高等数学 微分方程

合集下载

高等数学-第七章-微分方程

高等数学-第七章-微分方程
工程应用
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。

高等数学中微分方程的解析解求取思路

高等数学中微分方程的解析解求取思路

高等数学中微分方程的解析解求取思路微分方程是数学中一类重要的方程,它描述了变量之间的关系以及这些变量的变化规律。

微分方程的解析解是指能够用已知的数学函数表示的解,相较于数值解具有明确性和简洁性。

对于给定的微分方程,我们可以通过一定的方法和技巧来求取解析解。

1. 分离变量法分离变量法是求取微分方程解析解的常用方法。

该方法适用于可以将微分方程表达式中的未知函数和自变量分离成两个方程的情况。

首先,将方程中的未知函数和自变量分别放在等号两边,并将所有包含未知函数的项放在一边,包含自变量的项放在另一边。

接下来,对方程两边同时进行积分操作。

对包含未知函数的一边进行不定积分,对包含自变量的一边进行定积分。

最后,将两边的积分常数合并,并解出未知函数,得到微分方程的解析解。

2. 变量代换法变量代换法是求解微分方程的另一种常用方法。

通过选择适当的变量替换,可以将原方程转化为更简单的形式,进而求得解析解。

例如,可以通过引入新的变量替换原方程中的未知函数,或者将原方程中的未知函数表示为其他函数的导数形式来进行变量代换。

经过变量代换后,原方程可以转化为更简单的形式,使得求解更加容易。

3. 齐次方程的解法对于齐次微分方程,可以通过齐次方程的解法来求得解析解。

齐次方程指的是微分方程中,未知函数和自变量的项都是同次数的情况。

对于齐次方程,可以引入新的变量替换,将其转化为分离变量的形式,然后利用分离变量法进行求解。

在齐次方程的解法中,可以使用如分离变量法、变量代换法等的一些常用技巧来求得解析解。

4. 常数变易法常数变易法也是一种常用的求解微分方程的方法。

该方法适用于非齐次线性微分方程的情况。

常数变易法将微分方程的未知函数表示为特解与齐次方程的通解之和的形式。

首先,求得齐次方程的通解。

然后,假设非齐次方程的解为一个特解。

通过代入原方程,将特解代入通解中,并求得特解的具体形式。

最后,将特解和齐次方程的通解相加,得到非齐次方程的通解。

高等数学-第七章-微分方程

高等数学-第七章-微分方程
即求 s = s (t) .
制动时
常微分方程
偏微分方程
含未知函数及其导数的方程叫做微分方程 .
方程中所含未知函数导数的最高阶数叫做微分方程
(本章内容)
( n 阶显式微分方程)
微分方程的基本概念
一般地 , n 阶常微分方程的形式是
的阶.
分类

— 使方程成为恒等式的函数.
通解
— 解中所含独立的任意常数的个数与方程
于是方程化为
(齐次方程)
顶到底的距离为 h ,
说明:
则将
这时旋转曲面方程为
若已知反射镜面的底面直径为 d ,
代入通解表达式得
一阶线性微分方程
第四节
一、一阶线性微分方程
*二、伯努利方程
第七章
一、一阶线性微分方程
一阶线性微分方程标准形式:
若 Q(x) 0,
若 Q(x) 0,
称为非齐次方程 .
第七章
一、齐次方程
形如
的方程叫做齐次方程 .

代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分

故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
例4
例5
例6
思考与练习
求下列方程的通解 :
提示:
(1) 分离变量
(2) 方程变形为
作业
P 298 5(1); 6 P 304 1 (1) , (10); 2 (3), (4) ; 4 ; 6

