大学三角公式汇总
三角公式所有公式大全
三角公式所有公式大全一、三角函数的定义和基本关系:1. 正弦函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的纵坐标y就是正弦函数sinα的值。
公式:sinα = y2. 余弦函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的横坐标x就是余弦函数cosα的值。
公式:cosα = x3. 正切函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的纵坐标y除以横坐标x的比值就是正切函数tanα的值。
公式:tanα = y / x4. 余切函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的横坐标x除以纵坐标y的比值就是余切函数cotα的值。
公式:cotα = x / y5. 正割函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的斜边与x轴的交点到原点的距离就是正割函数secα的值。
公式:secα = 1 / cosα6. 余割函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的斜边与y轴的交点到原点的距离就是余割函数cscα的值。
公式:cscα = 1 / sinα7.三角函数的基本关系:(1) sin²α + cos²α = 1(2) tanα = sinα / cosα(3) cotα = 1 / tanα = cosα / sinα(4) sin(-α) = -sinα(5) cos(-α) = cosα(6) sin(π - α) = sinα(7) cos(π - α) = -cosα二、三角函数的四象限图示法:以单位圆为基准,将θ分别归类到四个象限,具体如下:1. 第一象限:θ ∈ (0, π/2),sin>0,cos>0,tan>0。
2. 第二象限:θ ∈ (π/2, π),sin>0,cos<0,tan<0。
3. 第三象限:θ ∈ (π, 3π/2),sin<0,cos<0,tan>0。
大学高数三角函数公式大全
三角函数1. 与(0°≤ < 360°)终边相同的角的集合(角与角的终边重合):终边在 x 轴上的角的集合:终边在 y 轴上的角的集合:终边在坐标轴上的角的集合:终边在 y = x 轴上的角的集合:终边在轴上的角的集合:若角与角的终边关于 x 轴对称,则角与角的关系:若角与角的终边关于 y 轴对称,则角与角的关系:若角与角的终边在一条直线上,则角与角的关系:角与角的终边互相垂直,则角与角的关系:2. 角度与弧度的互换关系: 360°=2 180°= 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 .、弧度与角度互换公式: 1rad =°≈ 57.30 ° =57 ° 18 ˊ. 1 °=≈ 0.01745 ( rad )3 、弧长公式:. 扇形面积公式:4 、三角函数: 设 是一个任意角,在 的终边上任取(异于原点的)一点 P ( x,y ) P 与原点的距离为 r ,则;;;;; ..5 、三角函数在各象限的符号:(一全二正弦,三切四余弦)6 、三角函数线正弦线: MP; 余弦线: OM; 正切线: AT. 7. 三角函数的定义域: 三角函数定义域sin x cos xtan xcot xsec xcsc xroxya 的终边P (x,y)正切、余切余弦、正割正弦、余割8 、同角三角函数的基本关系式:9 、诱导公式:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系公式组二公式组三公式组四(3) 若 o<x<2,则sinx<x<tanx(2)(1)|sinx|>|cosx||cosx|>|sinx||cosx|>|sinx||sinx|>|cosx|sinx>cosxcosx>sinx16. 几个重要结论:OOxyxy公式组五公式组六(二)角与角之间的互换公式组一公式组二公式组三公式组四公式组五, , ,.10. 正弦、余弦、正切、余切函数的图象的性质:( A 、>0 )定义域R R R值域R R周期性奇偶性奇函数偶函数奇函数奇函数当非奇非偶当奇函数单调性上为增函数;;上为增函数上为增函数()上为减函数()上为增函数;上为减函数()上为减函数()上为减函数()注意:与的单调性正好相反;与的单调性也同样相反 . 一般地,若在上递增(减),则在上递减(增) .与的周期是.或()的周期.的周期为 2 (,如图,翻折无效) .的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心() .当·;·.与是同一函数 , 而是偶函数,则.函数在上为增函数 . ( × ) [ 只能在某个单调区间单调递增 . 若在整个定义域,为增函数,同样也是错误的 ].定义域关于原点对称是具有奇偶性的必要不充分条件 . (奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)奇偶性的单调性:奇同偶反 . 例如:是奇函数,是非奇非偶 . (定义域不关于原点对称)奇函数特有性质:若的定义域,则一定有. (的定义域,则无此性质)不是周期函数;为周期函数();是周期函数(如图);为周期函数();的周期为(如图),并非所有周期函数都有最小正周期,例如:.有.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数 y = A sin (ω x +φ )的振幅 |A| ,周期,频率,相位初相(即当 x = 0 时的相位).(当 A > 0 ,ω > 0 时以上公式可去绝对值符号),由 y = sin x 的图象上的点的横坐标保持不变,纵坐标伸长(当 | A| > 1 )或缩短(当 0 < | A| < 1 )到原来的 | A| 倍,得到 y = Asin x 的图象,叫做振幅变换或叫沿 y 轴的伸缩变换.(用 y/A 替换 y )由 y = sin x 的图象上的点的纵坐标保持不变,横坐标伸长( 0 < | ω | < 1 )或缩短( | ω | > 1 )到原来的倍,得到 y = sin ω x 的图象,叫做周期变换或叫做沿 x 轴的伸缩变换. ( 用ω x 替换 x)由 y = sin x 的图象上所有的点向左(当φ> 0 )或向右(当φ< 0 )平行移动|φ|个单位,得到 y = sin ( x +φ)的图象,叫做相位变换或叫做沿 x 轴方向的平移. ( 用 x +φ替换 x)由 y = sin x 的图象上所有的点向上(当 b > 0 )或向下(当 b < 0 )平行移动|b |个单位,得到 y = sin x + b 的图象叫做沿 y 轴方向的平移.(用 y+(-b) 替换y )由 y = sin x 的图象利用图象变换作函数 y = A sin (ω x +φ)( A > 0 ,ω>0 )(x ∈ R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延 x 轴量伸缩量的区别。
三角关系公式大全高数
三角关系公式大全在高等数学中,三角函数是十分重要的内容之一。
三角函数的定义涉及到三角关系,而三角关系则可以通过一系列公式来表示和计算。
下面将介绍一些常用的三角关系公式。
1. 三角函数的定义在直角三角形中,假设一条直角边的长度为 a,另一条直角边的长度为 b,斜边的长度为 c。
