第6章凸轮机构
机械原理:第6章 凸轮机构
的压力角α ? 3.求出r0 、s 和α之间的关系式?
本题目主要考察对基圆、压力角及位移等 基本概念的理解和压力角的计算方法。 解
(1)图示位置的r0 、s 和α如图。
(2)r0 、s 与α之间的关系式为:
tan
v e
lOP e 1
r02 e2 s s r02 e2
例3 图示为摆动滚子从动件盘形凸轮机构,凸轮为偏心圆盘, 且以角速度ω逆时针方向回转。
试在图上标出: 1. 凸轮基圆;
2. 升程运动角和回程运动角;
3. 图示位置时从动件的初始位置角
0和角位移 ;
4. 图示位置从动件的压力角α;
5. 从动件的最大角位移max 。
r0min
( d s)2 e2 tan[ ]
直动滚子从动件盘 形凸轮机构
凸轮基圆半径
r0
m in
s
d2s
d 2
式中
([ dx )2 ( dy )2 ]3/ 2
d
dx
d
.
d2 y
d 2
d
dy
d
.
d2x
d 2
条件 min
直动平底从动件盘 形凸轮机构
滚子半径的设计
考虑运动失真: rr 0.8min 考虑强度要求: rr (0.1 ~ 0.5)r0
以凸轮转动中心为圆心,以凸轮理论轮廓曲线上的 最小半径为半径所画的圆。半径用r0表示。 从动件从距凸轮转动中心的最近点向最远点的运动过程。 从动件从距凸轮转动中心的最远点向最近点的运动过程。 从动件的最大运动距离。常用 h 表示行程。
基本名词术语
(5)推程角 从动件从距凸轮转动中心的最近点运动到最远点时, 凸轮所转过的角度。用Φ表示。
第6章 凸轮机构
(3)该机构的最大压力角αmax与最小压力角 αmin;
(4)从动件的推程运动角和回程运动 角;
(5)从动件的最大速度vmax。
解
第二十八页,共36页。
解 (1) rbRO A8 03 050mm
(2) A 1 B 1 (1 1 10 2 5 )2 1 5 1.5 46 0 A 0B 0 (5 0 15 2 )2 1 5 5.7 51
例1 图示偏置直动滚子从动件盘形 凸轮机构中,凸轮以角速度ω 逆时 针方向转动。
试在图上画出: (1)画出理论轮廓曲线、基圆与偏距圆;
(2)标出凸轮图示位置压力角α1和位 移s1以及转过150°时的压力角α2 和位 移 s2 。
解
第十九页,共36页。
思路与技
本题目主要考察对凸轮廓线、基圆、偏距 圆、压力角及位移等基本概念的理解和对反转
0
ω
n
第八页,共36页。
从动件运动规律的选择与设计原则
从动件的最大速度vmax应尽量小
从动件的最大加速度amin应尽量小,且无突变 从动件的最大跃度jmax应尽量小
第九页,共36页。
凸轮机构的反转法原理
-ω
1
B0
ωO
B1 B 1
2
3
()s()
结论
B 3 B 2 B 2 B3
从动件尖顶相对凸轮的运 动轨迹形成了凸轮的轮廓曲 线。
hA 1B 1A 0B 08.8 4m 5 m
(3) max mi n 45
(4) ==180°
(5)当凸轮从从动件最低位置转过90°时, 从动件与凸轮的相对瞬心P至A点的距 离达到最大
A P O2 A3 02
vma x A P 13 024.4 22 m6m
第6章 凸轮机构及其设计习题
第6章 凸轮机构及其设计习题6-1.在直动从动件盘形凸轮机构中,已知推程时凸轮的转角0/2ϕπ=,行程50h mm =。
求当凸轮转速110/rad s ω=时,等速、等加速等减速、余弦加速度和正弦加速度四种常用的基本运动规律的最大速度max v 、最大加速度max a 以及所对应的凸轮转角0ϕ。
6-2. 在图6-1所示的从动件位移线图中,AB 段为摆线运动,BC 段为简谐运动。
若要在两段曲线交界处B 点从动件的速度和加速度分别相等,试根据图中所给数据确定2ϕ角大小。
6-3.设计一偏置直动从动件盘形凸轮机构。
凸轮回转方向及从动件初始位置如图6-2所示。
已知偏距e =20mm ,基圆半径r 0=40mm ,滚子半径r T =10mm 。
从动件运动规律如下:ϕ=150︒,ϕs =30︒,ϕ'=120︒,ϕs '=60︒,从动件在推程以简谐运动规律上升,行程h =20mm ;回程以等加速等减速规律返回原处。
要求推程许用压力角[]30α= ,回程许用压力角[]70α'= ,凸轮实际廓线最小许用曲率半径[]3mm ρ'=。
试绘出从动件位移线图并用解析法设计凸轮轮廓曲线。
6-4.已知一偏置移动滚子从动件盘形凸轮机构的初始位置,如图6-3所示。
试求:(1)当凸轮从图示位置转过150时,滚子与凸轮廓线的接触点1D 及从动件相应的位移。
(2)当滚子中心位于2B 点时,凸轮机构的压力角2α。
图6-2 图6-3 图6-4图6-16-5.如图6-4所示的直动平底从动件盘形凸轮机构,已知凸轮为30r mm =的偏心圆盘,20AO mm =,试求:(1)基圆半径和升程;(2)推程运动角、回程运动角、远休止角和近休止角;(3)凸轮机构的最大压力角和最小压力角;(4)从动件推杆的位移s 、速度v 和加速度a 的方程式;(5)若凸轮以110/rad s ω=匀速回转,当AO 成水平位置时推杆的速度。