高等数学第十二章微分方程

高等数学第十二章微分方程
2
dy 1 dy y 2 y 2 。这是贝努利方程, 解出 ? ,得 dx x dx
对于这些类型的方程,它们各自都有固定的解法。如
果所给的方程按上述思路不能转化为已知类型的方程,这 时常用的方法和技巧如下: A.熟悉常用的微分公式; B.选取适当的变量代换,转化成上述可解类型的方程; C.变换自变量和因变量(即有时把 y看成自变量,而 考虑
dx 的方程类型)。 dy
一阶微分方程的解题方法流程图如下。
解题方法流程图
求Pdx Qdy 通解 0 Yes 可分离变量 No Yes
P Q y x
dy 解出 dx = f ( x, y )
No
可分离变 量方程
全微分 方程
齐次方程
dy y ( ) dx x
dy P ( x ) y Q( x ) dx
一阶线性方程
dy P ( x ) y Q( x ) y n dx
dy y (2)齐次方程: dx x
dy P ( x ) y Q( x ) (3)一阶线性微分方程: dx
dy n (4)伯努利方程: P ( x ) y Q( x ) y ( n 0,1) dx
(5)全微分方程:P ( x , y )dx Q( x , y )dy 满足 ,0
y dy du u x 解:令 u ,于是 y ux , ,上式可化为 x dx dx
du 1 u cos u u x sec u u dx cos u
du sec u , 为可分离变量的方程 即x dx
分离变量 积分得 所以 故原方程的通解为
dx cos udu x sin u ln x ln C

高等数学第七章微分方程微分方程

高等数学第七章微分方程微分方程
了解高阶线性微分方程阶的结构,并知道高阶常系数齐线 性微分方程的解法.
熟练掌握二阶常系数齐线性微分方程的解法. 掌握自由项(右端)为多项式、指数函数、正弦函数、余
弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.
2013/9/23
第一节 微分方程的基本概念

2
在许多物理、力学、生物等现象中,不能直接找到联 系所研究的那些量的规律,但却容易建立起这些量与它们 的导数或微分间的关系。
例1
解 原方程即 对上式两边积分,得原方程的通解
例2

对上式两边积分,得原方程的通解 经初等运算可得到原方程的通解为
4
原方程的解为
例3
解 两边同时积分,得
故所求通解为
2013/9/23
例4
解 原方程即 两边积分,得 故通解为
曲线族的包络。
例6求解微分方程 解 分离变量
两端积分
工程技术中 解决某些问题时, 需要用到方程的 奇解。
18
例.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 ,因此设非齐次方程特解为
代入方程: 比较系数, 得 因此特解为 所求通解为
2013/9/23
19
特解:

等式两边取共轭 :
为方程 ③ 的特解 .
第三步 求原方程的特解 原方程 利用第二步的结果, 根据叠加原理, 原方程有特解 :
均为 m 次多项式 .
第四步 分析

本质上为实函数 ,
均为 m 次实多项式 .
内容小结
为特征方程的 k (=0, 1, 2) 重根, 则设特解为
为特征方程的 k (=0, 1 )重根, 则设特解为 3. 上述结论也可推广到高阶方程的情形.

高等数学微分方程总结ppt课件.pptx

高等数学微分方程总结ppt课件.pptx
y py qy 0,
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0

高等数学微分方程

高等数学微分方程

一般地,一阶微分方程有一个初始条件: 当 x = x0 时,y = y0 而二阶微分方程有二个初始条件: 当 x = x0 时,y = y0; 当 x = x0 时,y = y1 (其中 x0,y0,y1 是给定的值)…
n 阶方程的初始条件:
( x0 ) y1 , , y ( n1) ( x0 ) y0( n1) y( x0 ) y0 , y
齐次方程通解 非齐次方程特解
1. 一阶线性齐次方程
(使用分离变量法)
dy P ( x ) y 0. dx
dy dy P ( x )dx , P ( x )dx , y y ln y P ( x )dx ln C ,
通解为
y Ce
P ( x ) dx
dy 2 (1) x y cos x dx
dy 2 (2) x x y sin x dx
是 是
(3) y y x
2
x cos y e x (4) y
(5) dy 2 xydx 0
不是 不是 是
dy P( x) y Q( x) 2. 解非齐次方程 dx P( x) d x 用常数变易法: 作变换 y ( x) u ( x) e ,则 P( x) d x P( x) d x P( x) d x P(x) u e Q(x) u e P( x) u e
d s dv g 或 g 2 dt dt
2
二、微分方程的基本概念
定义6.1 微分方程 ( differential equation ) 含有自变量、未知函数及其导数(或微 分)的方程,称为微分方程。
定义6.2 微分方程的阶( order ) 微分方程中所出现的未知函数的导数 (或微分)的最高阶数,称为微分方程的阶。