则定义如下三个三角函数:•正弦(sine):sine(A) = a/c•余弦(cosine):cos(A) = b/c•正切(tangent):tan(A) = a/b其中 A 为直角边 a 的对角(角度)。
2. 基本关系公式基本关系公式可以通过三角函数的定义推导得出,它们是解决三角函数相关计算的基础。
下面是几个常用的基本关系公式:•余弦定理(cosine formula):c^2 = a^2 + b^2 - 2ab * cos(C)•正弦定理(sine formula):a/sin(A) = b/sin(B) = c/sin(C)•正切定义:tan(A) = sin(A) / cos(A)这些基本关系公式能够在解决直角三角形问题中提供重要的参考。
3. 和差公式和差公式可以用于计算三角函数求和或差的情况,下面是几个常用的和差公式:•正弦的和差公式:–sin(A + B) = sin(A) * cos(B) + cos(A) * sin(B)–sin(A - B) = sin(A) * cos(B) - cos(A) * sin(B)•余弦的和差公式:–cos(A + B) = cos(A) * cos(B) - sin(A) * sin(B)–cos(A - B) = cos(A) * cos(B) + sin(A) * sin(B)•正切的和差公式:–tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))–tan(A - B) = (tan(A) - tan(B)) / (1 + tan(A) * tan(B)) 这些和差公式可以在解决三角函数的简化、展开和求值问题时发挥作用。
其它-大学用三角函数公式大全_1
大学用三角函数公式大全倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1cosα/sinα=cotα=cscα/secα1+cot^2(α)=csc^2(α)tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)二倍角公式正弦sin2A=2sinA·cosA余弦=Cos^2(a)-Sin^2(a)=1-2Sin^2(a)=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式ta n(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ双曲函数sh a = [e^a-e^(-a)]/2ch a = [e^a+e^(-a)]/2th a = sin h(a)/cos h(a)sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanα三角函数的诱导公式(六公式)公式一sin(-α) = -sinαtan (-α)=-tanα公式二sin(π/2-α) = cosαcos(π/2-α) =sinα公式三sin(π/2+α) = cosαcos(π/2+α) = -sinα公式四sin(π-α) = sinαcos(π-α) = -cosα公式五sin(π+α) = -sinαcos(π+α) = -cosα公式六tanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))2]cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2] tanα=2tan(α/2)/[1-(tan(α/2))2]其它公式(1) (sinα)^2+(cosα)^2=1(平方和公式)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2(csca)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)基本求导公式∈ 0)(='C (C 为常数)∈ 1)(-='n n nx x ;一般地,1)(-='αααx x 。
大学常用三角函数公式
大学常用三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA/(1-tanA^2(注:SinA^2 是sinA的平方 sin2(A三倍角公式sin3α=4sinα²sin(π/3+αsin(π/3-αcos3α=4cosα²cos(π/3+αcos(π/3-αtan3a = tan a ² tan(π/3+a² tan(π/3-a三倍角公式推导sin3a=sin(2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2^(1/2sin(α+t,其中sint=B/(A^2+B^2^(1/2cost=A/(A^2+B^2^(1/2tant=B/AAsinα+Bcosα=(A^2+B^2^(1/2cos(α-t,tant=A/B 降幂公式sin^2(α=(1-cos(2α/2=versin(2α/2cos^2(α=(1+cos(2α/2=covers(2α/2tan^2(α=(1-cos(2α/(1+cos(2α推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2^2=2sina(1-sin²a+(1-2sin²asina=3sina-4sin³acos3a=cos(2a+a=cos2acosa-sin2asina=(2cos²a-1cosa-2(1-sin²acosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a=4sina[(√3/2²-sin²a]=4sina(sin²60°-sin²a=4sina(sin60°+sina(sin60°-sina=4sina*2sin[(60+a/2]cos[(60°-a/2]*2sin[(60°-a/2]cos[(60°-a/2]=4sinasin(60°+asin(60°-acos3a=4cos³a-3cosa=4cosa(cos²a-3/4=4cosa[cos²a-(√3/2²]=4cosa(cos²a-cos²30°=4cosa(cosa+cos30°(cosa-cos30°=4cosa*2cos[(a+30°/2]cos[(a-30°/2]*{-2sin[(a+30°/2]sin[(a-30°/2]} =-4cosasin(a+30°sin(a-30°=-4cosasin[90°-(60°-a]sin[-90°+(60°+a]=-4cosacos(60°-a[-cos(60°+a]=4co sacos(60°-acos(60°+a上述两式相比可得tan3a=tanatan(60°-atan(60°+a半角公式tan(A/2=(1-cosA/sinA=sinA/(1+cosA;cot(A/2=sinA/(1-cosA=(1+cosA/sinA.sin^2(a/2=(1-cos(a/2cos^2(a/2=(1+cos(a/2tan(a/2=(1-cos(a/sin(a=sin(a/(1+cos(a三角和sin(α+β+γ=sinα²cosβ²cosγ+cosα²sinβ²cosγ+cosα²cosβ²sinγ-sinα²sinβ²sin γcos(α+β+γ=cosα²cosβ²cosγ-cosα²sinβ²sinγ-sinα²cosβ²sinγ-sinα²sinβ²cos