机械设计基础.第六章_间歇运动机构
21 2 2
2
运动关系(运动特性系数τ ):
tm 21 z 2 t 2 2z
讨论:τ >0,z≥3
21 z 2 2 2z
(2)销数 K
在0~0.5 之间,运动时间小于 静止时间。
K ( z 2) 2z
讨论:τ <1 常用K=1
§6-1 棘轮机构
组成:棘轮机构主要由
棘轮2、驱动棘爪3、摇杆1、 止动爪5和机架等组成 。
工作原理: 原动件1逆时针摆动时,棘轮逆时针转动 原动机1顺时针摆动时,棘轮不动
类型1:运动形式来分
单动式棘轮机构(转动、移动) 齿式棘轮机构 双动式棘轮机构 可变向棘轮机构
棘条机构(移动) 钩头双动式棘轮机构
运动;
加工复杂;
刚性冲击,不适于高速。
应用于计数器、电影放映机和某些具 有特殊运动要求的专业机械中。
§ 6-4 凸轮式间歇机构(不讲)
图6-11 圆柱形凸轮间歇运动机构
此机构实质上为一个摆 杆长度为R2、只有推程 和远休止角的摆动从动 件圆柱凸轮机构。
蜗杆凸轮分度机构
凸轮如蜗杆,滚子如涡 轮的齿。
作业:
6-2、6-3
2z K z2
增加径向槽数z可以增加机构运动的平稳性,但是机构尺寸 随之增大,导致惯性力增大。一般取 z = 4~8。
几何尺寸计算,学会参考机械设计手册
§6-3. 不完全齿轮机构
不完全齿轮机构是由普通齿轮机构演化而成。如图 所示,主动轮1为只有一个齿或几个齿的不完全齿轮, 从动轮2由正常齿和带锁止弧的厚齿彼此相间组成。
(2)制动机构
在卷扬机中通过棘轮机构实现制动功能,防止
链条断裂时卷筒逆转。
机械设计基础 第六章 凸轮机构
6.2.1 凸轮机构的运动循环及基本名词术语
凸轮机构的一个运动循环大 致包括:推程、远休程、回 程、近休程四个部分
术语: 基圆 偏距 近休程 近休止角 推程 推程运动角 远休程 远休止角 回程 回程运动角 行程 推杆运动规律
6.2.2 几种常用的推杆运动规律
等速运动规律:
s h / 0 h 1 / 0 a0
凸轮廓线设计步骤: (1)划分位移曲线;
(2)取长度比例尺,绘出凸轮基圆,偏心距圆;
(3)获取基圆上的等分点; (4)绘出反转过程中的导路位置线;
(5)计算推杆的预期位移;
(6)将从动件尖顶点连成光滑曲线,即为凸轮轮廓。
理论轮廓线 实际轮廓线
尖顶从动件
滚子从动件
滚子半径的选择
滚子从动件作用: 1、化滑动摩擦为滚动摩擦; 2、降低凸轮与从动件之间的局 部接触应力。
6.3.2 压力角与凸轮机构尺寸的关系
tan
OC e
PC OP OC BC BC
BC s r02 e 2
P为凸轮和从动件的速度瞬心,故:
v OP
即: OP
v
ds d
于是:
tan
ds e d s r02 e 2
增大基圆半径或设置偏置均可减小压力角,
存在速度突变,加速 度及惯性力理论上将无穷 大,称为刚性冲击。用于 低速轻载场合。
等加速等减速运动规律:
s 2h 2 / 02 4h1 / 02 2 a 4h1 / 02
s h 2h( 0 ) 2 / 02 4h1 ( 0 ) / 02 2 a 4h1 / 02
第六章凸 轮 机 构
实际轮廓曲线出现一尖点,易磨损。
③ r <rr , rc= r - rr 此时, rc < 0
产生交叉轮廓曲线,从动件运动失真。
设计时
rr≤0.8rmin 及 rr≤0.4rb
小结
一、本章重点
① 凸轮的分类及应用; ② 凸轮机构的从动件常用运动规律; ③ 平面凸轮轮廓曲线的设计; ④ 凸轮机构基本尺寸的确定。
由图中的速度三角形知
vK 2 vK1 tan a rb sK tan a
tan
a
rb
vK 2 sK
由式可知:
rb↑ → a↓; rb↓ → a↑
a vK1
vK2
a K
rb
vK21 sK
因此,为改善机构受力情况,可使基圆半径适当取
大些,以使压力角a减小。
当对机构尺寸没有严格限制时可按下式选取基圆半 径
E j ,t
加速度虽突变,但为
a
有限值,“柔性冲击”
a0 AB
a0 C D E j ,t
三、简谐运动规律
质点在圆周上作匀 速运动时,它在该圆直 径方向上的投影所构成 的运动称为简谐运动。
s
h
A BC
F v
D E j ,t
s h 1 cos j
2
F
v hw sin j
2F F
a
h 2w2
2F 2
sina
j
从上式可以看到,为改善凸轮受力情况,应使压力
角尽可能小,并且在结构允许条件下,尽可能增大导轨
长度lb和减小悬臂尺寸la。
其他条件不变,则a增加,所需推力F增大。当a增
大到使上式分母为0时,即
机械基础习题5
第六章凸轮机构一、选择题1、凸轮机构中,主动件通常作()。
A、等速转动或移动B、变速转动C、变速移动2、凸轮与从动件接触处的运动副属于()。
A、高副B、转动副C、移动副3、内燃机的配气机构采用了()机构。
A、凸轮B、铰链四杆C、齿轮4、凸轮机构中,从动件构造最简单的是()从动件。