高等数学:微分方程

高等数学:微分方程

两边积分,得
用lnC 表示任意常数,考虑到R >0,得积分结果

微分方程
微分方程
二、 一阶线性微分方程
我们把形如
的方程称为一阶线性微分方程.当q(x)≡0时,方程
称为一阶线性齐次微分方程;当q(x)≠0时,方程(6-15)称为一阶
线性非齐次微分方程.
微分方程
一阶线性齐次微分方程(6-16)是可分离变量的微分方程,
当p2-4q=0时,特征方程r2+pr+q=0有两个相等的实根,即

r1=r2=- ,此时
2
可得到方程(6-30)的一个特解y=er1x .容易验证
y=xer1x 也是方程(6-30)的一个特解, 且y1 =er1x 与y2 =xer1x 是线
性无关的.由定理6-1可知,齐次方程(6-30)的通解为
微分方程
1.f(x)=Pm (x)eλx 型
f(x)=Pm (x)eλx 型时,Pm (x)为m 次多项式,λ 为常数.此时,可
以证明方程(6-29)具有形如y* =xkQm (x)eλx 的特解,其中Qm (x)
静止状态下沉,所受阻力与下 沉速度成正比(比例系数为k 的
常数).试求潜水艇下沉深度s与时间t的函数关系式.
微分方程
解 潜水艇下沉过程中所受的力有重力、水对潜艇的浮
力及下沉时遇到的阻力.前两个 力都是常量,其合力称为下沉
力,即下沉力F= 重力-浮力;下沉时遇到的阻力大小为
由牛顿第二定律,有

微分方程
假设 y=erx是方程(6-30)的特解,其中r为待定常数.将y=erx 、
y'=rerx 、y″=r2erx代入 方程(6-30),得

高等数学基本公式整理微分方程部分

高等数学基本公式整理微分方程部分

微分 方 程的相关 概 念 :一阶微分方程: y f (x, y) 或 P( x, y)dx Q(x, y)dy 0 可分别变量的微分方程 :一阶微分方程能够化 为 g ( y)dy 的形式,解法:f (x)dxg ( y) dy f ( x)dx 得: G( y) F (x) C 称为隐式通解。

齐次方程:一阶微分方 程能够写成 dyf ( x, y),即写成 y的函数,解法:dx(x, y) x设 u y ,则 dy u x du , udu (u) , dxdu 分别变量,积分后将 y取代 ,x dx dx dx x (u) ux即得齐次方程通解。

一阶线性微分方程:1、一阶线性微分方程:dyP( x) y Q ( x)dx当 Q( x) 0时, 为齐次方程, yCe P( x) dx当 Q( x) 0时,为非齐次方程,yP( x) dxdxP ( x) dx( Q (x)e C )e、贝努力方程: dyP( x) y Q (x) y n , 0,1)2 dx (n全微分方程:假如 P(x, y)dx Q ( x, y)dy 0中左端是某函数的全微分方程,即:du (x, y)P(x, y) dx Q( x, y) dy 0,此中:uP( x, y),uQ ( x, y)xyu( x, y) C 应当是该全微分方程的通解。

二阶微分方程:2ydy, f ( x)时为齐次ddx 2P(x) dxQ( x) y f ( x)f ( x) 时为非齐次二阶常系数齐次线性微分方程及其解法:(*) y py qy 0,此中 p, q 为常数;求解步骤:、写出特点方程:)r 2pr q ,此中 2, 的系数及常数项恰巧是(*)式中的系数;1(rry , y , y2、求出 ( )式的两个根 r 1 ,r 23、依据 r 1 ,r 2的不一样状况,按下表写 出(*) 式的通解: r 1, r 2的形式(*) 式的通解两个不相等实根 ( p 24q 0)yc 1e r 1 x c 2 e r 2 x两个相等实根 ( p 24q0)y(c1 c2 x)e r1x一对共轭复根 ( p 24q0)y e x (c1 cos x c2 sin x) r1i ,r2ip ,4q p 222二阶常系数非齐次线性微分方程y py qy f ( x), p,q为常数f ( x) e x P m ( x)型,为常数;f ( x) e x [ P l ( x) cos x P n ( x)sin x]型。

