小学五年级数学下册正方体表面积计算_题型归纳
人教版数学五年级下册长方体和正方体的表面积课后练习精选(含答案)5
人教版数学五年级下册长方体和正方体的表面积课后练习精选(含答案)5学校:___________姓名:___________班级:___________考号:___________一、选择题1.下面的图形中,不能折成正方体的是( )。
A.B.C.【答案】A2.把一个长方体切成两个长方体,增加的表面积最大的是( )A.B.C.【答案】B3.棱长是4cm的三个正方体拼成一个长方体,底面积最大是()cm2。
A.48 B.64 C.12 D.16【答案】A4.从8个小正方体拼成的大正方体中拿走一个小正方体,表面积().A.变大了B.不变C.变小了【答案】B5.如下图:正方体()不是下面图形折成的。
A.B.C.D.【答案】A6.把长是6cm,宽和高都是2cm的长方体木块切成3个完全相同的小正方体木块,小正方体木块的表面积之和比原来长方体木块的表面积增加了()cm2。
A.4 B.8 C.12 D.16【答案】D7.计算下列物体的表面积:(1)(2)【答案】(1)286平方厘米;(3)864平方厘米8.一个棱长2厘米的正方体切成两个长方体,表面积增加了()平方厘米。
A.4 B.6 C.8【答案】C9.将一个长宽高分别为21厘米、15厘米和9厘米的长方体“切成”完全相同的三个小长方体后,表面积的和比原来长方体的表面积最多增加( )平方厘米。
A.1260 B.540 C.2400 D.639【答案】A10.在一个棱长为1分米的正方体的8个角上,各锯下一个棱长为1厘米的正方体,现在它的表面积和原来比()A.不变B.减少C.增加D.无法确定【答案】A11.下列图形中,()不能折成一个正方体。
A.B.C.【答案】C12.一小瓶啤酒是250ml,要装满一桶2升的啤酒桶,需要这样的小瓶()瓶.A.4 B.8 C.16【答案】B13.一个正方体展开有6个面。
图①给出了其中5个面,最后一个面应该在图②的()位置。
A.AB.BC.CD.D【答案】D14.把3个棱长为1cm的小正方体搭成如下图的组合体,表面积比原来3个小正方体的表面积之和减少了()cm2。
小学数学五年级下册长方体、正方体表面积1专项练习
一、填空(36分)1.长方体有()个面,()条棱,()个顶点。
相对的棱的长度(),相对的面完全()。
2. 一个长方体的棱长之和是104厘米,长7厘米,宽9厘米,高()厘米。
3. 一个长方体的长是15厘米,宽是12厘米,高是8厘米,这个长方体的表面积是()平方厘米。
4、一个正方体的棱长是12分米,它的棱长总和是(),表面积是()。
5、用60厘米长的铁丝焊接成一个正方体的框架,这个正方体的表面积是()平方厘米。
6、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。
7、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米。
8、一个长方体的长是1米4分米,宽是5分米,高是5分米,这个长方体有()个面是正方形,每个面的面积是()平方分米;其余四个面是长方形的面积大小(),每个面的面积是()平方分米;这个长方体的表面积是()平方分米。
9、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。
10、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。
11.一个长方体灯笼框架的长、宽、高分别是40cm、30cm、30cm,制作这样一个框架需要()米木条。
12.把3个棱长1厘米的正方体拼成长为3厘米的一个长方体,它的表面积为()。
13.把4个棱长2厘米的正方体拼成一个长方体,它的表面积是()或()。
14.一个长方体的长是8分米,宽6分米,高4分米,把它切成两个小长方体,这两个小长方体的表面积和最大是()。
15.一个长方体,长4米,宽3米,高2米,占地面积最大是()。
16.把一个表面积为24平方分米的正方体平均分为两个长方体,表面积增加了()。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
五年级数学下册各单元知识点归纳(3-4单元新人教版)
五年级数学下册各单元知识点归纳(3-4单元新人教版) 2022五年级数学下册各单元知识点归纳(3-4单元新人教版)2022五年级数学下册各单元知识点归纳(3-4单元新人教版)第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方体6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)某4=长某4+宽某4+高某4L=(a+b+h)某4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长某12L=a某12正方体的棱长=棱长总和÷12a=L÷124、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长某宽+长某高+宽某高)某2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长某宽+(长某高+宽某高)某2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长某高+宽某高)某2S=2(ah+bh)贴墙纸正方体的表面积=棱长某棱长某6S=a某a某6用字母表示:S=6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有个面水管、烟囱等都只有4个面。
五年级下学期数学 长方体和正方体的表面积 应用题专项训练带答案
9、如果把一个正方体木块一刀切成两个长方体后表面积增加了60平 方厘米,那么这个木块的表面积是多少平方厘米?
