应用数值分析第四版张明主编文世鹏主审课后答案

合集下载

最新应用数值分析第四版第一章课后作业答案

最新应用数值分析第四版第一章课后作业答案

第一章1、 在下列各对数中,x 是精确值 a 的近似值。

3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。

解:(1)0132.00416.01.3≈=≈-=-=a ee x a e r π (2)0011.00143.0143.07/1≈=≈-=-=a ee x a e r (3)0127.000004.00031.01000/≈=≈-=-=aee x a e r π (4)001.00143.03.147/100≈=≈-=-=aee x a e r2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。

试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。

解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.5019373、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

应用数值分析[研究报告课程]第07章课后练习答案.doc

应用数值分析[研究报告课程]第07章课后练习答案.doc

应用数值分析[研究报告课程]第07章课后练习答案应用数值分析[研究生课程]课后练习答案第07章第7章练习答案1.尝试证明牛顿-柯特斯求积公式中的求积系数是满足的。

证据:取插值节点,对应的插值基函数是,由插值基函数的性质可知,所以我们可以得到:经过验证。

2.用梯形公式和公式求出积分的近似值,并估计两种方法计算值的最大误差范围。

解决方案:梯形公式的最大误差极限是:公式的最大误差限制为:3.当使用复数公式计算积分时,要求绝对误差极限小于,应采取什么步长?解决方案:从复杂公式的误差极限来看:结果如下:4.推导中点求积公式的证明:取具有高度和长度的矩形代替区间上由轴包围的区域,以获得中点求积公式,并设置一次多项式以满足,容易获得,设置,容易知道有双零点,所以有,记住,然后有三个零点,这是由广义定理知道的,也就是说,它们是可用的,因此有,另一方面,它们由一次多项式已知,因此由于区间上的常数符号,它们可以通过使用积分第二中值定理获得:经过验证。

5.对于变步长方法,事件后误差分析方法被用来解释为什么它可以被用作迭代终止条件。

解决方案:让我们假设精确的积分结果是复数求积公式的误差在上限内几乎没有变化,即两个公式可以比较并且可以得到解,或者,因此,在那个时候,它可以用作迭代终止条件。

6.要计算积分,如果分别使用复数梯形公式和复数公式,请询问至少应划分积分区间的几个相等部分,以确保六位有效数字。

解决方案:复杂梯形公式的误差极限;获得解决方案,即至少将213分成相等的部分;复杂公式的误差限制:溶液被分成至少4等份。

7.用算法计算积分(仅外推两次)。

解决方案:取、并外推如下:所以有8.尝试确定下列求积公式中的待定系数,并指出它们的代数精度。

①。

(2)解决方案:(1)代入求积公式,很容易知道求积公式是准确建立的。

代换能够精确地建立求积公式。

因此,存在可用的替代公式,因此,求积公式被建立、替代,并且求积公式没有被精确地建立。

应用回归分析第四版答案

应用回归分析第四版答案

应用回归分析第四版答案【篇一:应用回归分析人大版前四章课后习题答案详解】应用回归分析(1-4章习题详解)(21世纪统计学系列教材,第二(三)版,何晓群,刘文卿编著中国人民大学出版社)目录1 回归分析概述 ....................................................................................................... (6)1.1 变量间统计关系和函数关系的区别是什么? (6)1.2 回归分析与相关分析的区别与联系是什么? (7)1.3回归模型中随机误差项?的意义是什么? (7)1.4线性回归模型的基本假设是什么? (7)1.5 回归模型的设置理论根据是什么?在回归变量设置中应该注意哪些问题? (8)1.6收集,整理数据包括哪些内容? (8)1.7构造回归理论模型的基本根据是什么? (9)1.8为什么要对回归模型进行检验? (9)1.9回归模型有哪几个方面的应用? (10)1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合? (10)2 一元线性回归 ....................................................................................................... . (10)2.1一元线性回归模型有哪些基本假定? (10)2.2考虑过原点的线性回归模型足基本假定,求ny??*x??i1ii,i?1,2,...n 误差?1,?2,...?n仍满?1的最小二乘估计。