高等数学微积分方程

高等数学微积分方程
z= 3*exp(-2*x)*sin(5*x)
2 求极限
在Matlab语言中求多元函数的极限,具体到 二元函数不能求二重极限,只能求二次极限。
例6 求极限 lim(2 xy exy) y x x0 输入语句: syms x y; z=2+x*y+exp(x*y); limit(limit(z,y,sqrt(x)),x, 0) 并观察输出的结果。
输出:
%默认变量为t,不是我们所需的解
s=
(1/2*exp(-x*(x-2*t))+C1)*exp(-2*x*t)
(2)输入:
s = dsolve(’Dy+2*x*y=x*exp(-x^2)’, ’x’)
%指定变量为t,为所求
输出:
s=
(1/2*x^2+C1)*exp(-x^2)
1、微分方程
例4 求微分方程 xy y ex 0在初始条件 y x1 2e
% 二阶导数用“D2y”表示 输出: ans =
-1/4*exp(x)-1/3*exp(-3*x)*C1+C2
1、微分方程
例5
求微分方程
d2y

dx2

4
dy dx

29
y

0
的特解。
y(0) 0, y(0) 15
输入: z = dsolve(’D2y+4*Dy+29*y=0’, ’y(0)=0, Dy(0)=15’, ’ 输出:
% sym(’x’)申明x为符号变量
f = symsum(k^2, k, 0, n-1)
g = symsum(1/n^2, 1, inf) % 由Matlab中的函数findsym确定自变量

微分方程的基本原理与高数中的应用

微分方程的基本原理与高数中的应用

微分方程的基本原理与高数中的应用微分方程是研究变量之间关系的数学工具,是数学分析、物理学、工程学等领域中的重要工具之一。

而高等数学中对微分方程的学习与应用也是十分关键的。

本文将从微分方程的基本原理出发,介绍微分方程在高数中的应用。

一、微分方程的基本原理微分方程是包含未知函数以及其导数或微分的方程。

一般形式的微分方程可以表示为:F(x, y, y', y'', ..., y^(n)) = 0其中,x 是自变量,y 是因变量,y' 是 y 对 x 的一阶导数,y'' 是 y 对 x 的二阶导数,y^(n) 是 y 对 x 的 n 阶导数。

F 是给定函数。

微分方程根据自变量和因变量的关系可以分为两类:常微分方程和偏微分方程。

常微分方程是只包含一自变量的微分方程,偏微分方程则是包含多个自变量的微分方程。

微分方程的解是满足方程的函数或函数族。

常微分方程一般根据阶数的不同分为几种类型:一阶微分方程、二阶微分方程等。

二、微分方程在高数中的应用微分方程在高等数学中的应用非常广泛,下面将介绍几个典型的应用领域。

1. 积分器微分方程在积分器电路中有着重要的应用。

积分器电路是指将输入信号进行积分的电路。

在实际电路中,当输入一个方波信号时,通过积分电路可以得到一个三角波信号。

这里积分器电路的原理就是基于微分方程的理论。

2. 物理学中的运动方程物理学中的许多运动问题可以通过微分方程来描述和求解。

例如,牛顿的动力学定律可以通过微分方程来表示:F = m * a = m * d^2x / dt^2其中 F 是力,m 是质量,a 是加速度,x 是位置关于时间的函数。

这是一个描述物体运动的二阶微分方程,可以通过求解得到物体在不同时间的位置。

3. 生物学中的人口增长模型微分方程在生物学中的人口增长模型中有着广泛的应用。

一个经典的人口增长模型是 Malthus 模型,它假设人口增长率与人口数量成正比。

大学课件高等数学微分方程

大学课件高等数学微分方程
rx
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.