一个正方体一刀切成两个长方体后,增加了两个面 每个面的面积:60 ÷ 2 = 30(平方厘米) 原正方体的表面积:6 × 30 = 180(平方厘米)
10、下面是一个长方体纸盒的展开图,原来这个纸盒的表面积是多 少?
高:(72 – 9 × 4 – 6 × 4) ÷ 4 = 3(厘米) 表面积:2 × (9 × 6 + 9 × 3 + 6 × 3) = 198(平方厘米)
14、好好的爸爸想制作一种长 20 厘米、宽 15 厘米、高 10 厘米的长 方体无盖玻璃鱼缸,165 张 2 平方分米的玻璃板最多可以做多少个 这样的鱼缸?(接口处的用料忽略不计。)
棱长:84 ÷ 12 = 7(厘米) 表面积:6 × 7 × 7 = 294(平方厘米)
5、小高老师要做一个长1.2米、宽45厘米、高1.5米的陈列箱,陈列 箱除了正面用玻璃,其余各面都用木板。小高老师需要准备多少平 方米木板?
正面 = 长 × 高 少了一个正面后的表面积: 1.2 × 1.5 + 2 × (1.2 × 0.45 + 0.45 × 1.5) = 4.23(平方米)
3、将一根长72厘米的铁丝焊接成一个长9厘米、宽3厘米的长方体框 架,这个长方体框架的表面积是多少平方厘米?
高:[72 – 4 × (9 + 3)] ÷ 4 = 6(厘米) 表面积:2 × (9 × 3 + 6 × 3 + 6 × 9) = 198(平方厘米)
4、将一根长84厘米的铁丝焊接成一个正方体框架,这个正方体框架 的表面积是多少平方厘米?
18、从一个棱长为10厘米的正方体的上面竖直向下挖一个长方体的 洞,洞的底面为边长是5厘米的正方形,求这个空心正方体的表面积
2019五年级下册数学专项训练长方体和正方体的表面积例题解析_人教新课标精品教育.doc
表面积本讲主要讲授长方体和正方体的表面积的计算。
通过对本讲内容的学习,使学生掌握以下知识和技能:1、理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法。
2、培养抽象概括能力、推理能力和思维的灵活性,发展空间观念。
长方体和正方体的表面积定义:长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积(有六个面)=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2(因为长方体相对的面完全相同)正方体的表面积(有六个面)=棱长×棱长×6(因为正方体的六个面完全相同)在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有上面和底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体或正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体或正方体物品:水池、鱼缸等;(3)具有四个面的长方体或正方体物品:水管、烟囱等。
【试题来源】【题目】1.长方体或正方体,叫做它的表面积。
2.用字母a、b、c分别表示长方体的长、宽、高,S表示表面积,那么S=。
3.正方体6个面的面积都。
【答案】1.6个面的总面积;2.2(ab+ac+bc);3.相等【解析】长方体和正方体的表面积的相关概念。
【知识点】表面积【适用场合】当堂例题【难度系数】1【试题来源】【题目】1.用字母a表示正方体的棱长,S表示面积,S=。
2.一个长方体硬纸盒,长12cm,宽6cm,高3cm,作一个这样的纸盒需要平方厘米硬纸板。
【答案】1.6a2;2.252【解析】1.正方体的表面积公式。
五年级数学下册《长方体和正方体表面积》练习题及答案解析
五年级数学下册《长方体和正方体表面积》练习题及答案解析学校:___________姓名:___________班级:______________一、填空题1.制作一个长8厘米,宽12厘米,高5厘米的长方体框架,需要________cm的铁丝。
