(b2+c2-a2)=b2(a2+c2-b2), ∴c2(a2-b2)=(a2+b2)(a2-b2), ∴(a2-b2)(a2+b2-c2)=0, ∴a=b或a2+b2=c2, ∴△ABC是等腰三角形或直角三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学三角函数复习专题一、知识点整理1角的概念的推广:正负,范围,象限角,坐标轴上的角; 2、角的集合的表示: ① 终边为一射线的角的集合: x|x 2k ② 终边为一直线的角的集合:xx k3、任意角的三角函数:(1) 弧长公式:1aR R 为圆弧的半径,a 为圆心角弧度数,1为弧长 (2) 扇形的面积公式 :S 1 -IR R 为圆弧的半径,1为弧长。

2(3)三角函数定义: 角 中边上任意一点P 为(x,y),设|OP| r 则:sin — ,cos r xJ rtan yr=寸孑圧 x 女口:公式 cos( ) cos cos sin sin 的证明(4)特殊角的三角函数值③两射线介定的区域上的角的集合: x2k④两直线介定的区域上的角的集合: x kx k ,k Z • k 360', k Z,k Z = |,k Z ;反过来,角 的终边上到原点的距离为 r 的点P 的坐标可写为:P r cos ,r sin4x4 4sincos tan- -si n + cos-ta n- + si n -cos-ta n +-si n-cos+ tan2 . -si n+ cos -ta n2k ++ si n + cos + tansincontan 2 + cos + sin + cot2+ cos-si n-cot3 2 -cos-si n+ cot3_2-cos+ sin-cot三角函数值等于 的同名三角函数值,前面 加上一个把 看作锐角时,原三角函数值的 符号;即:函数名不变,符号看象限 三角函数值等于 的异名三角函数值,前面 加上一个把 看作锐角时,原三角函数值的 符号;即:函数名改变,符号看象限:sin x比如cos 一 x4cos xcos xsin 一(6)三角函数线:(判断正负、比较大小,解方程或不等式等) 如图,角 的终边与单位圆交于点P ,过点P 作x 轴的垂线, 垂足为M ,则过点A(1,0)作x 轴的切线,交角终边0P 于点T ,贝U (7)同角三角函数关系式:③ 平方关系:sin 2 a cos 2 a 1①倒数关系: tan acota 1 ②商数关系:tana ^inacosa(8)诱导公试4.两角和与差的三角函数: (1) 两角和与差公式:.a 2 b 2 sin(x ) a 2 b 2 cos(x )—=、、2 cos4 4 sin a±、3cos a= 2sin = 2cos等.33②降次公式:(sin cos )21 sin 221 cos2 . 21 cos2cos,sin2 2③tan tan tan( )(1 tan tan )5、三角函数的图像和性质: (其中)cos( ) cosa cos sinasin,,、 tan a tantan a(a)1 tan a tan(2)二倍角公式: sin2a 2sin acosasin(a ) sin a coscosasin注:公式的逆用或者变形cos2a cos 2 a sin 2 a 1 2sin 2 a 2cos 2 a 12ta na tan 2a厂 1 tan a(3)几个派生公式:①辅助角公式:;asinx bcosx ± cos a = 、2 sin 例如:sin6、.函数y Asin( x )的图像与性质:(本节知识考察一 般能化成形如 y Asin( x)图像及性质)(1)函数yAsin( x)和 y Acos( x)的周期都是T2n (2)函数y Atan( x )和 y Acot( x )的周期都是Tn(3)五点法作 y Asi n( x )的简图,设tx,取o 、3、、3、 2来求相应x2 2的值以及对应的y 值再描点作图。