高等数学上册第七章微分方程

高等数学上册第七章微分方程

n 个函数, 若存在不全为 0 的常数
使得
则称这 n个函数在 I 上线性相关, 否则称为线性无关.
例如,
在( , )上都有
故它们在任何区间 I 上都线性相关;
又如,
若在某区间 I 上
必需全为 0 ,
在I 上都 线性无关.
DMU
第五节 二阶线性微分方程解的结构
两个函数在区间 I 上线性无关的充要条件:
(1) 当p2 4 q 0 时, ②有两个相异实根
则微分
方程有两个线性无关的特解:
因此方程的通解为 y C1 er1 x C2 er2 x
DMU
第六节 常系数齐次线性微分方程
(2) 当p2 4 q 0 时, 特征方程有两个相等实根
则微分方程有一个特解
设另一特解
( u (x) 待定)
代入方程得:
可化为变量分离方程的类型
• 形如 dy g的(方y )程,称为齐次方程 dx x
如何求解满足上述条件的齐此方程
令 y u, y ux x
du u x du ,
dx
dx
x du g(u) u dx
du g(u) u
dx
x
化为一个变量可分离的方程
DMU
第二节 可分离变量的微分方程 齐次方程
第一节 微分方程的概念
微分方程的预备知识
➢ 微分方程
y P(x) y Q(x)y f (x)
➢ 阶:最高阶导数的阶数 ➢ 解:使方程成为恒等式的函数
➢ 通解: y (c1, c2, , cn )
➢ 特解:满足初始条件的解 ➢ 初始条件:
y(x0 ) y0, y(x0 ) y1, , y(n1) (x0 ) yn1

《高等数学》第七章 微分方程

《高等数学》第七章 微分方程
2.计算三重积分(直角坐标,柱面坐标),
曲线积分
1.两类曲线积分的基本计算法 2.格林公式及其应用 3.平面曲线积分与路径无关的条件,二元函数的全微 分求积
曲面积分
1.两类曲面积分的基本计算方法 2.高斯 ( Gauss )公式(p229定理1,p231例1,2 P236.1.作业题.p247.4(2)(3))
2.应用 (几何应用:空间曲线的切线与法平面(p94例4), 曲面的切平面与法线(p99例6).
多元函数的极值:无条件极值(p110定理1.2例4), 条件极值(p115.拉格朗日乘数法,p116例8))
第十,十一章.多元函数积分学(40)%
重积分
1.计算二重积分( 直角坐标, 极坐标),交换积分次序
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
特征方程的两个根r1 ,r2
微分方程的通解
两个不相等的实根 r1,r2
y C1er1x C2er2x
两个相等的实根 r1 r2
y (C1 C2 x)er1x
一对共轭复根 r1,2 i y ex (C1 cos x C2 sin x)
y(x0 ) y0 , y(x0 ) y0 , , y(n1) (x0 ) y0(n1)
引例1 通解:
dy dx
2x
y x1 2
引例2
y x2 C
d2y dx2
0.4
s t0 0 ,
ds dt
t0 20
s 0.2t 2 C1t C2
特解: y x2 1
s 0.2t 2 20t
小结 y py qy f ( x)
通解 y Y y* c1 y1 c2 y2 y*