2.一个长方体的棱长总和是80cm,其中长是10cm,宽是7cm,高是( )cm。
3.一个大正方体表面涂上颜色,然后把它切割成完全一样的125个小正方体,此时三面涂色的小正方体有( )个。
4.一根铁丝如果做成一个正方体框架模型,棱长8厘米,如果改做成一个长10厘米,宽9厘米的长方体框架模型,高是( )厘米。
5.用一根长3.6米的铁丝刚好围成一个正方体的框架,它的表面积是( )平方分米,体积是( )立方分米。
6.一个长方体的长是1米4分米,宽是5分米,高是5分米。
这个长方体有______个面是正方形,正面、下面和侧面的面积分别是______平方分米、______平方分米、______平方分米。
7.长方体有( )条棱,每相对的( )条棱长度相等;若把相交于一点的长、宽、高看作一组,这些棱可以分为这样的( )组,所以长方体的棱长总和=( );若按长、宽、高来分,这些棱可以分为( )组,所以长方体的棱长总和还可以=( )。
8.用一根长60dm的铁条,焊成一个长6dm,宽5dm的长方体框架,长方体框架的高是( )dm。
给这个框架焊上铁皮做成一个长方体铁皮箱,需铁皮( )dm2。
9.把三个棱长2dm的正方体拼成一个长方体,表面积会减少( )cm2,这个长方体的棱长总和是( )cm。
10.一个棱长总和是96cm的正方体,它的表面积是( )cm2。
11.将长20厘米,宽15厘米、高5厘米这样两个完全一样的长方体礼品盒包装成一包,至少需要( )包装纸。
(接口处忽略不计)12.两个正方体的棱长比是5∶3,棱长总和比是( ),表面积比是( ),体积比是( )。
二、解答题13.求图的体积.14.一个长方体铁皮油箱,长3分米,宽2.5分米,高40厘米。
人教版小学五年级数学下册长方体和正方体表面积和体积 解决问题专项训练试题(含答案)
人教版五年级数学下册长方体和正方体表面积和体积解决问题专项训练(50道含答案)1.学校活动室长15米,宽8米,高5米,门窗面积共24平方米。
要把活动室的天花板和四周的墙刷上涂料,一共要刷多少平方米?2.一种无盖的长方体水箱,长2.5dm,宽2.5dm,高3.5dm,制作一个这样的水箱,至少需要白铁皮多少平方分米?3.如图,这是一个铝合金框组成的鱼缸,侧面的每个面都是正方形,且边长为25厘米。
这个鱼缸的侧面准备全用玻璃,那么玻璃的总面积和铝合金框的总长度各是多少?4.如图,求这个正方体的表面积.5.爸爸买了一个长为30cm、宽为20cm、高为15cm的长方体礼盒,里面装有妈妈爱吃的长方体形状的花生酥,每块花生酥长5cm,宽3cm,高2cm。
(1)礼盒用彩纸包装,需要多少彩纸?(重叠部分不计算)(2)这个礼盒最多能装多少块花生酥?6.纸盒厂生产一种正方体纸板箱,棱长为40cm,做一个纸盒要多少平方厘米的纸板?它占空间多少立方厘米?合多少立方分米?7.有一个长8厘米,宽6厘米,高5厘米的长方体零件,在每个面的正中间挖去一个棱长为2厘米的小正方体,这个零件的体积与表面积各是多少?8.一个长方体形状的游泳池,长50m,宽30m,深2m。
要给游泳池的底面和四壁抹一层水泥,如果每平方米用水泥12千克,22吨水泥够不够用?9.有一个正方体木块,把它分成两个长方体木块后,表面积增加了24cm2,这个正方体木块原来的表面积是多少平方厘米?10.用纸皮做一个长1.2米、宽20分米、高60厘米无盖的长方体箱子用来堆放同学们收聚的矿泉水空瓶,至少要用多少平方分米的纸皮?11.一个集装箱长9米,宽3.2米,高2.5 米。