A、平底B、滚子C、尖顶5、从动件的运动规律决定了凸轮的()。
A、轮廓曲线B、转速C、形状6、凸轮机构中,()从动件常用于高速传动。
A、滚子B、平底C、尖顶7、凸轮机构主要由()和从动件等组成。
A、曲柄B、摇杆C、凸轮8、有关凸轮机构的论述正确的是()。
A、不能用于高速启动B、从动件只能做直线运动C、凸轮机构是高副机构二、判断题1、()在凸轮机构中,凸轮为主动件。
2、()凸轮机构广泛应用于机械自动控制中。
3、()移动凸轮相对机架作直线往复移动。
4、()在一些机器中,要求机构实现某种特殊复杂的运动规律,常采用凸轮机构。
5、()根据实际需要,凸轮机构可以任意拟定从动件的运动规律。
6、()凸轮机构中,主动件通常作等速转动或移动。
三、填空题1、凸轮机构主要有和。
2、在凸轮机构中,凸轮为。
3、在凸轮机构中,按凸轮形状分类,凸轮有、和。
4、凸轮机构工作时,凸轮轮廓与从动件之间必须始终,否则,凸轮机构就不能正常工作。
第七章轴 (一)一、选择题1、自行车前轴是()。
A、固定心轴B、转动心轴C、转轴2、在机床设备中,最常用的轴是()。
A、传动轴B、转轴C、曲轴3、车床的主轴是()。
A、传动轴B、心轴C、转轴4、传动齿轮轴是()。
A、转轴B、心轴C、传动轴5、既支承回转零件,又传递动力的轴称为()。
A、心轴B、转轴C、传动轴二、判断题1、()曲轴常用于实现旋转运动与往复直线运动转换的机械中。
2、()工作时只起支承作用的轴称为传动轴。
3、()心轴在实际应用中都是固定的。
4、()转轴是在工作中既承受弯矩又传递扭矩的轴。
5、()按轴的轴线形状不同,轴可分为曲轴和直轴。
6第六章常用机构
按用途和受力情况,螺旋机构又可分为传递运动、动力和用于调整等 三种类型;按螺旋副的摩擦性质,螺旋机构可分为滑动螺旋机构、滚动螺 旋机构和静压螺旋机构三种类型。 螺旋机构具有结构简单、工作连续平 稳、传动比大、承载能力强、传递运动准确,易实现自锁等优点,故应用 广泛。
螺旋机构的缺点是摩擦损耗大、传动效率低。随着滚珠螺纹的出现, 缺点已得到很大的改善。
如图6-28所示为自行车后轮飞轮中的内啮合单向驱动棘轮机构。
图6-29是控制牛头刨床工作台进与退的棘轮机构。 图6-30所示为摩擦式棘轮机构。
二、槽轮机构
槽轮机构由带销的主动拨盘、具有径向槽的从动槽轮和机架组成。 槽轮机构的停歇时间和运动时间取决于槽轮的槽数和拨销数。 槽轮机构可分为外槽轮机构和内槽轮机构,如图6-31、图6-32。
槽轮机构结构简单,工作可靠,转位方便,能精确控制转角,但转 角大小不可调节,且有冲击,只能用于低速机构或分度机构中。如图633所示为转塔车床的刀架转位机构。
第四节 螺旋机构
螺旋机构由螺杆、螺母和机架组成(一般把螺杆和螺母之一作成机 架),其主要功用是将旋转运动变换为直线运动,并同时传递运动和动力, 是机械设备和仪器仪表中广泛应用的一种传动机构。
2.导杆机构
若将图6-9所示的曲柄滑块机构的构件作为机架,则曲柄滑块机构就 演化为导杆机构,连架杆对滑块的运动起导向作用,称为导杆,它包括转 动导杆机构和摆动导杆机构两种形式。如图6-10所示,导杆均能绕机架作 整周转动,称为转动导杆机构。如图 6-11所示,导杆4只能在某一角度内 摆动,称为摆动导杆机构。导杆机构 具有很好的传力性能,常用于插床、 牛头刨床和送料装置等机器中。
机械原理第6章 凸轮机构及其设计
优点: 1)从动件可以实现复杂运动规律。 2)结构简单、紧凑,能准确实现预期运动,运动特性好。 3)性能稳定,故障少,维护保养方便。 4)设计简单。 缺点: 凸轮与从动件为高副接触,易于磨损。由于凸轮的轮廓 曲线通常都比较复杂,因而加工比较困难。
2.凸轮机构的分类
盘形凸轮(图6-1)
(1)按凸轮的e and follo wer displacement(凸轮转角 与从动件的位移)
Fig.6-10 Motion of the follower(凸轮机构运动循环图)
6.2 从动件的运动规律及其设计
1.从动件的基本运动规律
(1)多项式类运动规律
1)一次多项式运动规律。
移动凸轮(图6-2)
圆柱凸轮(图6-3) 尖底从动件
(2)按从动件的形状分类
(图6-4)
滚子从动件
平底从动件
曲底从动件
(3)按从动件的运动形式分类
(图6-4、图6-5)
直动从动件 摆动从动件 力封闭方式(图6-6) 形封闭方式(图6-7)
(4)按凸轮与从动件维持高副接触的方式分类
Fig.6-2 Translating cam mechanisms(移动凸轮机构)
1.凸轮机构的相对运动原理
如图6-19a所示,在直动尖底从动件盘形凸轮机构中,当凸轮 以等角速度ω作逆时针方向转动时,从动件作往复直线移动。设 想给整个凸轮机构加上一个绕凸轮回转中心O的反向转动,使反 转角速度等于凸轮的角速度,即反转角速度为-ω。此时,凸轮 将静止不动,而从动件一方面随导路绕O点以角速度-ω转动,分 别占据B′1、B′2,同时又沿其导路方向作相对移动,分别占据B1、 B2等位置。因此,从动件尖底导路的反转和从动件相对导路移动 的复合运动轨迹,便形成了凸轮的轮廓曲线,这就是凸轮机构的 相对运动原理,也称反转法原理