高等数学_第7章___常微分方程

高等数学_第7章___常微分方程

第7章 微分方程一、本章提要1. 基本概念微分方程,常微分方程(未知函数为一元函数),偏微分方程(未知函数为多元函数),微分方程的阶数(填空题).齐次方程 :()dy y dxx ϕ=或者()dxxdy yϕ=(计算) 一阶线性微分方程:()()y P x y Q x '+=或者()()x P y x Q y '+=通解公式()d ()d ()e d e P x x P x x y Q x x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 或者用常数变异法求解.(计算或者填空) 线性相关,线性无关(选择) 可降解(不显含x 或y )的(计算)齐次常系数线性微分方程:特征根法(填空)非齐次常系数线性微分方程:特接用待定系数法. (计算) 微分方程解的结构定理(选择或填空). 换元法也是求解微分方程的重要方法之一. 二、要点解析问题1 常微分方程有通用的解法吗?对本章的学习应特别注意些什么?解析 常微分方程没有通用的求解方法.每一种方法一般只适用于某类方程.在本章 我们只学习了常微分方程的几种常用方法.因此,学习本章时应特别注意每一种求解方法所适用的微分方程的类型.当然,有时一个方程可能有几种求解方法,在求解时,要选取最简单的那种方法以提高求解效率.要特别注意:并不是每一个微分方程都能求出其解析解,大多数方程只能求其数值解.例1 求微分方程 '+=y y 0 的通解.解一 因为 0y y '+= 所对应的特征方程为10r +=,特征根1r =-,所以e xy C -=(C 为任意常数)为所求通解.解二 因为0=+'y y ,所以)0(d d ≠-=y y xy ,分离变量x y y d d -=,两边积分⎰⎰-=x yy d d ,1ln ln y x C =-+, 所以exy C -= (C 为任意常数)三、例题精解例3 求''=y y 4满足初始条件01,2x x yy =='== 的特解.解一 令'=y p ,则d d d d d d d d p p y py pxy x y''==⋅=.将其代入原方程''=y y 4得 y yp p4d d =,分离变量 y y p p d 4d =, 两边积分⎰⎰=y y p p d 4d ,22111422p y C =⋅+, 2224p y C =+,因为001,2x x yp y =='===,所以222241C =⨯+,可得C 2=0.故224p y =,即 p y =±2.这里'=-y y 2 应舍去,因为此时'y 与y 异号,不能够满足初始条件.将2y y '=分离变量便得其解y =23exC +.再由y x ==01,得30C =,于是所求解为2e xy =.上面解法中,由于及时地利用初始条件确定出了任意常数C 1的值,使得后续步骤变得简单,这种技巧经常用到.解二 因为''=y y 4,所以40y y ''-=,特征方程 240r -=, 特征根 122,2r r =-=, 于是其通解为2212e e x x y C C -=+, 由初始条件可得C 1=0 ,C 2=1 ,所求特解为 2e x y =.例4 求方程''+=y y x sin 的通解.解一 该方程为二阶常系数非齐次线性方程,其对应的齐次方程为 ''+=y y 0, 特征方程为 210r +=, 特征根12i,=i r r =-,齐次方程的通解为12cos sin Y C x C x =+,由于方程0sin e sin y y x x ''+==,i i αβ+=(其中0,1αβ==) 恰是特征单根,故设特解为(c o s s i n y x a xb x *=+,代入原方程,可得1,02a b =-= 所以1cos 2y x x *=-,于是所求通解为y C x C x x x =+-1212c o ss i n c o s .上述解法一般表述为:若二阶线性常系数非齐次微分方程 ''+'+=y py qy f x ()中的非齐次项[]()e()c o s ()s i nxnh f x P x x P xx αββ=+,那么该微分方程的特解可设为[]e()c o s ()s i n kxp mm y x P x x Q xx αββ=+,其中(), ()m m P x Q x 均为 m 次待定多项式 {}m h n =m ax ,.如果非齐次项中的αβ,使i αβ±不是特征方程的根,则设0k =;如果i αβ±是特征方程的单根,则取1k =. 例5 求解微分方程x xe y y y 42=+'-''。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 微分方程§ 1 微分方程的基本概念1、由方程x 2-xy+y 2=C 所确定的函数是方程( )的解。

A. (x-2y)y '=2-xy '=2x-y C.(x-2)dx=(2-xy)dy D.(x-2y)dx=(2x-y)dy2、曲线族y=Cx+C 2 (C 为任意常数) 所满足的微分方程 ( ) 4.微分方程y '=yx 21-写成以y 为自变量,x 为函数的形式为( )A.yx 21dxdy -=B.yx 21dydx -='=2x-y D. y '=2x-y §2 可分离变量的微分方程1.方程P(x,y)dx+Q(x,y)dy=0是( )A.可分离变量的微分方程 一阶微分方程的对称形式, C.不是微分方程 D.不能变成)y ,x (P )y ,x (Q dy dx -= 2、方程xy '-ylny=0的通解为( )A y=e x B. y=Ce x cx D.y=e x +C 3、方程满足初始条件:y '=e 2x-y , y|x=0=0的特解为( )A. e y=e 2x+1 21e ln x 2+= C. y=lne 2x +1-ln2 D. e y =21e 2x +C4、已知y=y(x)在任一点x 处的增量α+∆+=∆x x1yy 2,且当∆x →0时,α是∆x 高阶无穷小,y(0)=π,则y(1)=( )A. 2πB. πC. 4e π 4eππ5、求特解 cosx sinydy=cosy sinxdx , y|x=0=4π解:分离变量为tanydy=tanxdx ,即-ln(cosy)=-ln(cosx)-lnC ,cosy=ccosx 代入初始条件:y|x=0=4π得:22C =特解为:2cosy=cosx 6、求微分方程()2y x cos y x 21cos dxdy +=-+满足y(0)=π的特解。