.............................................................................. 11 n2.3证明?e?o,?xe?0. .................................................................................. . (11)i?1ii?1ii2.4回归方程e(y)????x的参数?,?o101的最小二乘估计与最大似然估计在什么条件下等价?给出理由? (12)2.5证明??0是??0的无偏估计。

应用数值分析(第四版)课后习题答案第9章-推荐下载

应用数值分析(第四版)课后习题答案第9章-推荐下载
强特征值为 11,特征向量为 (0.5000 1.0000 0.7500)T 。
6 2 1 4.用反幂法求矩阵 A 2 3 1
1 1 1
y (0) (1,1,1)T 。
解:y=[1,1,1]';z=y;d=0; A=[6,2,1;2,3,1;1,1,1]; for k=1:100 AA=A-6*eye(3); y=AA\z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end z=y/c; if abs(c-d)<0.0001,break; end d=c end d=6+1/c
ai1 x1 aii xi ain xn xi
aij x j
i 1
i j
xj xi
n
aij
i1
i j
n
aij x j
i 1
i j
2 3 2 3.用幂法求矩阵 A 10 3 4 的强特征值和特征向量,迭代初值取 y (0) (1,1,1)T 。
最接近 6 的特征值为 6+1/c=7.2880,特征向量为 (1.0000 0.5229 0.2422)T 。 5.设 A R nn 非奇异,A 的正交分解为 A=QR,作逆序相乘 A1=RQ,试证明
(1) 若 A 对称则 A1 也对称; (2) 若 A 是上 Hessenberg 阵,则 A1 也是上 Hessenberg 阵。
最接近 6 的特征值和特征向量,迭代初值取
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

应用数值分析(第四版)课后习题答案第3章

应用数值分析(第四版)课后习题答案第3章

第三章习题解答1.试讨论a 取什么值时,下列线性方程组有解,并求出解 。

123123123123212312311(1)1(2)1ax x x ax x x x ax x x ax x a x x ax x x ax a⎧++=++=⎧⎪⎪++=++=⎨⎨⎪⎪++=++=⎩⎩ 解:(1)111111111a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为1001/(2)0101/(2)0011/(2)a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦ 当2a ≠-时,方程组有解,解为111(,,).222Tx a a a =+++ (2)21111111a A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为2100(1)/(2)0101/(2)001(21)/(2)a a a a a a -++⎡⎤⎢⎥+⎢⎥⎢⎥+++⎣⎦当2a ≠-时,方程组有解,解为21121(,,).222Ta a a x a a a +++=-+++2.证明下列方程组Ax=b12341123421233234432432385x x x x b x x x x b x x x b x x x b+--=⎧⎪-+-=⎪⎨+-=⎪⎪-+-=⎩ 当(1)(10,4,16,3).T b =-时无解;(2)(2,3,1,3).T b =时有无穷多组解。

解:(1) r(A)=3≠r(A,b)=4 当(10,4,16,3).T b =-时无解;(2) r(A)=3,r(A,b)=3 当(2,3,1,3).T b =时有无穷多组解。

3.用列主元高斯消元法求解Ax=b2233(1)477,12457A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 1231(2)234,13462A b ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)x=(2,-2,1)T (2)x=(0,-7,5)T4.证明上(下)三角方阵的逆矩阵任是上(下)三角方阵。

应用回归分析第四版课后习题答案全何晓群刘文卿

应用回归分析第四版课后习题答案全何晓群刘文卿

实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。

证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:01ˆˆˆˆi i i i iY X e Y Yββ=+=-0100ˆˆQ Qββ∂∂==∂∂即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。

证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xx i n i iY L X X X Y n E X Y E E ββ )] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X nL X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xx i ni i xx i ni X Var L X X X nY L X X X n Var Var εβββ++--=--=∑∑== 222212]1[])(2)1[(σσxxxx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 证明:(1)())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明2ˆ22-=∑neiσ是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章1.一个回归方程的复相关系数R=0.99,样本决定系数R2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。

应用数值分析(第四版)课后习题答案第2章

应用数值分析(第四版)课后习题答案第2章

第二章习题解答1. ( 1) R n Xn中的子集“上三角阵”和“正交矩阵”对矩阵乘法是封闭的。

(2)R n Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

-1设A是nXn的正交矩阵。

证明A也是nXn的正交矩阵。

证明:⑴证明:A为上三角阵,B为上三角阵,A, B R n na ij 0(i j ),b ij 0(i j)nC AB 则G j a ik b kj, C j 0(i j)k1上三角阵对矩阵乘法封闭。