(1)制作这样一个集装箱至少需要多少平方米的钢板?(2)这个集装箱的容积大约是多少立方米?(箱壁厚度忽略不计)12.用240厘米唱的铁丝做一个最大的正方体框架,然后用纸板将6个面包起来做一个正方体纸盒,至少需要多少平方厘米纸板?这个纸盒的体积是多少立方厘米?13.求下面组合图形的面积.(单位:厘米)14.一个正方体的棱长之和是48厘米,那么它的表面积是多少平方厘米?15.一个正方体的表面积是48平方米,它的一个面的面积是多少平方米?16.做一个棱长为4分米的正方体无盖纸盒,至少需要用硬纸多少平方分米?17.小亚的房间长4.2米,宽3.5米,高3米,除去门窗的面积4.5平方米,房间的墙壁和天花板都贴上墙纸,这个房间至少需要多少平方米墙纸?18.一个长方体的食品盒长10厘米,宽6厘米,高13厘米.如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少要多少平方厘米?19.五年级一班的教室长9米、宽7.2米,学校计划暑假把四面墙粉刷绿色的墙围,要求从地面起1.1米高,计算一下这间教室粉刷墙围的面积是多少平方米.如果每平方米的粉刷费是5元,则粉刷这间教室需要多少钱?20.把一根144厘米的铁丝焊接成一个正方体框架,再在外面糊一层纸,糊纸的面积是多少平方米?21.如图,求这个长方体的表面积.22.做一个长5厘米、宽4厘米、高3厘米的长方体纸盒,至少要用多少平方厘米的硬纸板?23.一块正方体魔方的棱长是8厘米,它的表面积是多少?24.做一个没有盖的长方体玻璃缸,长60厘米,宽60厘米,高40厘米,共需要玻璃多少平方厘米?合多少平方米?25.一间教室长10米、宽6米、高4米,门窗面积为19.6平方米,要粉刷教室的四壁和顶棚,如果每平方米用涂料0.25千克,则共需要涂料多少千克?26.有一个棱长10厘米的正方体包装盒,在它的四壁贴上商标纸,这张商标纸的面积是多少?27.一个长方体玻璃钟罩,长15厘米,宽10厘米,高16厘米,它的表面积是多少平方厘米?28.一间教室长9 米,宽7 米,高3 米。
人教版五年级数学下册长方体和正方体表面积和体积 解决问题专项训练2(50道含答案)
人教版五年级数学下册长方体和正方体表面积和体积解决问题专项训练2(50道含答案)1.计算下面图形的表面积和体积。
2.一个长方体,如果高增加3 厘米,就变成棱长为8 厘米的正方体。
原长方体的体积是多少?3.一个长方体高26cm,如下图,把它切成两个小长方体,表面积增加了80cm2,求原来长方体的体积。
4.红星农场运来的沙子。
现在把这些沙子铺在一个长24dm、宽20dm 的沙坑里,能铺多厚?5.在一个长为120cm、宽为60cm的长方体水箱里,浸没一块长方体的铁块后,水面就比原来上升2cm。
求铁块的体积。
6.一个游泳池长50米,宽25米,内蓄满水2500立方米。
(1)这个游泳池的高是多少米?(2)如果要把游泳池内贴上瓷砖,需下面规格的瓷砖多少块?边长是:5分米×5分米的正方形方砖(3)如果每块方砖1.4元,你会到哪个商店去购买更合算?7.有一个长方体的木料,截面是一个正方形,正方形的边长是2dm,这块木料的体积是.这块木料的长是多少分米?8.如图是一个长方体的空心管,掏空部分的长方体的长为10厘米,宽为7厘米。
求这根空心管的体积是多少?如果每立分米重7.8千克,这根管子重多少千克?(单位:厘米)9.有甲、乙两个水箱,从里面测量,甲水箱长12dm、宽8dm、高5dm,乙水箱长8dm、宽8dm、高6dm.甲水箱装满水,乙水箱空着.现将甲水箱里的一部分水抽到乙水箱中,使两箱水面高度一样.现在两个水箱的水面高多少分米?10.把下图所示的长方体木料切割成最大的正方体,正方体的体积是多少立方分米?最多能切成几个这样的正方体?11.有一个长方体的铁块,底面积是,高是4cm.把它锻造成一个截面是正方形的长方体,截面长是4cm(锻造的过程中没有损耗).求这个长方体的长是多少厘米.12.用右面的两块铁皮做一个无盖的长方体水箱。