解:由02y x cos 2y x cos dxdy =+--+得:2x sin 2y sin2dy-=,积分得:C 2x cos 2x y cot 2y csc ln +=- 代入初始条件:y(0)=π,得C= -2 7、求微分方程022/=++y x eyy 满足y(0)=0的特解解: 分离变量得dx e dy ye x y 22=--两边积分)2(21)(21222⎰⎰=--x d e y d e x y ,得C e e x y +=-22,将y (0)=0代入得C =0特解:x y 22-=§3 齐次方程1 .(x 2+y 2)dx-xydy=0,其通解为( )2=x 2(2ln|x|+C) B. y=x(2ln|x|+C) C. y 2=2x 2ln|x|+C D. y=2xln|x|+C 2.xy yx y +=', y|x=1=2,则特解为( )A. y 2=2x 2(lnx+C)2=2x 2(lnx+2) C .y=2xlnx+C D.y=2xlnx+23.0dy y x 1e 2dx e 21y xy x =⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+的通解为( )A. x=2y+CB. 2xye yx=C ye 2yx =+ D.以上都不对 4、求y 'x 2+xy=y 2满足y|x=1=1的特解。

解:u xy ,xy x y y 2=-⎪⎭⎫ ⎝⎛='令,则x dx )2u (u du =-解得:2x 1x 2y += 5、求微分方程(x 2+2xy-y 2)dx-(y 2+2xy-x 2)dy=0满足初始条件y|x=1=1的特解解:xy u ,xx y 2y y x y 2x dx dy 2222=-+-+=令,可得1u 2u 1u u u dx du x 223------= 解得:lnx+lnC=ln(u+1)-ln(1+u 2),即x(1+u 2)=C(1+u),代入初始条件y|x=1=1得特解x 2+y 2=x+y7、求曲线,使其上任一点到原点的距离等于该点的切线在x 轴上的截距 解:设曲线上任一点P(x,y),曲线:y=y(x),则由题意知:Y-y=y '(X-x)又y y x y x 22'-=+,得yxu ,dy dxy x 1y x 2=-=+⎪⎪⎭⎫ ⎝⎛令整理得:2u 1dyduy+=-,解得:()C y ln u 1u ln 2=+++,得通解C y x x 22=++§4 一阶线性微分方程1、微分方程(y 2+1)dx=y(y-2x)dy 的通解是( ) A.⎪⎭⎫⎝⎛++=C y 311y 1y 32⎪⎭⎫ ⎝⎛++=C y 311y 1x 32;C. ⎪⎭⎫⎝⎛++=C y 311x 1y 32D.⎪⎭⎫ ⎝⎛+=32y 311y 1x2、微分方程xy '+2y=xlnx 满足y(1)=91-的解为( ) A. x 91x ln x 31y+=, x 91x ln x 31y -=, C. x ln x 31C y x 32+=,. x 91x ln 31y -=3、y '+y=y 2(cosx-sinx)的通解为( ) A .y=Ce x -sinx x -sinx C. Cye x -ysinx=C D.y=e x -sinx+C4、求 通解 32.23y x y dx dy x =+ 解:23231x y 23dx dy x y=+-,令32y z =得2x z 23dx dz 23x=+,2x 32z x 1dx dz =+ ⎪⎪⎭⎫ ⎝⎛⎰+⎰=⎰-dx x 12dx x 1e x 32C e z ,⎪⎭⎫ ⎝⎛+⋅=C x 4132x 1y 332,即x C x 61y 232+=,5、求 通解 xdy-ydx=y 2e y dy解:整理得yye x y 1dy dx -=-,C ye dy e ye C e x y dy y 1y dy y 1+-=⎪⎪⎭⎫ ⎝⎛⎰-+⎰=⎰---9、已知连续函数f(x)满足方程x 2x 30e dt 3tf )x (f +⎪⎭⎫⎝⎛=⎰,求f(x)解:原方程两边对x 求导数f '(x)=3f(x)+2e 2xf '(x)-3f(x)=2e 2x 解得:f(x)=Ce 3x -2e 2x 又f(0)=1,所以C=3,f(x)=3e 3x -2e 2x2、数ϕ(x)具有二阶连续导数,且ϕ(0)=ϕ'(0)=0,并已知y ϕ(x)dx+(sinx-ϕ'(x))dy=0是一个全微分方程,则ϕ(x)=( ) x B.2x x 23- C.x 2e x D.x sin C x cos C x sin 2x 21++3、别下列方程的类型并求其通解 (1)(a 2-2xy-y 2)dx-(x+y)2dy=0解:是全微分方程3222y 0x 0y 31xy y x x a dy )y ,x (Q dx )0,x (P )y ,x (u ---=+=⎰⎰,通解为: C y xy y x x a =---322231(2)(1+e 2θ)d ρ+2ρe 2θd θ=0解:是全微分方程d(ρ+ρe 2θ)=0,通解为ρ+ρe 2θ=C4、f(x)可导,f(0)=1,对任意简单闭曲线L,0))(()(2=-+⎰Ldy x x f dx x yf , 求⎰10dx )x (x f解:对任意闭曲线L 有0dx )x )x (f (dx )x (yf L2=-+⎰,知yP x Q ∂∂=∂∂,由此得f '(x)-2x=f(x)解得:f(x)=Ce x -2x-2,再代入初始条件可得C=3。