以下证明:A为正交矩阵,B为正交矩阵,A,B R n nAA T A T A E,BB T B T B E(AB)((AB)T) ABB T A T E,( AB)T(AB) B T A T AB EAB为正交矩阵,故正交矩阵对矩阵乘法封闭。

(2) A是nXn的正交矩阵A A-1 =A-1A=E 故(A-1) -1 =AA-1(A1) -1= (A-1) -1A-1 =E 故A-1也是nXn 的正交矩阵。

设A是非奇异的对称阵,证A也是非奇异的对称阵。

A非奇异.A可逆且A-1非奇异又A T=A .( A-1)T=( A T)-1=A-1故A-1也是非奇异的对称阵设 A 是单位上(下)三角阵。

证A-1也是单位上(下)三角阵。

-1证明:A是单位上三角阵,故|A|=1 ,.A可逆,即A存在,记为(b ij ) n Xnn由 A A =E,则a j b jk ik (其中a ij 0 j >i 时,1)j1故b nn=1, b ni=0 (n 丰 j)类似可得,b ii =1 (j=1 …n) b jk=0 (k > j)即A-1是单位上三角阵综上所述可得。

F t Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0 的基础解系。

1 21 41A= 0 11 000 01 4512 1 411 2 1 41 解 : A=1 1 01 0 450 1451451 2 0 0 410 08 140 1 0 4 5 -14 514514581445故齐次线行方程组 Ax=0的基础解系为14, 2510 013. 求以下矩阵的特征值和特征向量。

应用回归分析第四版课后习题答案-全-何晓群-刘文卿精选全文完整版

应用回归分析第四版课后习题答案-全-何晓群-刘文卿精选全文完整版

可编辑修改精选全文完整版实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。

证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。

证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xxi ni i Y L X X X Y n E X Y E E ββ)] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==01010)()1(])1([βεβεβ=--+=--+=∑∑==i xxi ni i xx i ni E L X X X n L X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xxi ni i xx i n i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑==222212]1[])(2)1[(σσxx xx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 证明:(1)01ˆˆˆˆi i i i iY X e Y Y ββ=+=-())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSE SSR )Y ˆY Y Y ˆn1i 2i i n1i 2i+=-+-=∑∑==0100ˆˆQQββ∂∂==∂∂ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章1.一个回归方程的复相关系数R=0.99,样本决定系数R2=0.9801,我们能2ˆ22-=∑neiσ判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。

应用数值分析(第四版)课后习题答案第5章

应用数值分析(第四版)课后习题答案第5章

第五章习题解答1、给出数据点:013419156i i x y =⎧⎨=⎩(1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。

(2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。

(3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。

解:(1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数2202130301191501031013303152933()()()()()()()()()()()()()()i i i x x x x x x L x l x y x x =------==⨯+⨯+⨯-------++=∑代入可得2151175(.).L =。

(2)利用123134,,x x x ===,1239156,,y y y ===构造如下差商表:于是可得插值多项式:229314134196()()()()()N x x x x x x =+-+---=-+-代入可得215135(.).N =。

(3)用事后误差估计的方法可得误差为1501511751350656304.(.)(..).R -=-=-◆ 2、设Lagrange 插值基函数是0012()(,,,,)nj i j i jj ix x l x i n x x =≠-==-∏试证明:①对x ∀,有1()ni i l x ==∑②00110001211()()(,,,)()()nk i i i n n k l x k n x x x k n =⎧=⎪==⎨⎪-=+⎩∑ 其中01,,,n x x x 为互异的插值节点。

证明:①由Lagrange 插值多项式的误差表达式101()()()()()!n ni i f R x x x n ξ+==-+∏知,对于函数1()f x =进行插值,其误差为0,亦即0()()ni ii f x l x f==∑精确成立,亦即1()ni i l x ==∑。