第6章 凸轮机构 (教案)
第6章 凸轮机构1.教学目标(1)了解凸轮机构的分类及应用;(2)了解推杆常用运动规律的选择原则;(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。
2.教学重点和难点(1)推杆常用运动规律特点及选择原则;(2)盘形凸轮机构凸轮轮廓曲线的设计;(3)凸轮基圆半径与压力角及自锁的关系。
难点:“反转法原理”与压力角的概念。
3.讲授方法多媒体课件4.讲授时数8学时6.1 凸轮机构的应用及分类6.1.1凸轮机构的应用凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。
其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。
从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。
在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构。
下面我们先看两个凸轮使用的实例。
图6.1所示为内燃机的配气凸轮机构,凸轮1作等速回转,其轮廓将迫使推杆2作往复摆动,从而使气门3开启和关闭(关闭时借助于弹簧4的作用来实现的),以控制可燃物质进入气缸或废气的排出。
图6.2所示为自动机床中用来控制刀具进给运动的凸轮机构。
刀具的一个进给运动循环包括:1)刀具以较快的速度接近工件;2)刀具等速前进来切削工件;3)完成切削动作后,刀具快速退回;4)刀具复位后停留一段时间等待更换工件等动作。
然后重复上述运动循环。
这样一个复杂的运动规律是由一个作等速回转运动的圆柱凸轮通过摆动从动件来控制实现的。
其运动规律完全取决于凸轮凹槽曲线形状。
由上述例子可以看出,从动件的运动规律是由凸轮轮廓曲线决定的,只要凸轮轮廓设计得当,就可以使从动件实现任意给定的运动规律。
同时,凸轮机构的从动件是在凸轮控制下,按预定的运动规律运动的。
这种机构具有结构简单、运动可靠等优点。
但是,由于是高副机构接触应力较大,易于磨损,因此,多用于小载荷的控制或调节机构中。
6.1.2 凸轮机构的分类根据凸轮及从动件的形状和运动形式的不同,凸轮机构的分类方法有以下四种:1.按凸轮的形状分类(1)盘形凸轮:如图6.1所示,这种凸轮是一个具有变化向径的盘形构件,当他绕固定轴转动时,可推动从动件在垂直于凸轮轴的平面内运动。
机械基础凸轮机构教案
机械基础凸轮机构教案第一章:凸轮机构概述教学目标:1. 了解凸轮机构的定义、分类和应用。
2. 掌握凸轮的形状、尺寸和运动特性的基本知识。
教学内容:1. 凸轮机构的定义和分类。
2. 凸轮的形状和尺寸。
3. 凸轮的运动特性和曲线。
4. 凸轮机构在实际应用中的例子。
教学方法:1. 采用多媒体课件进行讲解。
2. 展示凸轮机构的实物模型或图片。
3. 分析凸轮的运动特性和曲线。
教学活动:1. 引入凸轮机构的定义和分类。
2. 展示凸轮的形状和尺寸的图片。
3. 分析凸轮的运动特性和曲线。
4. 举例说明凸轮机构在实际应用中的例子。
作业与练习:1. 复习凸轮机构的定义和分类。
2. 练习分析凸轮的形状和尺寸。
3. 练习分析凸轮的运动特性和曲线。
第二章:凸轮的设计与制造教学目标:1. 掌握凸轮的设计原则和方法。
2. 了解凸轮制造的工艺和设备。
教学内容:1. 凸轮的设计原则和方法。
2. 凸轮制造的工艺和设备。
教学方法:1. 采用多媒体课件进行讲解。
2. 展示凸轮设计的实例。
3. 分析凸轮制造的工艺和设备。
教学活动:1. 介绍凸轮的设计原则和方法。
2. 展示凸轮设计的实例。
3. 分析凸轮制造的工艺和设备。
作业与练习:1. 复习凸轮的设计原则和方法。
2. 练习分析凸轮制造的工艺和设备。
第三章:凸轮机构的工作原理与分析教学目标:1. 掌握凸轮机构的工作原理。
2. 学会分析凸轮机构的运动特性和性能。
教学内容:1. 凸轮机构的工作原理。
2. 凸轮机构的运动特性和性能分析。
教学方法:1. 采用多媒体课件进行讲解。
2. 演示凸轮机构的运动。
3. 分析凸轮机构的运动特性和性能。
教学活动:1. 介绍凸轮机构的工作原理。
2. 演示凸轮机构的运动。
3. 分析凸轮机构的运动特性和性能。
作业与练习:1. 复习凸轮机构的工作原理。
2. 练习分析凸轮机构的运动特性和性能。
第四章:凸轮机构的应用与实例教学目标:1. 了解凸轮机构在实际应用中的例子。
2. 学会分析凸轮机构的优缺点和适用场合。
机械设计基础习题含答案