(1)做好后里外都刷上防锈漆,刷漆的面积是多少?(2)这个水箱的容积是多少升?(忽略铁皮厚度和接头)13.一块正方体铁锭,棱长5分米.每立方分米的铁重7.8千克,这块铁锭重多少千克?14.一个长方体油箱的容积是30升.已知这个油箱底面长3分米,宽2.5分米,油箱的深是多少分米?(用方程解)15.有一个长方体,高2米,底面的周长是14米,宽3米.这个长方体的体积是多少?16.有一个正方体,底面周长是32分米,这个正方体的体积是多少?17.一个长方形水箱,长5分米,宽4分米,高3分米.装满水后倒入一个棱长是5分米的水箱内,水深多少分米?18.如图所示,在一个大长方体中挖去一个小长方体,求这个物体的表面积和体积.(单位:厘米)(按表面积、体积的顺序填写)19.一辆运土机运了36立方米的沙子,准备铺在一个长45米,宽20米的长方体沙坑里,所铺沙子的厚度是多少厘米?20.一个从里面量长和宽都是10厘米,高14厘米的长方体容器,装有8厘米深的水,现将一个铁球浸没在水中,这时量得水深是12厘米,铁球的体积是多少立方厘米?21.一个正方体容器,从里面量棱长是10厘米。
2014人教版五年级数学下册正方体和长方体总复习及答案
小学五年级下册正方体和长方体总复习【知识点回顾1】【练习1】填空题(1)水池能装多少水的问题,是求水池的()(2)制作20个长方体包装盒的用料,是要求包装盒的()(3)油漆长方体立柱,是求立柱的()(4)石头放入有水玻璃杯中,水面上升的问题,是求()(5)给游泳池贴瓷砖,是要求()【练习2】判断题1一个木箱的体积就是它的容积。
()2、长方体是特殊的正方体。
()3、棱长6分米的正方体,它的表面积和体积相等。
()4、用4个棱长1厘米的小正方体可以拼成一个大正方体。
()5、体积单位的进率都是1000 。
()6、把一个正方体的橡皮泥捏成一个长方体后虽然它的形状变了,但是它的体积不变。
(7、正方体的棱长扩大2倍,它的体积就扩大6倍。
()【练习3】选择题1、一个鱼缸的长8分米,宽6分米,高是4分米,它的最大占地面积是( )平方分米A 24B 48C 322、把一块长方体木头锯成两个小长方体后表面积比以前()A 减少了B 增加了C 不变3、如果正方体鱼缸的棱长之和为36厘米,它的体积是()立方厘米A 27B 3C 9D 12【练习4】计算下图的表面积和体积(单位:分米)【知识点回顾2】1平方米=()平方分米 1平方分米=()平方厘米1立方米=()立方分米 1立方分米=()立方厘米1升=()毫升【练习2】填空题1、计量一个长方体的棱长用()单位,计量它的表面积用()单位,计量它的体积用()单位。
2、一辆汽车油箱的容积大约是72()。
3、数学书的体积大约是320()。
4、一个长方体长3厘米、宽2厘米高1厘米,它的棱长总和是()。
5、3.05立方米=()立方分米 60毫升=()升0.8升=()立方厘米 760平方分米=()平方米7.02立方分米=( )立方厘米 8020立方分米=( )立方米4.5升=( )毫升=( )立方厘米86立方厘米=( )立方分米=( )升【提高训练】1.给小金鱼的和小乌龟做无盖的家各要用多少平方分米的玻璃?它们的体积各是多少?2.给这个火柴盒的四周贴一层包装纸,需要多少平方厘米的包装纸?3.(1)如果在鱼缸中加入15升的水,水面的高度应是多少分米?(2)小金鱼回到它的新家,发现水面上升0.4分米,你知道小金鱼的体积是多少吗?4.两个同学把做好的同样鱼缸拼在一起(如下图),它的表面积和体积与原来的两个长方体的表面积和体积比较有什么变化?5.一个底面是正方形的长方体,把它的侧面展开后得到一个边长是12厘米的正方形。
五年级数学下册长方体正方体重点题型
正方体长方体复习资料基础知识填空(1)正方体、长方体有个面,个顶点,棱组成;每个顶点所连接的三条棱分别叫做它们的,,。
(2)长方体最多有面是正方形,最多有面相同。