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版数值分析习题第一章绪论设x>O,x 的相对误差为S ,求In x 的误差. 设x 的相对误差为2%,求x n 的相对误差. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位 ,试指出它们是几位有效数字: x = 1.1021, x^ = 0.031, x^ = 385.6, x^ = 56.430, x^ = 7 1.0.利用公式(3.3)求下列各近似值的误差限:(i)x *+x ;+x 4,(ii)x *x ;x ;,(iii )x ;/x ;,其中 x ;,x ;,x 3,x ;均为第 3题所给的数.计算球体积要使相对误差限为 1%,问度量半径R 时允许的相对误差限是多少 ?设\)=28,按递推公式AY n =Y n d- _ .783100( n=1,2,…)计算到Y 00.若取7783衣27.982(五位有效数字),试问计算^00将有多大误差? 求方程X 2 -56X • 1 =0的两个根,使它至少具有四位有效数字 (■ 783沁27.982).\ ------ d x 当N 充分大时,怎样求N 1 x? 正方形的边长大约为 100 cm ,应怎样测量才能使其面积误差不超过 s *2设 2 假定g 是准确的,而对t 的测量有土 0.1秒的误差,证明当t 增加时s 的绝对 误差增加,而相对误差却减小. 序列{yn}满足递推关系y n _ 10y n _ 1(n=1,2,…),若y0 _ X 2 1.41 (三位有效数字),计算到y 10时误差有多大?这个计算过程稳定吗?计算f = c- 2 一1)6,取' 2 : 1.4,利用下列等式计算,哪一个得到的结果最好?f (x) =1 n (x X -1),求 f(30)的值.若开平方用六位函数表,问求对数时误差有多大改用另一等价公式ln(x_ Jx 2 T) = -ln(x +Jx 2 +1)计算,求对数时误差有多大?1. 2. 3. 4.5. 6.7.8.9.10.11.12.13.21 cm1 (、2 1)61 (32 . 2)3,99 -70、2.?若根据(2.2)定义的范德蒙行列式,令证明V n (x)是n 次多项式,它的根是X 0^L ,X nJ ,且当x= 1 , -1 , 2时,f(x)= 0 , -3,4 ,求f(x)的二次插值多项式.给出cos x,0 ° < x 90。

应用数值分析(第四版)张明主编文世鹏主审课后答案

应用数值分析(第四版)张明主编文世鹏主审课后答案

f 4 ( x ) 99 70 x , cond ( f 4 ( x )) | x 1.414 4949
由计算知,第一种算法误差最小。 1 8. 考虑无穷级数 它是微积分中的发散级数。在计算机上计算该级数的部分和,会得 n 1 n
到怎样的结果?为什么?
解:在计算机上计算该级数的是一个收敛的级数。因为随着 n 的增大,会出现大数吃 小数的现象。 9、 通过分析浮点数集合 F=(10,3,-2,2)在数轴上的分布讨论一般浮点数集的分布情 况。 解:浮点数集合 F=(10,3,-2,2)在数轴上离原点越近,分布越稠密;离原点越远, 分布越稀疏。一般浮点数集的分布也符合此规律。 10、试导出计算积分 I n
4
1 4 5 4 5

1 0 0
2 1 0
0 0 1
4 1 4 5 ~ 0 4 5 0
8 14 4 5 故齐次线行方程组 Ax=0 的基础解系为1 4 , 2 5 1 0 0 1
1 7 , 2 2
解( 1I- A)x=0 得 1 1 解( 2I- A)x=0 得 2 5
1
4
1 2 1 1 4、已知矩阵 A 2 4 3 0 ,求 A 的行空间 R( AT ) 及零空间 N ( A) 的基。 1 2 1 5
解: p( x) ( x 10)(( x 10)(( x 10)(( x 10) 0.200) 0.0500) 0.0500) 0.00100 故p(10.11) 0.11(0.11(0.11(0.11 0.200) 0.0500) 0.0500) 0.00100 0.0014676 0.147102 Cond(( f ( x)) xf '( x) f ( x) 10.11* p'(10.11) 0.6291 p(10.11)

应用回归分析第四版课后习题答案-全

应用回归分析第四版课后习题答案-全

实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。

证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。

证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xxi n i i Y L X X X Y n E X Y E E ββ )] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X nL X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xxi ni ixx i ni X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== 222212]1[])(2)1[(σσxx xx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 01ˆˆˆˆi i i i iY X e Y Y ββ=+=-())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==0100ˆˆQQββ∂∂==∂∂证明:(1)ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章2ˆ22-=∑neiσ1.一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。