《机械设计基础课程》习题第1章机械设计基础概论1-1 试举例说明机器、机构和机械有何不同?1-2 试举例说明何谓零件、部件及标准件?1-3 机械设计过程通常分为几个阶段?各阶段的主要内容是什么?1-4 常见的零件失效形式有哪些?1-5 什么是疲劳点蚀?影响疲劳强度的主要因素有哪些?1-6 什么是磨损?分为哪些类型?1-7 什么是零件的工作能力?零件的计算准则是如何得出的?1-8 选择零件材料时,应考虑那些原则?1-9 指出下列材料牌号的含义及主要用途:Q275 、40Mn 、40Cr 、45 、ZG310-570 、QT600-3。
第2章现代设计方法简介2-1 简述三维CAD系统的特点。
2-2 试写出优化设计数学模型的一般表达式并说明其含义。
2-3 简述求解优化问题的数值迭代法的基本思想。
2-4 优化设计的一般过程是什么?2-5 机械设计中常用的优化方法有哪些?2-6 常规设计方法与可靠性设计方法有何不同?2-7 常用的可靠性尺度有那些?2-8 简述有限元法的基本原理。
2-9 机械创新设计的特点是什么?2-10 简述机械创新设计与常规设计的关系。
第3章平面机构的组成和运动简图3-1 举实例说明零件与构件之间的区别和联系。
3-2 平面机构具有确定运动的条件是什么?3-3 运动副分为哪几类?它在机构中起何作用?3-4 计算自由度时需注意那些事项?3-5 机构运动简图有何用途?怎样绘制机构运动简图?3-6 绘制图示提升式水泵机构的运动简图,并计算机构的自由度。
3-7 试绘制图示缝纫机引线机构的运动简图,并计算机构的自由度。
3-8 试绘制图示冲床刀架机构的运动简图,并计算机构的自由度。
3-9 试判断图a、b、c所示各构件系统是否为机构。
若是,判定它们的运动是否确定(图中标有箭头的构件为原动件)。
3-10 计算图a、b、c、d、e、f所示各机构的自由度,如有复合铰链、局部自由度、或虚约束请指出。
并判定它们的运动是否确定(图中标有箭头的构件为原动件)。
第六章凸轮典型例题
(4)从动件在F点接触时为最大位移, 即行程为h,此时αF=0。
例2 图(a)所示对心直动尖底从动件偏心圆盘凸轮机构,O为凸轮几何中心, O1为凸轮转动中心,直线AC⊥BD,O1O=OA/2,圆盘半径R=OA=60mm。(1) 根据图(a)及上述条件确定基圆半径r0,行程h, C点压力角αC和D点接触时的 压力角αD,位移hD;(2)若偏心圆盘凸轮几何尺寸不变,仅将从动件由尖底改 为滚子,见图(b),滚子半径rr=10mm。试问,上述参数r0,h,αc,和hD,αD是 否改变?对于有改变的参数试分析其增大还是减小?
机械原理典型例题(第四章) ——凸轮机构
例1 图示偏心圆盘凸轮机构中,已知圆盘凸轮以ω=2rad/s转动,转向为顺时针 方向,圆盘半径R=50mm;当凸轮由图示位置转过90°时,从动件的速度为 ν=50mm/s。试求:(1)偏心圆盘凸轮的偏心距e;(2)凸轮转过90°时,凸 轮机构的压力角αk ;(3)凸轮转过90°时,从动件的位移hk;(4)从动件的 行程h。
1.选择题
(4) 若直动从动件盘形凸轮机构采用正配置,可____A___压力角。
A. 降低推程 B. 降低回程
C. 同时降低推程和回程
(5) 对于滚子从动件盘形凸轮机构,滚子半径___A___理论轮廓曲线 外凸部分的最小曲率半径。 A. 必须小于 B. 必须大于 C. 可以等于
(6) 在设计几何锁合式凸轮机构时,___B____。 A. 只要控制推程最大压力角 B. 要同时控制推程和回程最大压力角 C. 只要控制回程最大压力角
2.正误判断题
(8)本章介绍的圆柱凸轮轮廓曲线按展开在平面上进行设计的 方法,无论对于摆动从动件还是直动从动件,这种设计方法 均是近似的。 X
机械设计基础课件 第六章 凸轮机构
凸轮机构基本尺寸的确定
一、压力角 从动件,F与V所夹锐角 αmax≤[α] 直动推杆[α] =30° 二、基圆半径r0和α成反比 α ↑ → r0 ↓ α ↓ → r0 ↑ 三、滚子半径rR 外凸凸轮ρ0= ρ-rR 内凹凸轮ρ0= ρ+rR (1)ρ实=0,则出现尖点,磨损严重 (2)ρ实﹤0,则出现运动失真 经验公式rR=(0.1-0.5)r0
与理论轮廓曲线相交的近点,O到近
点距离为半径画圆,为基圆
3.S:连接滚子中心和O,理论轮廓曲
线到基圆的距离
4. α:力与速度的夹角
S
(法向线)与(滚子中心与回转中
心连线)
这点与几何中心连线,
这点与转动中心连线,
δ
这两条线的夹角
OA
5. δ:最低位置到图示位置,沿-ω的 转角
已知凸轮机构,(1)Smax(2)D点处的δ,α,S
导路和偏心圆相切
3. Smax OA反向延长线与理论轮廓曲线 的交点处
凸轮机构小结:
1.推杆的运动规律 等速运动规律(刚性冲击)起点,终点
等加速等减速运动规律(柔性冲击)起点中间点终点
余弦加速度运动规律(柔性冲击)起点,终点
正弦加速度运动规律(最理想)
2.基圆半径r0和α成反比 α ↑ → r0 ↓ α ↓ → r0 ↑ 3.出现尖点,运动失真是所采取的办法: 增大基圆半径 减小滚子半径
对心尖底直动从动件盘状凸轮机构 轮廓设计 (1)分角度(在偏心圆分角度) (2)做导路 (3)取位移 (4)连线
这章大概谁都会有一个大作业, 应该是设计一个 偏心滚子直动从动件盘状凸轮机构