(3)长方体的棱长和:(用文字表示),用字母表示为:正方体的棱长和:(用文字表示),用字母表示为:(4)长方体的表面积:(用文字表示),用字母表示为:正方体的表面积:(用文字表示),用字母表示为:(5)长方体的体积:(用文字表示),用字母表示为:正方体的体积:(用文字表示),用字母表示为:(6)长方体正方体体积公式都可以表示为:(用文字表示),用字母表示为:(7)物体占地面积就是底面积常考题型一:棱长和1、用一根长36cm的铁丝焊接成一个正方体框架,其表面积是,其体积是2、一个正方体的体积是27cm3,他的棱长是,它的表面积是3、用一根铁丝焊接成一个棱长为8cm的正方体,若用这根铁丝焊接成一个长方体,长为10cm,宽为8cm,其高为cm常考题型二:求表面积1、一根长5m的,宽和高都是1m的通风管,如果做10根这样的通风管道需要多少铁皮?2、贝智教育一教室要粉刷,其教室长9米,宽6米,高4米,门窗占地18平方米,要粉刷四周墙壁和顶棚,如果每平方米用0.25千克白灰,则粉刷这教室一共要用多少白灰?常考题型三:长方体,正方体的拼接和切割储备知识:切割一次会增加两个表面,相反拼接一次会减少两个面1、用三个棱长为1cm的正方体,拼成一个长方体,这个长方体的表面积是,体积是2、一个长方体长2米,截面是一个边长为3分米的正方形,将这个长方体木料锯成5段后,其表面积一共增加了平方分米。
3、将一个3米长方体木料平均截成3段,其表面积增加了0.36平方分米,这根木料的体积是。
常考题型四:底面是正方形,高变化引起表面积变化1、一个长方体如果高增加了2厘米成了正方体,而且表面积要增加56平方厘米,求原来这个长方体的体积?2、一个长方体,如果高减少2厘米,变成了一个正方体,并且表面积减少了56平方厘米,求原来这个长方体的体积是多少?常考题型五:棱长、面积、体积它们变化关系1、一个正方体,其棱长扩大两倍,棱长和夸大倍,表面积扩大倍,体积扩大倍。
【新】五年级下册数学 人教版 长方体和正方体的表面积(知识点+试题)
长方体和正方体二、内容讲解:知识点一:长方体和正方体的特征(1)长方体:由6个长方形围成的立体图形。
(2)正方体:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
它是一种特殊的长方体。
(3)两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
特征:①有几个面?面的位置和大小有什么关系?②有多少条棱?棱的位置、长短有什么关系?③有多少个顶点?例一:1、(a)图是()体,它的6个面是()形。
(b)图是()体,它的6个面是()形。
2、长方体有()个面,()条棱,()个顶点。
相对的棱的长度(),相对的面完全()。
3、正方体所有的面都(),()条棱都()。
4、长、宽、高相等的长方体叫做()。
知识点二:长方体、正方体棱长的计算(1)各棱长之间的关系及棱长的计算方法长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷12例二:1、一个长方体的长8厘米,宽7厘米,高6厘米,棱长和是多少厘米?2、如果用一根长72厘米的铁丝做一个宽4厘米,高6厘米的长方体框架,长是多少厘米?知识点三:长方体、正方体的表面积表面积:长方体或正方体6个面的总面积,叫做它的表面积已知长、宽、高,求面积S=(ɑb+bc+ɑc)×2长方体的表面积= ( 长×宽+ 长×高+ 宽×高) × 2正方体的表面积=(长×宽)×6例三:1、一个长方体油箱,从里面量长是70厘米,宽是30厘米,高是85厘米,如果每升汽油重约0. 73千克,这个油箱最多能装多重的汽油?(一)已知棱长和求面积长方体棱长和=(长+宽+高)×4正方体棱长和=棱长×12例四:1、一个正方体框架是用一根长48分米的铁丝焊接成的,如果给这个正方体粘上一层塑料,至少需要多少平方分米的塑料?(二)已知长、宽、高的关系求面积例五:1、已知一个长方体的长是20分米,这个长方体的宽是长的4/5,高是宽的一半,求这个长方体的面积?2、一个长方体房间,长8米,宽比长短1/4,高比宽短1/3,这个房间的表面积是多少?(三)已知棱长和,求转换后图形面积例六:1、一根铁丝可以围成一个长6分米、宽4.5分米、高2.5分米长方体框架,现在想将其围成一个正方体,这个正方体的表面积是多少?(四)求面不全的长方体(正方体)表面积柱子:求四个面的面积,不算上下两面(长×宽)鱼缸:正面是玻璃,1、求其他五个面的面积,不算正面(长×高)2、前面的玻璃坏了,若求配上的玻璃面积,则只求正面的面积。