应用数值分析(第四版)课后习题答案第10章

应用数值分析(第四版)课后习题答案第10章

第十章习题解答1、 用Euler 方法及改进的Euler 方法求解初值问题'[0,1](0)2y x y x y ⎧=-∈⎨=⎩ 取0.1h =,并将计算结果与精确值相比较。

解:(,)f x y x y =-,由Euler 公式及改进的Euler 方法,代入0.1h =,有11Euler 0.90.1Euler 0.9050.0950.005n n nn n n y y x y y x ++=+=++方法改进的方法,依次计算结果如下01234567891000.10.20.30.40.50.60.70.80.9 1.02 1.8000 1.6300 1.4870 1.3683 1.2715 1.1944 1.1350 1.0915 1.0623 1.04612 1.8150 1.6571 1.5237 1.4124 1.3212 1.2482 1.1916 1.1499 1.12n n n n x y y ====17 1.1056 2 1.8145 1.6562 1.5225 1.4110 1.3196 1.2464 1.1898 1.1480 1.1197 1.1036y n y 为Euler 方法的结果,n y 为改进的Euler 方法的结果,y 为精确解。

2、 用梯形公式求解初值问题'0(0)1y y x y ⎧=-≥⎨=⎩证明其近似解为()nn a h y a h-=+。

证明:采用梯形公式得近似解为112(1)(1),222n n n n h h hy y y y h++-+=-=+,因此可得21202222()()()2222n nn n n h h h h y y y y h hh h------=====++++。

证毕。

3、试用Euler 公式计算积分2xt edt ⎰在点x=0.5, 1, 1.5, 2的近似值。

解:2(,)2xf x y xe =由Euler 公式得212*0.5nx n n n y y x e +=+,计算可得0123400.51 1.5200.6420 2.0011 6.745034.0441n n n x y === 4、 定初值问题'000sin ()y y x x y x y ⎧=≥⎪⎨=⎪⎩试用Taylor 展开法导出一个三阶的显式公式。

数据库系统原理及应用教程第四版课后答案

数据库系统原理及应用教程第四版课后答案

第一章1、(1)数据:数据用于载荷信息的物理符号。

(2)数据的特征;○1数据有“型”和“值”之分;○2数据受数据类型和取值范围的约束;○3数据有定性表示和定量之分;○4数据应具有载体和多种表现形式。

3、(1)数据管理的功能:○1组织和保存数据功能,即将收集到的数据合理地分类组织,将其存储在物理载体上,使数据能够长期的被保存;○2数据维护功能,即根据需要随时进行插入新数据,修改原数据和删除失效数据的操作;○3数据查询和数据统计功能,即快速的得到需要的正确数据,满足各种使用要求;○4数据的安全和完整性控制功能,即能保护数据的安全和完整性。

(2)数据管理的目标:收集完整的信息,将信息用数据表示,按数据结构合理科学的组织并保存数据;为各种使用快速地提供需要的数据,并保护数据的安全和完整性。

4、(1)数据库:是数据管理的新方法和技术,他是一个按数据结构来存储和管理数据的计算机软件系统。

(2)数据库中的数据具有的特点:○1数据库中的数据具有整体性,即数据库中的数据要保持自身完整的数据结构;○2数据库中的数据具有数据共享性,不同的用户可以按各自的用法使用数据库中的数据,多个用户可以同时共享数据库中的数据资源。

5、(1)数据库管理系统:它是专门用于管理数据库的计算机管理软件。

数据库管理系统能够为数据库提供数据的定义、建立、维护、查询和统计等操作功能,并完成对数据完整性、安全性进行操作的功能。

(2)数据库管理系统主要功能:是数据存储、数据操作和数据控制功能。

其数据存储和数据操作是:数据库的定义功能,指未说明库中的数据情况而进行的建立数据库结构的操作;数据库建立功能,指大批数据录入到数据库的操作,它使得库中含有需要保护的数据记录;数据库维护功能,指对数据的插入、删除和修改操纵,其操作做能满足库中信息变化或更新的需求;数据库查询和统计功能,指通过对数据库的访问,为实际应用提供需要的数据。