γtan(α+β+γ=(tanα+tanβ+tanγ-tanα²tanβ²tanγ/(1-tanα²tanβ-tanβ²tanγ-tanγ²ta nα两角和差cos(α+β=cosα²cosβ-sinα²sinβcos(α-β=cosα²cosβ+sinα²sinβsin(α±β=sinα²cosβ±cosα²sinβtan(α+β=(tanα+tanβ/(1-tanα²tanβtan(α-β=(tanα-tanβ/(1+tanα²tanβ和差化积sinθ+sinφ = 2 sin[(θ+φ/2] cos[(θ-φ/2]sinθ-sinφ = 2 cos[(θ+φ/2] sin[(θ-φ/2]cosθ+cosφ = 2 cos[(θ+φ/2] cos[(θ-φ/2]cosθ-cosφ = -2 sin[(θ+φ/2] sin[(θ-φ/2]tanA+tanB=sin(A+B/cosAcosB=tan(A+B(1-tanAtanB tanA-tanB=sin(A-B/cosAcosB=tan(A-B(1+tanAtanB 积化和差sinαsinβ = [cos(α-β-cos(α+β] /2cosαcosβ = [cos(α+β+cos(α-β]/2sinαcosβ = [sin(α+β+sin(α-β]/2cosαsinβ = [sin(α+β-sin(α-β]/2诱导公式sin(-α = -sinαcos(-α = cosαtan (—a=-tanαsin(π/2-α = cosαcos(π/2-α = sinαsin(π/2+α = cosαcos(π/2+α = -sinαsin(π-α = sinαcos(π-α = -cosαsin(π+α = -sinαcos(π+α = -cosαtanA= sinA/cosAtan(π/2+α=-cotαtan(π/2-α=cotαtan(π-α=-tanαtan(π+α=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2/[1+tan^(α/2]cosα=[1-tan^(α/2]/1+tan^(α/2]tanα=2tan(α/2/[1-tan^(α/2]其它公式(1(sinα^2+(cosα^2=1(21+(tanα^2=(secα^2(31+(cotα^2=(cscα^2证明下面两式,只需将一式,左右同除(sinα^2,第二个除(cosα^2即可(4对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B=tan(π-C (tanA+tanB/(1-tanAtanB=(tanπ-tanC/(1+tanπtanC 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论 (5cotAcotB+cotAcotC+cotBcotC=1 (6cot(A/2+cot(B/2+cot(C/2=cot(A/2cot(B/2cot(C/2 (7(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC (9sinα+sin(α+2π/n+sin(α+2π*2/n+sin(α+2π*3/n+……+sin[α+2π*(n-1/n]=0cosα+cos(α+2π/n+cos(α+2π*2/n+cos(α+2π*3/n+……+cos[α+2π*(n-1/n]=0 以及sin^2(α+sin^2(α-2π/3+sin^2(α+2π/3=3/2 tanAtanBtan(A+B+tanA+tanB-tan(A+B=0。
大学三角函数
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
其它公式
a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]
a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]^2;
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
大学用三角函数公式大全
大学用三角函数公式大全1. 三角函数定义:正弦函数:sin(θ) = 对边/斜边余弦函数:cos(θ) = 邻边/斜边正切函数:tan(θ) = 对边/邻边2. 三角恒等式:sin²(θ) + cos²(θ) = 11 + tan²(θ) = sec²(θ)1 + cot²(θ) = csc²(θ)3. 角度转换公式:弧度转角度:角度 = 弧度× (180°/π)角度转弧度:弧度 = 角度× (π/180°)4. 和差公式:sin(α + β) = sin(α)cos(β) + cos(α)sin(β)sin(α β) = sin(α)cos(β) cos(α)sin(β)cos(α + β) = cos(α)cos(β) sin(α)sin(β)cos(α β) = cos(α)cos(β) + sin(α)sin(β)tan(α + β) = (tan(α) + tan(β)) / (1tan(α)tan(β))tan(α β) = (tan(α) tan(β)) / (1 +tan(α)tan(β))5. 倍角公式:sin(2θ) = 2sin(θ)cos(θ)cos(2θ) = cos²(θ) sin²(θ) = 2cos²(θ) 1 = 1 2sin²(θ)tan(2θ) = 2tan(θ) / (1 tan²(θ))6. 半角公式:sin(θ/2) = ±√((1 cos(θ))/2)cos(θ/2) = ±√((1 + cos(θ))/2)tan(θ/2)= ±√((1 cos(θ))/(1 + cos(θ))) = sin(θ)/(1 + cos(θ)) = (1 cos(θ))/sin(θ)7. 反三角函数公式:sin⁻¹(x) = θ,其中π/2 ≤ θ ≤ π/2cos⁻¹(x) = θ,其中0 ≤ θ ≤ πtan⁻¹(x) = θ,其中π/2 < θ < π/28. 三角函数的周期性:sin(θ + 2πk) = sin(θ),其中 k 是任意整数cos(θ + 2πk) = cos(θ),其中 k 是任意整数tan(θ + πk) = tan(θ),其中 k 是任意整数9. 三角函数的奇偶性:sin(θ) = sin(θ)cos(θ) = cos(θ)tan(θ) = tan(θ)10. 三角函数的导数:d/dθ(sin(θ)) = cos(θ)d/dθ(cos(θ)) = sin(θ)d/dθ(tan(θ)) = sec²(θ)这些公式是大学数学中三角函数的基础,掌握它们将有助于你在解决数学问题时更加得心应手。
(完整版)大学用三角函数公式大全.docx