【期中培优】人教版五年级下册数学期中考试培优专项复习-专题5:长方体和正方体的表面积(含解析)
人教版五年级下册数学期中考试培优专项复习【专题5:长方体和正方体的表面积】姓名:__________ 班级:__________考号:__________题号一二三四总分评分一、判断正误:1.3个棱长是2厘米的正方体拼成一个长方体后,这个长方体表面积比原来3个正方体表面积之和减少了8平方厘米。
()2.表面积相等的长方体,它们的体积不一定相等。
()3.(1)长方体或正方体6个面的总面积,就是它的表面积。
()(2)把3个棱长为1cm的小正方体拼成一个长方体,这个长方体的表面积是14 cm2。
()(3)一个正方体的表面积是54 dm2,把它平均分成两个长方体后,每个长方体的表面积是27 dm2。
()(4)一个正方体的棱长扩大到原来的5倍,它的棱长总和就扩大到原来的5倍,表面积也扩大到原来的5倍。
()二、仔细想,认真填:4.一个正方体的棱长总和是108分米,这个正方体的表面积是________平方分米。
5.一个长方体木箱,长1.2米,宽0.8米,高0.6米.做这个木箱至少要用木板________平方米,如果不做盖,至少要用木板________平方米.6.一个正方体的棱长总和是96分米,它的棱长是________分米,表面积是________平方分米,体积是________立方分米.7.把一个正方体切成两个完全一样的长方体,一个长方体的表面积与原来正方体表面积的比是________。
8.把一个高10厘米的圆柱体沿底面直径切割成两个半圆柱体,表面积增加40平方厘米.这个圆柱体的体积是________立方厘米.9.一个长方体上面的面积是10平方厘米,前面的面积是8平方厘米,右面的面积是6平方厘米,它的表面积是________ cm2.10.一个正方体有六个面,每个面分别涂有红、绿、黄、白、蓝、黑六种颜色,你能根据这个正方体的三种不同的摆法,判断出这个正方体每一种颜色对面各是什么颜色吗?红色的对面是________色,黄色的对面是________色,白色的对面是_______色.11.一个体积是576立方厘米的长方体,正面面积是96平方厘米,侧面面积是48平方厘米,底面面积是________平方厘米。
(完整版)五年级下册数学长方体与正方体的表面积讲义
长方体和正方体的表面积学生/课程年级学科授课教师日期时段核心内容长方体和正方体的表面积课型一对一/一对N教学目标1、会计算长方体和正方体的表面积;2、结合实际,灵活运用解答问题;3、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
重、难点1、会计算长方体和正方体的表面积;2、结合实际,灵活运用解答问题;3、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
知识导图导学一长方体和正方体的表面积知识点讲解 1:单位的确定和单位换算例 1. 一个教室占地面积约48()例 2. 800平方厘米=()平方米我爱展示1 ... 3.5平方分米=()平方厘米知识点讲解 2:长方体的表面积长方体(6)个面的总面积,叫做它的表面积。
长方体的表面积=(长×宽+宽×高+高×长)×2 S=(ab+bh+ah)×2例. 1. 一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。
例. 2. 这是一个无盖长方体纸盒的展开图,做这个纸盒需要多少材料?例. 3. 一个长方体的游泳池,长30米,宽15米,深2.2米,如在四壁和底面抹水泥,求抹水泥的面积是多少平方米?例 4. 一种烟囱管,长2.5米,它的横截面是边长为2分米的正方形。