先根据运动规律计算距离( 公式在书上查,但是我的这 版书上,有一个公式打印的 是错的),推程,远休止段, 回程,近休止段的s,(右边 这个图就能画出来了) 先画基圆,基圆半径是已知 从OA开始分角度,大概10° 一份, 根据对应的角度,量取对应 的s值,描点,s是基圆到轮廓 的距离到这,就把1’,2’,3’。。 都确定出来了 最后把所有的点连起来就行了, 完工
凸轮机构的工作原理及作用
凸轮机构的工作原理及作用
凸轮机构是一种由凸轮、从动件和机架组成的高副机构,主要用于转换运动形式。
其工作原理主要基于凸轮的旋转或直线运动来驱动从动件进行预定的运动。
凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。
凸轮机构常用于将主动构件的连续运动转变为从动构件的往复运动。
只要恰当的设计凸轮廓线,便可使从动构件实现各种复杂的运动要求。
例如,凸轮轴是发动机配气机构的重要组成部分,负责驱动气门按时开启和关闭,有些凸轮轴还具有驱动分电器转动的功能。
此外,凸轮机构也广泛应用于各种机械、仪器和操纵控制装置中。
凸轮机构
二凸轮机构的分类 : 1.按凸轮的形状分类
(1)盘形凸轮 通过径向尺寸的变化构成曲线廓线。结构简单,易于加工,在工程中应用广泛。
(2)移动凸轮 呈板状,相对机架作往复直线移动,并通过其曲线轮廓推动从动件2 实现预期的上下往复移 动。它可视为盘形凸轮的回转轴心处于无穷远处时演化而成。
盘形凸轮和移动凸轮与从动件产生的相对运动为平面运动,故统称为平面凸轮机构。
组合型运动规律是分段函数。在各段的连接点处,需建立邻接条件,以保证各分段函数在连接点处具有相同的 位移、速度、加速度(甚至更高阶的导数)。构造组合型运动规律的难点在于:选取什么样的分段函数,才能 使设计出的运动规律具有良好的综合指标。
图a)所示修正正弦运动规律。在运动起始 的AB段和终止的CD段,采用周期相同的正弦 函数;在两段中间的BC段则采用一段周期较长 的简谐函数。该组合运动规律具有较好的综合 动力特性指标。 图b)所示修正梯形运动规律。它可视为对 等加速等减速运动规律的改进。为了避免加速 度的突变,用几段简谐函数使加速度成为连续 曲线。加速段和减速段的加速度曲线是对称的。 这两种组合运动规律均具有较好的综合特 性指标,因此广泛应用于各种中、高速分度凸 轮机构的凸轮曲线设计。
在前面介绍的各种形式的凸轮机构中,都是将凸轮作为主动件,推动从动件实现预期 的运动。在工程实际中也有将凸轮作为从动件的,这种凸轮机构称为反凸轮机构。
第二节 从动件的运动规律
一.凸轮机构的基本概念
图7-9 从动件运动示意图(a)凸轮机构 (b)从动件位移
1.从动件的运动规律 从动件的运动规律是指在凸轮廓线的推动下,从动件的位 移、速度、加速度、跃度(加速度对时间的导数)随时间变化的规律,常以图线表 示,又称为从动件运动曲线。 2.凸轮的基圆 盘形凸轮廓线的径向尺寸是在以半径r0为圆的基础上变化而形成 曲线轮廓的。显然r0为盘形凸轮的最小半径,我们将凸轮上具有最小半径r0的圆称 为凸轮的基圆,r0称为基圆半径。 3.推程与推程角B0B1当凸轮廓线上的曲线段 与从动件接触时,推动从动件沿 导路由起始位置B0运动到离凸轮轴心最远的位置B'。从动件的这一运动行程称为 推程。此过程对应凸轮所转过的角度称为推程角Φ,从动件沿导路移动的最大位移 称为升距h。 4.远休止与远休止角 当凸轮廓线上对应的圆弧段B1B2与从动件接触时,从动 件在距凸轮轴心的最远处B'静止不动。这一过程称为远休止,此过程对应凸轮所 转过的角度称为远休止角Φs。 5.回程与回程角 当凸轮廓线上的曲线段B2B3与从动件接触时,引导从动件由 最远位置返回到位移的起始位置B3(B0)。从动件的这一运动行程称回程,此过程对 应凸轮所转过的角度称为回程角Φ'。 6.近休止与近休止角 当凸轮廓线上对应的圆弧段B3B0与从动件接触时,从动 件处于位移的起始位置B0,静止不动,这一过程称为近休止。此过程对应凸轮所转 过的角度称为近休止角Φs。
汽车机械基础课件第6章汽车常用机构
4、铰链四杆机构的应用实例1
1、分析缝纫机运动形式,说明其平面连杆机构 的形式。
2、分析汽车刮水器的机构形式及工作过程。
3、分析起重机的机构形式及工作过程。
三、曲柄滑块机构
1、组成 曲柄滑块机构由滑块、连杆、曲柄和机架四个构件 通过转动副和移动副连接而成。
2、运动形式的转换
当滑块为主动件时 ,机构将滑块的往 复移动转变为曲柄 的旋转运动;
用rmin表示。 (2)推程:推程运动角δt;
(3)远休止、远休止角δs; (4)回程、回程运动角δh; (5)近休止、近休止角δs ˊ ; (6)行程:从动件在推程或回程中移动的距离,用 h
表示。
2、凸轮机构从动件的常用运动规律
(1)等速运动规律:等速运动规律的特点是当凸轮 等速回转时,从动件推程或回程中的速度为常数。
6.2 平面连杆机构
1、什么是机构? 2、说明下列运动副的类型?