数据库管理系统的数据控制功能为:数据安全性控制功能,即为了保证数据库的数据安全可靠,防止不合法的使用造成数据库泄露和破坏,也就是避免数据被人偷看、篡改或破坏;数据库完整性控制功能,指为了保证数据库中的数据的正确、有效和相容,防止不合语意的错误数据被输入或输出。

应用统计学 习题答案 作者 潘鸿 张小宇 吴勇民 应用统计学课后习题与参考答案.docx

应用统计学 习题答案 作者 潘鸿 张小宇 吴勇民 应用统计学课后习题与参考答案.docx

应用统计学课后习题与参考答案第一章一、选择题1.一个统计总体(D)oA.只能有一个标志C.可以有多个标志2.对100名职工的工资收入情况进行调查A.100名职工C.每一名职工3.某班学生统计学考试成绩分别为65分、A.指标C.变量4.下列属于品质标志的是(B)。

A.工人年龄C.工人体重5.某工业企业的职工数、商品销售额是QA.连续变量C.前者是离散变量,后者是连续变量6.下'面指标中,属于质量指标的是(C)。

A.全国人口数C.劳动生产率7.以卜'指标中属于质量指标的是(C)。

A.播种面积C.单位成本8.下列各项中属于数量指标的是(B)。

A.劳动生产率C.人口密度B.只能有一个指标D.可以有多个指标则总体单位是(D)。

B.100名职工的工资总额D.每一名职工的工资72分、81分和87分,这4个数字是(D)。

B.标志D.标志值B.工人性别D.工人工资B.离散变量D.前者是连续变量,后者是离散变量B,国内生产总值D.工人工资B.销售量D.产量B.产量D.资金利税率二、简答题1.一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜二(1)这•研究的总体是什么?总体是“所有的网上购物者”。

(2)“消费者在网上购物的原因”是定类变量、定序变量还是数值型变量?分类变量。

(3)研究者所关心的参数是什么?所有的网上购物者的月平均花费。

(4)“消费者每月在网上购物的平均花费是200元”是参数还是统计量?统计量。

(5)研究者所使用的主要是描述统计方法还是推断统计方法?推断统计方法。

2.要调查某商场销售的全部冰箱情况,试指出总体、个体是什么?试举若干品质标志、数量标志、数量指标和质量指标。

总体:该商店销售的所有冰箱。

总体单位:该商店销售的每一台冰箱。

品质标志:型号、产地、颜色。

数量标志:容量、外形尺寸;数量指标:销售量、销售额。

质量指标:不合格率、平均每天销售量、每小时电消耗量。

数值分析第四版答案资料讲解

数值分析第四版答案资料讲解

数值分析第四版答案第一章绪论1.设x 0,x的相对误差为,求In x的误差。

解:近似值x*的相对误差为* e* x* x =ex* x*而In x 的误差为el nx* Inx* In x e* x*进而有(In x*)2.设x的相对误差为2%,求 E x n的相对误差。

解:设f(x) x n,则函数的条件数为C p丨空^丨f(x)H n 1又 f '(x) nx n 1, C p | x nx | n1n—11又「((x*) n) C p r(x*)且e (x*)为2r((x*)n) 0.02 n3•下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:x;1.1021,x2 0.031 , x3 385.6,沧56.430 ,x57 1.0.解:x1 1.1021是五位有效数字;x2 0.031是二位有效数字;x;385.6是四位有效数字;x4 56.430是五位有效数字;X;7 1.0.是二位有效数字。

4•利用公式(2.3)求下列各近似值的误差限:(1) x;x;x;,(2) x;x;x;,(3) x;/x;. 其中X1,X2,X3,x4均为第3题所给的数。

解:*1 (X 1)2 10(1) (X 1X 2 X 4)(X ;)(x 2) (x 4)11021.05 10(2) (x ;x ;x ;)(3) (X 2/X 4) * I **X 2I(X 4) X 4* 2 X40.031 1 3 13-10 56.430 — 102 2 10 5 56.430 56.4305计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 4 °解:球体体积为V - R 33*1(X 2) 2 10 * 1 (X 3) 2 10 * 1 (X 4) 2 10 * 1 (X 5— 123 131101103X 1X 2 (X 3) 1.1021 0.031 0.215X 2X 31 2101X 1X 3 (X 2)10.031 385.6 - 101.1021 385.6 1 103*(X 2)则何种函数的条件数为C R(4 R2 4 R3 3r(V*) Cp|「(R*)3 r (R*)又;r (V*)11故度量半径R 时允许的相对误差限为r (R*) - 1 0.33 36 •设 Y o 28,按递推公式 Y, Y n-1,783 (n=1,2,…) 100计算到丫100。