倒数关系:tan α ·cot α=1sin α ·cscα=1cosα ·secα=1cosα/sin α=cot α=cscα/sec α1+cot^2( α)=csc^2( α)tan α *cotα=1一个特殊公式(s ina+sin θ) * (sina- sin θ) =sin (a+θ) *sin ( a- θ)二倍角公式正弦sin2A=2sinA ·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA) / ( 1-tan^2(A) )万能公式sin α=2tan( α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α /2)]tan α=2tan( α/2)/[1-tan^2(α/2)]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))半角公式sin^2( α/2)=(1 - cosα)/2cos^2( α/2)=(1+cos α)/2tan^2( α/2)=(1 - cosα)/(1+cos α)tan( α/2)=sin α/(1+cos α)=(1 - cosα)/sinα和差化积sin θ+sin φ = 2 sin[(θ+φ)/2] cos[(θ -φ)/2]sin θ - sin φ = 2 cos[(θ+φ)/2] sin[(θ -φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ -φ)/2]cosθ - cosφ = - 2 sin[(θ+φ)/2] sin[(θ -φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式tan( α+β)=(tan α+tan β)/(1 - tan αtan β)tan( α - β)=(tan α - tan β)/(1+tanαtanβ)cos( α+β)=cos αcosβ - sin αsin βcos( α - β)=cos αcosβ+sin αsin βsin( α+β)=sin αcosβ+cosαsin βsin( α - β)=sin αcosβ - cosαsin β双曲函数sh a = [e^a-e^(-a)]/2ch a = [e^a+e^(-a)]/2th a = sin h(a)/cos h(a)sin (π /2+ α) = cos αcos(π /2+ α) = - sin αtan (π /2+ α) = - cot αcot (π /2+ α) = - tan αsin (π /2 - α) = cos αcos(π /2 - α) = sin αtan (π /2 - α) = cot αcot (π /2 - α) = tan α三角函数的诱导公式(六公式)公式一sin(- α) =- sin αtan (-α)= - tanα公式二 sin( π/2 - α) = cos αcos( π/2 - α) = sinα公式三sin( π/2+ α) = cos αcos( π/2+ α) =- sin α公式四 sin( π - α) = sinαcos( π - α) =- cosα公式五 sin( π+α) =- sin αcos( π+α) =- cosα公式六 tanA= sinA/cosAtan (π /2+ α) =-cot αtan (π /2 -α) =cot αtan (π-α) =-tan αtan (π +α) =tan α诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin α=2tan( α/2)/[1+(tan(α/2))2]cosα=[1 - (tan( α/2))2]/[1+(tan(α/2))2] tan α=2tan( α/2)/[1 - (tan( α/2))2]其它公式(1)(sin α)^2+(cos α)^2=1 (平方和公式)(2)1+(tan α)^2=(sec α)^2(3)1+(cot α)^2=(csc α)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2(csca)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)反三角函数公式arcsin(-x)=-arcsinxarccos(-x)= π-arccosxarctan(-x)=-arctanxarccot(-x)= π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π /2,π/2〕时,有 arcsin(sinx)=x当x∈〔 0, π〕,arccos(cosx)=xx∈(—π /2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx= π-arctan1/x,arccotx/2 类似若(arctanx+arctany)∈(—π /2,π/2),则 arctanx+arctany=arctan(x+y/1-xy)三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/ -x^2)√(1(arccosx)'=-1/ √ (1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)基本求导公式⑴ (C )0 (C 为常数)⑵ ( x n ) nx n 1 ;一般地, (x )x1。
(完整版)大学用三角函数公式大全
倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1cosα/sinα=cotα=cscα/secα1+cot^2(α)=csc^2(α)tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ双曲函数sh a = [e^a-e^(-a)]/2ch a = [e^a+e^(-a)]/2th a = sin h(a)/cos h(a)sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanα三角函数的诱导公式(六公式)公式一sin(-α) = -sinαtan (-α)=-tanα公式二sin(π/2-α) = cosαcos(π/2-α) = sinα公式三sin(π/2+α) = cosαcos(π/2+α) = -sinα公式四sin(π-α) = sinαcos(π-α) = -cosα公式五sin(π+α) = -sinαcos(π+α) = -cosα公式六tanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))2]cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2]tanα=2tan(α/2)/[1-(tan(α/2))2]其它公式(1) (sinα)^2+(cosα)^2=1(平方和公式)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2(csca)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=x-arctan1/x,arccotx类似x〉0,arctanx=π/2若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx-x^2)(arcsinx)'=1/√(1(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)基本求导公式⑴0)(C (C 为常数)⑵1)(n n nx x ;一般地,1)(x x 。
大学用三角函数公式大全.docx