(4) 关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。

切记每一个变换总是对字母x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。

(附上函数平移伸缩变换):函数的平移变换:①y f (x) y f (x a)(a 0)将y f (x)图像沿x 轴向左(右)平移 a 个单位 (左加右减)②y f(x) y f (x) b(b 0)将y f(x)图像沿y 轴向上(下)平移 b 个单位 (上加下减)函数的伸缩变换:1①y f(x)y f (wx)(w 0)将y f(x)图像纵坐标不变,横坐标缩到原来的倍w(w 1缩短,0 w 1伸长)②y f (x)y Af(x)(A 0)将yf (x)图像横坐标不变,纵坐标伸长到原来的A 倍(A 1伸长,0 A 1缩短) 函数的对称变换: ①y f (x)y f ( x))将y f (x)图像沿y 轴翻折180°(整体翻折)(对三角函数来说:图像关于 y 轴对称)②y f(x) y f(x)将y f(x)图像沿x 轴翻折180°(整体翻折)(对三角函数来说:图像关于 x 轴对称)③ y f (x)y f (X)将 y f (x )图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶5函数局部翻折) ④ y f (x) f (x)保留y f (x )在x 轴上方图像,x 轴下方图像绕x 轴翻折上去(局部翻动)7、 解三角形 正弦定理: a sin A bsinBcosA 余弦定理:2a b 2 2c b 22 a 2 a 2c 2 c b 2 2bccosA, 2accosB, 2abcosC.cosB .2 2 2b c a2bc 2 2 2a cb 推论:正余弦定理的边角互换功能① a 2RsinA , b 2RsinB , c ② sinA③—sin Aa2R , b sin B sinB — , sinC2R ④ a: b: c cosC2Rs inCc 2R a b c—==2Rsin C sin A sin B sinCsin A:sin B:sin C 1 1⑷面积公式:S=-ab*sinC= - bc*sinA= 2 丄ca*sinB2二、练习题 1、sin330 等于 2、若 sin 0 且 tan 0是, A.第一象限角 3、如果1弧度的圆心角所对的弦长为 A 亠 sin 0.5 B. 第二象限角 B . sin0.5C .2,2c 2ab —.3 2第三象限角则这个圆心角所对的弧长为 D.第四象限角 C . 2sin0.5 D . tan0.5 1 2A .仅充分条件B .仅必要条件C .充要条件4、在厶 ABC 中,“ A > 30°” 是 “ si nA >D .既不充分也不必要条件5、角 的终边过点(-b,4),且cos3,则b 的值(A、3 B 、-36、已知- 3-,则tan(-)的值为57、A.-42 y (si nx cosx) 1 是A. 最小正周期为2 n的偶函数C. 最小正周期为n的偶函数若动直线x a与函数f (x) MN的最大值为9、为得到函数y cos xA.C. 向左平移上个长度单位6向左平移55个长度单位610、B.D.最小正周期为最小正周期为2 n的奇函数n的奇函数sinx和g(x) cosx的图像分别交于M ,C.- D . 2的图象,只需将函数y sinx的图像(B•向右平移芒个长度单位6D.向右平移士个长度单位6正弦型函数在一个周期内的图象如图所示,A. y = 2sin(x )4C. y = 2sin (2x )8N两点,则B. y = 2si n(x + )4D. y = 2si n (2x + )811、函数y cos(- -) 的单调递增区间是( )2 3A. 2k -,2k 2 (k Z)B. 4k 4 “ 2,4k3 3 3 3C. 2k 2 ,2k 8 (k Z)D. 4k 2 川8,4 k(k(k3333Z) Z)12、在ABC中,角代B,C的对边分别为a,b,c,已知A A.1 B.2 C. -.31,a3D. ,33, b 1,则 c ()13、在厶ABC中, AB=3 BC='13,AC=4 则边AC上的高为(A.32B33 C. 3 D. 3 32 2 214、在厶ABC中,已知sin2B sin2 C・2sin A 、、3 sin As in C,贝U B 的大小为()A. 150B. 30C. 120 D. 6015、ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c 2a ,则cosB ()A. 1B. 3C. JD.4 4 4 316、若sin cos 2,则sin cos 1217、已知函数f(x)是周期为6的奇函数,且f( 1) 1,则f( 5)18、在平面直角坐标系xOy中,已知△ ABC顶点A—4,0)和C(4,0),顶点B在椭圆x2 y2sin A+ sin C+ —= 1 上则------------- =25+9 1上,人」sin B -------------------- .19、函数y J1 2cosx lg(2sinx V3)的定义域___________________20、已知f(x) sin — (n N*),则f (1) f (2) f(3) f ⑷…f (100) ___________________4n21、关于函数f(x)=4sin(2x+3 ) (x € R),其中正确的命题序号是____________ .n(1)y=f(x )的表达式可改写为y=4cos(2x-§ );(2)y=f(x )是以2 n为最小正周期的周期函数;n(3)y=f(x )的图象关于点(-6 ,0)对称;、, n(4)y=f(x )的图象关于直线x=-6对称;22、__________________________________________________________ 给出下列四个命题,则其中正确命题的序号为___________________________________(1)存在一个厶ABC,使得sinA+cosA=1(2)在厶ABC 中,A>B sinA>sinB(3)终边在y轴上的角的集合是{ | k ,k Z}22(4)在同一坐标系中,函数y=sinx的图象与函数y=x的图象有三个公共点(5)函数y sin(x -)在[0,]上是减函数224、已知函数 f(x)=2、.3sinxcosx 2cos 2x 1(x R).(I )求函数f (x)的最小正周期及在区间0, 上的最大值和最小值;2(n )若 f (x 0) —, X o,,求 COS2X 0 的值. 54 223、在 ABC 中,角A,B,C 所对的边分别为心,且满足cos A 255,AB AC 3 .(I )求 ABC 的面积;(II )若c 1,求a 的值.参考答案:1-5BCABA 6-10BDBCB 11-15CBBAB(2)由(1) bc=5,且c=1,所以b=5,由余弦定理易得a 2.524、(I)解:由 f(x) 2^3S in xcosx 2cos 2 x 1,得f(x) . 3(2si n xcosx) (2cos 2 x 1). 3 si n 2x cos2x 2s in (2 x —).6所以函数f (x)的最小正周期为 •因为f (x) 2sin 2x — 在区间0,— 上为增函数,在区间 一,一上为减函数,又66 6 2f (0) 1, f2, f1,所以函数f (x)在区间0, 上的最大值为2,最小值为-1.6 2 2(n)解:由(I)可知 f(x 0) 2sin 2x^ —.6又因为 f (x 0) 6,所以sin2x )356527由X 。

相关文档
最新文档