应用数值分析【研究生课程】课后习题答案07章

应用数值分析【研究生课程】课后习题答案07章

应用数值分析【研究生课程】课后习题答案07章第七章习题解答1、试证明牛顿—柯特斯求积公式中的求积系数()n iC 满足()01nn i i C ==∑。

证明:取(0,1,,)i x i i n ==的插值节点,相应的Lagrange 插值基函数为0()ni j j ix jl x i j=≠-=-∏,由插值基函数的性质知0()1ni i l x ==∑,于是可得:()000000111()()11nnn n n nn ii i i i i Cl x dx l x dx dx nn n =======∑∑∑⎰⎰⎰。

证毕。

2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。

解:由梯形公式21ln 2()(()())(ln1ln 2)0.3466222b a T f f a f b --=+=+=≈ 最大误差限为:3''2()1111()()10.0833((1,2))12121212T b a R f f ξξξ-=-=≤∙=≈∈ 由Simpson 公式13()()4()ln14ln ln 20.38586262b a a b S f f a f f b ⎛⎫-+⎛⎫⎛⎫=++=++≈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 最大误差限为:5(4)4()161()()60.0021((1,2))288028802880S b a R f f ηηη-=-=≤∙≈∈。

3、用复化Simpson 公式求积分140xe dx -⎰,要求绝对误差限小于71102-⨯,问步长h 要取多大? 解:由复化Simpson 公式的误差限:4(4)44444()111111()()((0,1))28802880288044n S b a R f h f e n n ηηη--=-=≤∈令71()102nS R f -≤⨯可得 2.28n ≥,故至少取3n =,13b a h n -==,相应的求积结果为: 3()0.8848S f =。

【免费下载】应用回归分析课后题答案

【免费下载】应用回归分析课后题答案

2
(4)

1 n-2
1 n-2

=
n i=1
n i=1
( yi
( yi



7

2
yi )

( 0 1


2
x))
1( 10- (- 1+71))2 ( 10- (- 1+7 2))2( 20- (- 1+7 3))2
3

(20-
(-
1+7
4))2 ( 40-
1+7
5))2





(5)由于 1
t
1 16 9 0 49 36
3
110 / 3
1
3

330 6.1
:
1 1 2 / Lxx
N
(
1

,
服从自由度为 n-2 的 t 分布。因而
P
|

(1


也即: p(1 t /2
)


对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=0.34468/88.269275
=0.0039049 er(μ2)≦1/∣μ2∣[-x3 x4/ x21δx1+ x4/ x1δx3 + x3 / x1δx4]
=0.49707
3. 设精确数a>0,x 是a的近似值,x 的相对误差限是 0.2,求㏑ x 的相对误差限。
解:δr≦Σni=1∣ f/ xi∣δxi
δrx3=δx3/∣x3∣=0.372×10-4
x4=0.001
n=1 δx4=0.0005
δrx4=δx4/∣x4∣=0.5
由公式:er(μ)= e(μ)/∣μ∣≦1/∣μ∣Σni=1∣ f/ xi∣δxi
er(μ1)≦1/∣μ1∣[x2 x3δx1+ x1 x3δx2 +x1 x2δx3]
到怎样的结果?为什么?
解:在计算机上计算该级数的是一个收敛的级数。因为随着 n 的增大,会出现大数吃
小数的现象。
9、 通过分析浮点数集合 F=(10,3,-2,2)在数轴上的分布讨论一般浮点数集的分布情
况。
解:浮点数集合 F=(10,3,-2,2)在数轴上离原点越近,分布越稠密;离原点越远,
分布越稀疏。一般浮点数集的分布也符合此规律。
x n1 dx