倒数关系: tan a sin a cos a • cot a =1• esc a 二1• sec a 二1cos a /sin a 二cot a =csc a /sec a l+cot/2(a )=csc^2(a )tan a *cot a =1一个特殊公式(sina+sin 0 ) * (sina-sin 0 )二sin (a+ 0 ) *sin (a- 0 ) 二倍角公式正弦sin2A 二2sinA • cosA余弦1. Cos2a=Cos 2 (a)-Sin 2(a)2. Cos2a=l~2Sin 2(a)3. Cos2a=2Cos 2 (a)-1即 Cos2a=Cos 2 (a)-Sin 2 (a)=2Cos 2 (a)-l=l-2Sin 2(a)正切tan2A= (2tanA) / (l~tan 2(A))万能公式sin a =2tan ( a /2)/[l+tan 2( a /2)]cos a =[l-tan^2 ( a /2) ]/[l+tarT2 ( a /2)]tan a =2tan(a /2)/[l-tan"2(a /2)]半角公式tan(A/2) = (1-cosA)/sinA=sinA/ (1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin 2 (a/2)二仃一cos (a)) /2cos 2 (a/2)二(1+cos(a))/2tan (a/2)二(1-cos (a))/sin (a) =sin(a)/ (1+cos (a)) 半角公式sin^2 ( u /2) = (l-cos u )/2cos"2( a /2) = (1+cos a )/2tan"2 ( a /2)二(1 -cos a )/(1+cos a )tan ( a /2)二sin a / (1+cos a )二(1 -cos a ) /s i n a 和差化积=2 sin[(()+(l ))/2] =2 cost( 0 +d>)/2] cos 0 -cos 4> 二-2 sin[( 0+4>)/2] sin[( 0 -4))/2]tanA+tanB=sin (A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin (A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式tan( a + B ) = (tan a +tan B )/(l~tan a tan B )tan ( a - B )二(tan a -tan B ) / (1+tan a tan B )cos ( a + B ) =cos a cos 3 -sin a sin 3 cos ( a - 0 )=cos a cos B+si na sinB sin(a+B)=sina cos S +cos a sin S sin( a - B)二si na cos B - cos a si n B 双曲函数sh a = [e^a-e^ (-a)]/2ch a = [e a+e^ (-a)]/2sin ()+sin (1) sin O -sin 4) cos 0 +cos 4) cos[( 0 - 4))/2]sin[( 0 -d ))/2] cos[ ( O - 4))/2]二 2 cos[( O +4))/2]th a = sin h(a)/cos h(a)sin (兀/2+a ) = cos aCOS (n/2+ u ) = -sin utan (兀/2+a ) = -cot acot (兀/2+ a )二-tan asin (兀/2-a )二cos acos (兀/2-a )二sin atan (n/2-a ) = cot acot (兀/2-a ) = tan a三角函数的诱导公式(六公式) 公式一sin (-a) = -sin a tan (-a)二 - tan a公式二sin(肌/2-u ) = cos acos ( n/2- a) = sin a 公式三sin( n /2+ a )二cos a cos (兀/2+a)二-sin a 公式四sin( — a) = sina cos ( JI - u ) = -cos «公式五sin(n + a) = -sin a cos ( n + a)二-cos a 公式六tanA= sinA/cosAtan ( Ji /2+ a ) = —cot a tan (肌/2 — a ) =cot a tan ( Ji — a ) = —tan atan ( n + a )二tan a诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin a =2tan( a /2)/[l+(tan( a /2))2 ]cos a =[l-(tan( a /2))2 ]/[l+(tan( a /2))2] tan a 二2tan ( a /2)/[l~(tan( a /2))2 ]其它公式(1)(sin a )^2+(cos a )^2=1 (平方和公式)(2)1+ (tan a 厂2二(sec u 厂2(3)l+(cot a 厂2二(esc a ) 2(4)对于任意非直角三角形,总有tcinA+tanB+tcinC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=l(6)cot (A/2)+cot (B/2)+cot (C/2)二cot(A/2)cot(B/2)cot(C/2)(7)(cosA) 2; + (cosB) 2+(cosC) 2=l-2cosAcosBcosC(8)(sinA厂2+(sinB厂2+(sinC厂2=2+2cosAcosBcosC 其他非重点三角函数esc (a) = l/sin(a)sec (a)二1/cos (a)(seca) 2+(csca) 2=(seca) 2 (csca) 2和差化枳及枳化和差用还原法结合上面公式可推岀(换(a+b)/2与Ob)/2) 两角和公式sin (A+B) = sinAcosB+cosAsinBsin (A-B) = sinAcosB-cosAsinBcos(A+B)二cosAcosB-sinAsinBcos (A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot (A-B)二(cotAcotB+1)/ (cotB-cotA) 反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=7r—arccosxarctan(-x)=-arctanxarccot(-x)=7i—arccotxarcsinx+arccosx=7r/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当xW (一7i/2, n/2)时,有arcsin(sinx)=x 当xW (0,兀),arccos(cosx)=xx 丘(一K/2,兀/2),arctan(tanx)=xx G (0,兀),arccot(cotx)=xx〉0?arctanx=7i/2-arctan 1/x,arccotx 类彳以^(arctanx+arctany)丘(一兀/2,兀/2),贝arctanx+arctany=arctan(x+y/1 -xy) 三角函数求导:(sinx)-cosx(cosx)--sinx(tanx)-(secx)A2(secx)-secxtanx(cotx)--(cscx)A2(cscx)--csxcotx(arcsinx)-l/"J(l -x A2)(arccosx)--1/^(1 -x A2)(arctanx) -1/(1 +x A2)(arccotx)--1/(1 +x A2)基木求导公式(1) (C)' = 0 (C 为常数)(2) (x n y = nx n*; 一般地,(屮)‘=处小。