于是f(x)=3e x -2x-2,34dx )x (xf 1=⎰ §6 可降阶的高阶微分方程1、yy "+y '2=0满足初始条件y|x=0=1,y '|x=0=21的特解为( )A. y 2=x+C 1x y += C. C 1x y ++= D. y 2=C 1x+C 2 2、方程xy "=y 'lny '的通解为( )2x C 1C e C 1y 1+= B.2x c 1C e C y 1+= , C.x C e C y 2x C 11+= D.以上都不对3、 (1) 求y "=y '+x 的通解解:令y '=p 得p '-p=x p=-x-1+C 1e x22x1C x 2x e C y +--=(2) 求xy "+y '=0的通解解:令y '=p ,则xp '+p=0,xdx pdp -= 得 xC p 1= y=C 1lnx+C 2§7 高阶线性微分方程1、证明:x5x 22x 1e 121e C e C y ++=是方程y "-3y '+2y=e 5x 的通解 2、已知二阶线性非齐次方程y "+p(x)y '+q(x)y=f(x)的特解为y 1=x,y 2=e x ,y 3=e 2x ,试求 方程满足初始条件y(0)=1,y '(0)=3的特解。

解:由线性微分方程解的理论,非齐次微分方程y "+p(x)y '+q(x)y=f(x)任两解之差是对应齐次方程y "+p(x)y '+q(x)y=0的解。

得齐次方程的两个解:e x -x,e 2x -x ,且线性无关。

于是齐次方程的通解Y=C 1(e x -x)+C 2(e 2x -x).非齐次方程的通解是y=x+C 1(e x -x)+C 2(e 2x -x).由y(0)=1,y '(0)=3代入得:C 1= -1, C 2=2,所以特解为y=2e 2x -e x§8 常系数齐次线性微分方程1、设y=e x (C 1sinx+C 2cosx) (C 1,C 2 为任意常数)为某二阶常系数齐次线性微分方程 的通解,则该方程为( )A.y "+2y '+y=0 "-2y '+2y=0 C.y "-2y '=0 D.y "+y=0 2、设y 1=e x cos2x,y 2=e x sin2x 都是方程y "+py '+qy=0的解,则( )A. p=2,q=5, C.p=-3,q=2 D.p=2,q=2 3、设常系数线性齐次方程特征方程根r 1,2= -1,r 3,4=±i ,则此方程通解为 ( )1+C 2x)e -x +C 3cosx+C 4sinx B.y=C 1e -x +C 2cosx+C 3sinx C. y=C 1e -x +C 2cosx+C 3xsinx D.C 1e -x +(C 2+x)cosx+C 3sinx 4、求下列微分方程的通解(1) y "-4y '+13y=0。

相关文档
最新文档