11 (
40
x n1dx

1 0
x n1 dx)
1 4x

In

1 4
1 ( n

In1 )
1 1
1
I0
第一章习题解答
1. 在下列各对数中,X 是精确值a的近似值
(1) a=π,x=3.1
(2) a=1/7,x=0.143
(3) a=π/1000,x=0.0031 (4) a=100/7,x=14.3
试估计 x 的绝对误差和相对误差。
解:(1) e=∣3.1-π∣≈0.0416,
δr= e/∣x∣≈0.0143
(3) (1 cos x) , x 0,| x | 1 (4) x 1 x 1 ,| x | 1
x
x
x
解:(1) x 1 x
1
x1 x
(2) 1 1 x
2x2
1 2x 1 x (1 2x)(1 x)
(3) (1 cos x) sin2 x
解: p(x) (x 10)((x 10)((x 10)((x 10)0.200) 0.0500)0.0500)0.00100
故p(10.11) 0.11(0.11(0.11(0.110.200) 0.0500)0.0500) 0.00100
0.0014676 0.147102
数和误差限,并估计运算μ1= x1 x2 x3 和μ1= x3 x4 /x1 的相对误差限。
解:x1=26.3
n=3 δx1=0.05
δrx1=δx1/∣x1∣=0.19011×10-2
x2=0.0250 n=3 δx2=0.00005 δrx2=δx2/∣x2∣=0.2×10-2
x3= 134.25 n=5 δx3=0.005
x
x(1 cos x)
(4) x 1 x 1
2
x
x x( x2 1 x2 1)
7、计算 ( 2 1)6 的近似值,取 2 1.414 。利用以下四种计算格式,试问哪一种算法误差
最小。
(1) 1 ( 2 1)6
(3) 1 (3 2 2)3
(2) (3 2 2 )3 (4) 99 70 2
解:计算各项的条件数 cond ( f ( x)) | xf '( x) | f (x)
f1(
x)

(x
1 1)6
, cond(
f1 (
x))
| x 1.414

20.4804
f2 ( x) (3 2 x)3 , cond( f2( x)) |x1.414 49.3256
f3 ( x)
(2) e=∣0.143-1/7∣≈0.0143
δr= e/∣x∣≈0.1
(3) e=∣0.0031-π/1000∣≈0.0279 (4) e=∣14.3-100/7∣≈0.0143
δr= e/∣x∣≈0.9 δr= e/∣x∣≈0.001
2. 已知四个数:x1=26.3,x2=0.0250, x3= 134.25,x4=0.001。试估计各近似数的有效位
=1/㏑ x·1/ x·δx=δrx/㏑ x=0.2/㏑ x 即δr≦0.2/㏑ x
4. 长方体的长宽高分别为 50cm,20cm 和 10cm,试求测量误差满足什么条件时其表面积的 误差不超过 1cm2。
解:S=2(xy+yz+zx)
δrS≦[(x+y)δz+(y+z)δx+(z+x)δy]/∣xy+yz+zx∣
10、试导出计算积分
In

1 0
xn dx
1 4x
(n

1, 2, 3, 4) 的递推计算公式
In

1 4
1 ( n

In1 )
,用此递
推公式计算积分的近似值并分析计算误差,计算取三位有效数字。
解: In

1 0
xn dx
1 4x

1 4
1 0
4xn
xn1 1 4x

(3
1 2x)3
, cond (
f3(
x ))
| x 1Байду номын сангаас414

49.4448
f4 ( x) 99 70 x, cond( f4 ( x)) |x1.414 4949 由计算知,第一种算法误差最小。
1
8. 考虑无穷级数 它是微积分中的发散级数。在计算机上计算该级数的部分和,会得 n1 n
δx=δy=δz
δrz≦(x+y+z)δx /∣xy+yz+zx∣<1
∴δx<17/6≈1.0625 5. 已知p(x) (x 10)4 0.200( x 10)3 0.0500(x 10)2 0.00500(x 10) 0.00100
用秦九韶法计算 p(10.11),计算用3位有效数字 .并求此问题的条件数 Cond( f ( x)).
Cond(( f (x)) xf '(x) f (x)
Cond(( p(10.11)) 10.11* p'(10.11) 0.6291 p(10.11)
6. 改变下列表达式,使计算结果更准确。
(1) x 1 x ,| x | 1
(2) 1 1 x ,| x | 1 1 2x 1 x
相关文档
最新文档