三角关系公式大全高数
三角关系公式大全高数《三角关系公式大全》是一本高等数学教材,针对三角形中的各种关系给出了详细的公式和推导过程。
在高数学习过程中,掌握这本书中的公式是十分重要的。
下面将简要介绍一下《三角关系公式大全》中包含的主要公式。
一、基本关系公式1. 三角形的内角和公式:三角形的三个内角和等于180°,即A+B+C=180°。
2. 正弦定理:在一个三角形中,三个角的对边与正弦值之间有如下关系:a/sinA = b/sinB =c/sinC。
3. 余弦定理:在一个三角形中,三个角的对边与余弦值之间有如下关系:c^2 = a^2 + b^2 -2abcosC。
二、三角函数的关系公式1. 三角函数之间的关系:sinA = cos(90°-A),cosA = sin(90°-A),tanA = cot(90°- A),cotA =tan(90°-A),secA = csc(90°-A),cscA = sec(90°-A)。
2. 三角函数的倒数关系:sinA = 1/cscA,cosA = 1/secA,tanA = 1/cotA。
3. 三角函数的平方和差关系:sin^2A + cos^2A = 1,tan^2A + 1 = sec^2A,cot^2A + 1 = csc^2A。
三、三角函数的和差公式1. 两角和差的正弦公式:sin(A±B) = sinAcosB ± cosAsinB。
2. 两角和差的余弦公式:cos(A±B) = cosAcosB ∓ sinAsinB。
3. 两角和差的正切公式:tan(A±B) = (tanA ± tanB)/(1 ∓ tanAtanB)。
四、三角函数的倍角公式1. 正弦的倍角公式:sin2A = 2sinAcosA。
2. 余弦的倍角公式:cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A。
(完整版)大学用三角函数公式大全
倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1cosα/sinα=cotα=cscα/secα1+cot^2(α)=csc^2(α)tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ双曲函数sh a = [e^a-e^(-a)]/2ch a = [e^a+e^(-a)]/2th a = sin h(a)/cos h(a)sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanα三角函数的诱导公式(六公式)公式一sin(-α) = -sinαtan (-α)=-tanα公式二sin(π/2-α) = cosαcos(π/2-α) = sinα公式三sin(π/2+α) = cosαcos(π/2+α) = -sinα公式四sin(π-α) = sinαcos(π-α) = -cosα公式五sin(π+α) = -sinαcos(π+α) = -cosα公式六tanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²]cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)^2+(cosα)^2=1(平方和公式)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2(csca)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。
(完整版)大学用三角函数公式大全
倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1cosα/sinα=cotα=cscα/secα1+cot^2(α)=csc^2(α)tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ双曲函数sh a = [e^a-e^(-a)]/2ch a = [e^a+e^(-a)]/2th a = sin h(a)/cos h(a)sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanα三角函数的诱导公式(六公式)公式一sin(-α) = -sinαtan (-α)=-tanα公式二sin(π/2-α) = cosαcos(π/2-α) = sinα公式三sin(π/2+α) = cosαcos(π/2+α) = -sinα公式四sin(π-α) = sinαcos(π-α) = -cosα公式五sin(π+α) = -sinαcos(π+α) = -cosα公式六tanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²]cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)^2+(cosα)^2=1(平方和公式)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2(csca)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。
大学三角公式汇总
lRSa三角公式汇总1. 02180,2121,nR R l S R l ´====pa a a 2、各三角比在各象限的符号: 3、任意角的三角函数在角a 的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y=a sin 余弦:rx=a cos 正切:x y =a tan 余切:yx =a cot 正割:xr =a sec 余割:yr =a csc 3.同角三角函数的基本关系式倒数关系:1csc sin =×a a ,1sec cos =×a a ,1cot tan =×a a 。
商数关系:a a a cos sin tan =,a aa sin cos cot =。
平方关系:1cos sin 22=+a a ,a a 22sec tan 1=+,a a 22csc cot 1=+。
4.诱导公式p a k 2+)(Z k Î、a -、a p +、a p -、a p -2的三角函数值,等于a 的同名函数值,前面加上一个把a 看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)a p+2、a p-2、a p +23、a p-23的三角函数值,等于a 的异名函数值,前面加上一个把a 看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)tan a cot acos a sec asin acsc a5.和角公式和差角公式b a b a b a sin cos cos sin )sin(×±×=±b a b a b a sin sin cos cos )cos(××=± ba ba b a tan tan 1tan tan )tan(×±=± 6二倍角公式a a a cos sin 22sin = aa a 2tan 1tan 22tan -=a a a a a 2222sin 211cos 2sin cos 2cos -=-=-=…)(*有以下常用变形:升幂缩角,降幂扩角有以下常用变形:升幂缩角,降幂扩角2)cos (sin 2sin 1a a a +=+ 2)cos (sin 2sin 1a a a -=-22cos 1sin ,22cos 1cos 22a a a a -=+=7.万能公式(可以理解为二倍角公式的另一种形式)a a a 2tan 1tan 22sin +=,a a a 22tan 1tan 12cos +-=,a aa 2tan 1tan 22tan -=。