一、平面连杆机构
若干刚性构件通过低副(转动副和移动副) 联接而成的机构,是一种低副机构。
二、铰链四杆机构 1、定义
由四个构件通过转动副连接而成的平面 连杆机构。 2、组成
3、铰链四杆机构的基本形式 曲柄摇杆机构
双曲柄机构
机架
永久联接与转动副
齿轮与轴的固定联接
移动副
移动副
直齿圆柱轮机构(外啮合)
外啮合
内啮合
内啮合
二、机构运动简图
用国标规定的简单符号和线 条代表运动副和构件,并按 比例定出各运动副的位置, 说明机构各构件间相对运动 关系的简化图形,称为机构 运动简图。
不严格按比例来绘制简 图,这样的简图通常称为机 构示意图。
讨论:机构 存在急回特 性的条件?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用的凸轮材料 在轻载时,可用HT28-48或HT24-44灰铸铁; 中载或较大载荷时,可用50钢或40Cr,工作表面经高频淬火
到HRC52-58,或用15钢、20Cr、20CrMn渗碳淬火,渗碳层深度 为0.5—1.5(mm),视凸轮尺寸大小而定,然后淬火到HRC56—62;
重载时,可用40Cr先整体淬火到HRC30~40,再将工作表面 经高频淬火到HRC56~62。或用GCr-15钢,淬火到HRC59~63。
第六章 凸轮机构
§6∼1 凸轮机构的应用及其分类
一、凸轮机构的应用
1、凸轮机构: 凸轮是一个具有曲线轮廓
的构件。 含有凸轮的机构称为凸轮
机构。它由凸轮、从动件和机 架组成。
2、凸轮机构的应用 内燃机配气凸轮机构
凸轮机构的优点:
只需确定适当的凸轮轮廓曲线,即可实现从动件复杂的运 动规律; 结构简单,运动可靠。
1、对于中、低速运动的 凸轮机构,要求从动件的 位移曲线在衔接 处相切,以保证速度曲线的连续。
2、对于中、高速运动的凸轮机构,则还要求从动件的 速度曲线在 衔接处相切,以保证加速度曲线的连续。 五、从动件运动规律设计要点: 1、从动件的最大速度vmax要尽量小; 2、从动件的最大加速度amax要尽量小; 3、从动件的最大跃动度jmax要尽量小。
应有利于减小从动件工作行程时的最大压力角。为此应使从动 件在工作行程中,点C和点P位于凸轮回转中心O的同侧,此时凸轮 上C点的线速度指向与从动件工作行程的线速度指向相同。 偏距不宜取得太大,一般可近似取为:
e
=
1 Vmax − Vmin
2
ω 1
<
rb
三、凸轮基圆半径的确定
加大基圆半径,可减小压力角,有利于传力 。 设计时,机构受力较大,对其尺寸又没有严格的限制,可根
形锁合的凸轮机构
靠凸轮封闭几何形状 使凸轮与从动件接触
沟槽凸轮机构
等宽凸轮机构 等径凸轮机构
四)、根据从动件的运动形式分类
移动从动件凸轮机构 摆动从动件凸轮机构
§6―2 从动件常用运动规律
运动循环的类型
S(ψ)
S(ψ)
φ
φ
升—停—回—停型
升—回—停型
S(ψ)
S(ψ)
φ
φ
升—停—回型
升—回型
从动件的运动规律的数学方程式
rB 2
−
e2
+
⎤ ⎥ s⎥⎦
B点相对于B1点转了-φ角度
平面旋转矩阵:
[R]
=
⎡cos(−φ) ⎢⎣ sin(−φ)
⎡ ⎢⎣
xB yB
⎤ ⎥⎦
=
[R].⎢⎣⎡
xB1 yB1
⎤ ⎥⎦
− sin(−φ)⎤ cos(−φ) ⎥⎦
=
⎡ cos φ ⎢⎣− sin φ
sin φ⎤ cos φ⎥⎦
⎡ xB
⎢ ⎣
⎤
⎥ φ⎥⎦
注意: 1) 若从动件导路相对于凸轮回转中心的偏置方向与x方向同向, 则e>0, 反之e<0。 2)若凸轮逆时针方向转动,则ϕ>0,反之ϕ <0。
教材上是用极坐标系求解,可自己看。
瞬心:互作平面相对运动的两构件上在任一瞬时其 相对速度为零的重合点,即作平面相对运动的两构 件上在任一瞬时其绝对速度相等的重合点。
缺点: 从动件与凸轮接触应力大,易磨损
用途: 载荷较小的运动控制
二、凸轮机构的分类 一)按凸轮的形状分类
盘形凸轮
移动凸轮
二)按从动件上高副元素的几何形状分类
圆柱凸轮
圆锥凸轮
尖顶从动件 对心放置
滚子从动件 偏心放置
平底从动件
1
三)、按凸轮与从动件的锁合方式分类 力锁合的凸轮机构 用弹簧,重力保持凸轮与从动件接触 。
相对速度必定沿接 触点t-t切线方向