大学常用三角函数公式
三角函数公式大全公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cot α公式三:任意角α与-α的三角函数值之间的关系:sin(- α)= sinαcos(- α)= -cosαtan(- α)= -tanαcot(- α)= -cotα公式四:利用公式一和公式三可以得到2π- α与α的三角函数值之间的关系:sin(2π- α)= -sinαcos(2π- α)= cosαtan(2π- α)= -tanαcot(2π- α)= -cotα公式五:利用公式二和公式三可以得到π- α与α的三角函数值之间的关系:sin(π- α)= sinαcos(π- α)= -cosαtan(π- α)= -tanαcot(π- α)= -cotα公式六:α及 α与α的三角函数值之间的关系:sin(α)=cos αcos(α)=-sin αtan(α)=-cot αcot(α)=-tan αsin(α)=cos αcos(α)=sin αtan(α)=cot αcot(α)=tan αsin(α)=-cos αcos(α)=sin αtan(α)=-cot αcot(α)=-tan αsin(α)=-cos αcos(α)=-sin αtan(α)=cot αcot(α)=tan α三角函数和差化积公式快速记忆口诀:正加正,正在前。
正减正,余在前。
余加余,余加余,余并肩。
余减余,余不见,负号很讨厌。
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB-1tanBtanA。
大学数学三角函数公式大全
三角公式重难点A.积化和差公式:[])sin()sin(21cos sin b a b a b a -++=[])sin()sin(21sin cos b a b a b a --+=[])cos()cos(21cos cos b a b a b a -++= ()[]b a b a b a --+-=cos )cos(21sin sinB.和差化积公式:①2cos2sin2sin sin babab a -+=+ ②2sin2cos2sin sin babab a -+=-③2cos2cos2cos cos babab a -+=+ ④2sin2sin2cos cos babab a -+-=-1.正弦定理:A asin =B b sin =Cc sin =2R 2R ((R 为三角形外接圆半径) 2..余弦定理:a2=b2+c2-2bc A cos b2=a2+c2-2ac B cosc 2=a 2+b 2-2ab C cos bca c bA 2cos 222-+= 3.S ⊿=21a a h ×=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=r , r为三角形内切圆半径为三角形内切圆半径为三角形内切圆半径) )4.诱导公试sin cos tan cot -a-a sin +a cos -a tg -a ctg p -a+a sin -a cos -a tg-a ctg三角函数值等于a 的同名三角函数值,前面加上一个把a 看作锐角时,原三角函数值的符号;即:数值的符号;即:函数名不变,符号看象限函数名不变,符号看象限5.和差角公式①b a b a b a sin cos cos sin )sin(±=± ②b a b a b a sin sin cos cos )cos( =±p +a-a sin -a cos +a tg +a ctg 2p -a-a sin +a cos -a tg-a ctg2k p +a +a sin +a cos +a tg +a ctgsin cos tan cot a p-2 +a cos +a sin +a ctg+a tga p+2+a cos -a sin -a ctg -a tga p-23 -a cos -a sin+a ctg +a tga p+23 -a cos+a sin -a ctg-a tg③ba ba b a tg tg tg tg tg ×±=± 1)( ④)1)((b a b a b a tg tg tg tg tg ×±=±6.二倍角公式:(含万能公式) ①qqq q q 212cos sin 22sin tg tg +==②q qq q q q q 22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③q q q 2122tg tg tg -= ④22cos 11sin 222q q q q -=+=tg tg ⑤22cos 1cos 2q q +=7.半角公式:(符号的选择由2q所在的象限确定) ①2cos 12sin q q -±= ②2cos12sin 2q q -= ③2cos 12cos qq +±=④2cos 12cos 2q q += ⑤2sin 2cos 12q q =- ⑥2cos 2cos 12q q =+⑦2sin 2cos )2sin 2(cos sin 12qq q q q ±=±=±⑧qqq q q q qsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg。
大学高数三角函数公式大全
三角函数1. 与(0°≤ < 360°)终边相同的角的集合(角与角的终边重合):终边在 x 轴上的角的集合:终边在 y 轴上的角的集合:终边在坐标轴上的角的集合:终边在 y = x 轴上的角的集合:终边在轴上的角的集合:若角与角的终边关于 x 轴对称,则角与角的关系:若角与角的终边关于 y 轴对称,则角与角的关系:若角与角的终边在一条直线上,则角与角的关系:角与角的终边互相垂直,则角与角的关系:2. 角度与弧度的互换关系: 360°=2 180°= 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 .、弧度与角度互换公式: 1rad =°≈ 57.30 ° =57 ° 18 ˊ. 1 °=≈ 0.01745 ( rad )3 、弧长公式:. 扇形面积公式:4 、三角函数: 设 是一个任意角,在 的终边上任取(异于原点的)一点 P ( x,y ) P 与原点的距离为 r ,则;;;;; ..5 、三角函数在各象限的符号:(一全二正弦,三切四余弦)6 、三角函数线正弦线: MP; 余弦线: OM; 正切线: AT. 7. 三角函数的定义域: 三角函数定义域sin x cos xtan xcot xsec xcsc xroxya 的终边P (x,y)正切、余切余弦、正割正弦、余割8 、同角三角函数的基本关系式:9 、诱导公式:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系公式组二公式组三公式组四(3) 若 o<x<2,则sinx<x<tanx(2)(1)|sinx|>|cosx||cosx|>|sinx||cosx|>|sinx||sinx|>|cosx|sinx>cosxcosx>sinx16. 