P12
P12
高副瞬心在接触点的公法线上
§6–4 盘形凸轮机构基本尺寸的确定 一、凸轮机构的压力角
对心凸轮机构 e=0
α ↑→ 正压压F ↑→ 摩擦力f ↑→自锁
工作行程: [α] ≤ 30° ~ 45° 回 程: [α] ≤ 70° ~ 80°
rb S0
二、偏距e的大小和偏置方位的选择原则
据实际轮廓的结构和强度确定基圆半径rb,然后校核压力角。
4
四、滚子半径的确定
§6-5 空间凸轮机构设计
rr ≤ ρmin
rr = ρmin
一般,设计时满足下式:
rr ≤ 0.8ρmin rr ≤ 0.4rb
rr ≥ ρmin
§6-6凸轮机构的结构设计(了解)
一、凸轮的结构及其与轴的联接
根据凸轮的使用要求、尺寸大小、加工工艺及调整和更换的方 便性等,凸轮结构可做成整体式或组合式的。
滚子材料可用20Cr,渗碳深度为0.8~1.2(mm),淬火到 HRC55~60,或用GCrl5钢,淬火到HRC59~63,也可用工具钢 T8A,淬火到HRC55~60。轻载,低速的凸轮机构,可用尼龙作 滚子材料。
滚子心轴材料可用20Cr,渗碳,深度为0.8~1.2(mm),淬 火到HRC56~62,也可用45钢,淬火到HRC42~45。
§6‐3 根据预定运动规律设计盘形凸轮轮廓曲线
一、图解法设计盘形凸轮机构 1.移动从动件盘形凸轮机构 轮轮廓曲线设计的基本原理(反转法)
设计步骤: 1.等分位移线图横坐标,得φ1,φ2…. ; s1,s2…; 2.以O为圆心,以rb为半径作基圆,以e为半径作偏距圆;
滚子从动件凸轮轮廓曲线设计
3.作从动件中心线与e圆相切;
a=0
⎪
⎪⎭
特点:两端→∞, 称刚性冲击
2
二、等加等减速运动规律
s
=
2h φ2
φ
2
v
=
4hω φ2 φ
⎫
⎪ ⎪ ⎪ ⎬ ⎪
a
=
a0
=
4hω2 φ2
⎪ ⎪⎭
等加速段 (AB段)
s v
= =
h4φ−hω2φ2(h2(φφ- φ- φ))2 ⎪⎪⎪⎪⎬⎫
等减速段 (BC段)
a
=
−a0
=
−
4hω2 φ2
⎪ ⎪⎭
yB
⎤ ⎥ ⎦
=
[R].⎢⎡
⎣
xB1 ⎤
yB1
⎥ ⎦
=
⎡ cosφ ⎢⎣− sin φ
sin φ⎤ ⎡e
⎤
cos φ⎥⎦.⎢⎢⎣
⎥ rB2 − e2 + s⎥⎦
⎡ xB ⎢⎣ yB
⎤ ⎥⎦
=
⎢⎡e cosφ + ( ⎢⎣− e sin φ +
(
rB2 − e2 + s) sin φ rB2 − e2 + s) cos
特点:在ABC点加速度突变,称柔性冲击
三、简谐运动规律
s
=
1 2
(1
−
π cosφφ)
v = hπ2φωsinφπφ
⎫
⎪ ⎪ ⎪ ⎬ ⎪
a
=
hπ2ω2 2φ2
π⎪ cosφφ⎪⎭
特点:当作连续的升→降 →升往复运动时,才可获 得连续的加速度曲线,无 冲击。适用于高速传动。
四、组合运动规律简介
运动规律组合应遵循的原则:
4.沿 -ω等分e圆,作一系列中 心线与e圆相切;
5.在对应中心线量取s1,s2…作 点; 6.用光滑曲线连接各点。
3
2. 摆动从动件盘形凸轮机构 (反转法)
二、解析法设计盘形凸轮机构 尖顶移动从动件盘形凸轮机构
建立平面直角坐标系xoy
⎡xB1 ⎤ ⎢⎣ yB1⎥⎦
=
⎡e ⎢⎣s0
+
⎤ s⎥⎦
=
⎡e ⎢ ⎢⎣
位移 速度 加速度 跃动度
S = f (φ) v = ds = ds dφ =ω ds
dt dφ dt dφ
类速度 类加速度
a = dv = dv dφ =ω2 d 2s
dt dφ dt
dφ2
类跃动度
j
=
da dt
=
da dφ
dφ dt
=ω3
d 3s dφ3
一、等速运动规律
s = φh φ
⎫ ⎪
⎪
v = v0 = φhω⎪⎪⎬
凸轮与滚子的表面粗糙度为Ra0.63~0.08(µm),高精度和 高速凸轮机构的表面粗糙度应键槽应开在凸轮向径最大的方位
二、凸轮机构的材料及其热处理 对凸轮和推杆材料的要求中最重要的是高硬度,耐磨损。此
外,还要求有足够的强度,抗腐蚀、摩擦小,便于加工。推杆与 凸轮轮廓的接触部位小,磨损较大,但形状比凸轮简单,磨损后 更换时比更换凸轮简便而经济,故一般应使推杆底部的硬度略低 于凸轮的硬度。