几个重要结论:OOxyxy公式组五公式组六(二)角与角之间的互换公式组一公式组二公式组三公式组四公式组五, , ,.10. 正弦、余弦、正切、余切函数的图象的性质:( A 、>0 )定义域R R R值域R R周期性奇偶性奇函数偶函数奇函数奇函数当非奇非偶当奇函数单调性上为增函数;;上为增函数上为增函数()上为减函数()上为增函数;上为减函数()上为减函数()上为减函数()注意:与的单调性正好相反;与的单调性也同样相反 . 一般地,若在上递增(减),则在上递减(增) .与的周期是.或()的周期.的周期为 2 (,如图,翻折无效) .的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心() .当·;·.与是同一函数 , 而是偶函数,则.函数在上为增函数 . ( × ) [ 只能在某个单调区间单调递增 . 若在整个定义域,为增函数,同样也是错误的 ].定义域关于原点对称是具有奇偶性的必要不充分条件 . (奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)奇偶性的单调性:奇同偶反 . 例如:是奇函数,是非奇非偶 . (定义域不关于原点对称)奇函数特有性质:若的定义域,则一定有. (的定义域,则无此性质)不是周期函数;为周期函数();是周期函数(如图);为周期函数();的周期为(如图),并非所有周期函数都有最小正周期,例如:.有.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数 y = A sin (ω x +φ )的振幅 |A| ,周期,频率,相位初相(即当 x = 0 时的相位).(当 A > 0 ,ω > 0 时以上公式可去绝对值符号),由 y = sin x 的图象上的点的横坐标保持不变,纵坐标伸长(当 | A| > 1 )或缩短(当 0 < | A| < 1 )到原来的 | A| 倍,得到 y = Asin x 的图象,叫做振幅变换或叫沿 y 轴的伸缩变换.(用 y/A 替换 y )由 y = sin x 的图象上的点的纵坐标保持不变,横坐标伸长( 0 < | ω | < 1 )或缩短( | ω | > 1 )到原来的倍,得到 y = sin ω x 的图象,叫做周期变换或叫做沿 x 轴的伸缩变换. ( 用ω x 替换 x)由 y = sin x 的图象上所有的点向左(当φ> 0 )或向右(当φ< 0 )平行移动|φ|个单位,得到 y = sin ( x +φ)的图象,叫做相位变换或叫做沿 x 轴方向的平移. ( 用 x +φ替换 x)由 y = sin x 的图象上所有的点向上(当 b > 0 )或向下(当 b < 0 )平行移动|b |个单位,得到 y = sin x + b 的图象叫做沿 y 轴方向的平移.(用 y+(-b) 替换y )由 y = sin x 的图象利用图象变换作函数 y = A sin (ω x +φ)( A > 0 ,ω>0 )(x ∈ R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延 x 轴量伸缩量的区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
三角公式汇总
1. 00
2180
,2
1
21,
n R R l S R l ⨯=
==
=π
ααα2、各三角比在各象限的符号:
3、任意角的三角函数
在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y
=αtan 余切:y x =
αcot 正割:x
r =αsec 余割:y
r
=
αcsc 3.同角三角函数的基本关系式
倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =
, α
α
αsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
4.诱导公式
παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的
同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)
απ
+2
、
απ
-2
、
απ+23、απ-2
3的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)
tan αcot α
cos αsec α
sin αcsc α
5.和角公式和差角公式
βαβαβαsin cos cos sin )sin(⋅±⋅=±
βαβαβαsin sin cos cos )cos(⋅⋅=± β
αβ
αβαtan tan 1tan tan )tan(⋅±=
±
6二倍角公式
αααcos sin 22sin = α
α
α2tan 1tan 22tan -=
ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*
有以下常用变形:升幂缩角,降幂扩角
2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-
2
2cos 1sin ,2
2cos 1cos 22α
αα
α-=
+=
7.万能公式(可以理解为二倍角公式的另一种形式)
ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,α
α
α2
tan 1tan 22tan -=。
万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示。
8.半角公式:(符号的选择由
2
θ
所在的象限确定) 2cos 12
sin
θθ
-±
= 2cos 12cos θ
θ+±= θθθθθθθ
sin cos 1cos 1sin cos 1cos 12
tan
-=+=+-±
= 2)2
sin 2(cos sin 1θ
θθ±=±
10.辅助角“二合一”公式
)sin(cos sin 22ϕ++=+x b a x b x a
其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,
2
2sin b a b +=
ϕ,2
2cos b a a +=
ϕ,a
b
=
ϕtan 。
11.正弦定理
R C
c
B b A a 2sin sin sin ===(R 为AB
C ∆外接圆半径) 12.余弦定理
A bc c b a cos 2222⋅-+=
B ac c a b cos 2222⋅-+=
C ab b a c cos 22
2
2
⋅-+= bc
a c
b A 2cos 2
22-+=
13.三角形的面积公式 B ca A bc C ab S ABC sin 2
1
sin 21sin 21===
∆(两边一夹角)
14. 三角形函数的性质
15.函数y=++)sin(ϕωx A k 的图象及性质:(0,0>>A ω)
振幅A , 周期T=
ωπ
2, 频率f=
T 1
, 相位移ω
ϕ- 初相ϕ 16.反三角函数及性质:
恒等式
R
x x
arctgx tg x x x x x x ∈=≤=≤=|)(1||)cos(arccos 1||)sin(arcsin )2
,2()(],0[)arccos(cos ]2,2[)arcsin(sin π
πππ
π-
∈=∈=-∈=x x
tgx arctg x x x x x x。