做10个这样的烟囱管至少需要多少平方米铁皮?我爱展示1.[单选题] 一个长方体的长宽高分别是6厘米、5厘米、4厘米,在表面积中,最大的两个面的面积和是()平方厘米。
A. 30B. 40C. 48D. 602.做一个长10厘米,宽6厘米,高5厘米的长方体灯笼,如果外面糊上彩纸,至少需要多少平方厘米的彩纸?3.做一个长方体的鱼缸(无盖),长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃?如果每平方分米的玻璃4元钱,至少需要多少钱买玻璃?4.有一个装饼干的方形铁盒,底面是正方形,底面边长是20厘米,高是30厘米,这个铁盒的四周印满商标,商标的面积是多少平方厘米?5.希望小学有一间长10米、宽6米、高3.5米的长方体教室。
(完整版)五年级下册数学长方体与正方体的表面积讲义
长方体和正方体的表面积学生/课程年级学科授课教师日期时段核心内容长方体和正方体的认识及表面积课型一对一/一对N教学目标1、通过动手操作,建立表面积的概念2、经历探索长方体和正方体表面积计算方法的过程3、掌握长方体和正方体表面积计算方法,能正确地计算长方体和正方体的表面积4、了解长方体和正方体表面积计算在实际生活中的应用,体会数学的价值5、结合长方体和正方体表面积计算培养学生的探索精神、空间观念和解决问题的能力重、难点重点:教学目标3、4 难点:教学目标4知识导图知识梳理长方体、正方体的认识:1、长方体的特征:长方体是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形,相对的面完全相同;有12条棱,相对(平行)的4条棱长度相等;有8个顶点。
相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
2、正方体的特征:正方体的6个面是完全相同的正方形,12条棱的长度相等,有8个顶点。
3、正方体可以说是长、宽、高都相等的特殊的长方体。
4、长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4正方体棱长和=棱长×12 棱长=棱长和÷12长方体和正方体的展开图长方体或正方体6个面的总面积,叫做它的表面积长方体的表面积=长×宽×2﹢长×高×2﹢宽×高×2字母表示或=(长×宽+长×高+高×宽)× 2 字母表示正方体的表面积=棱长×棱长×6字母表示导学一面积单位换算知识点讲解 1常用面积单位间的换算:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米例 1. 填空题(1)8平方米=()平方分米(2)560平方分米=()平方米(3)3平方分米8平方厘米=()平方厘米(4)5平方分米20平方厘米=()平方分米(5)4.7平方分米=()平方厘米(6)5.6平方米=()平方米()平方分米【学有所获】通过例题让学生进一步深入理解面积单位的进率及换算,理清题意后认真计算出准确的答案。
冀教版五年级数学下册第三单元 长方体、正方体的认识及其表面积的计算专项试卷附答案
冀教版五年级数学下册核心考点突破卷5.长方体、正方体的认识及其表面积的计算一、填空。
(每空3分,共18分)1.数学课上,红红用学具棒搭一个长方体框架,搭了其中三根就能决定这个长方体框架的大小的是( )。
(填序号)2.聪聪用铁丝制作一个棱长为6厘米的正方体框架,他至少要用( )厘米的铁丝。
(接头处忽略不计)3.把一个长12厘米、宽10厘米、高10厘米的长方体罐头盒的侧面一圈贴上广告纸,至少用( )平方厘米的广告纸。
4.一个无盖的长方体玻璃鱼缸,长12 dm、宽6 dm、高10 dm,制作这个鱼缸至少需要( )dm2的玻璃。
5.把两个棱长是10厘米的正方体拼成一个长方体,这个长方体的表面积是( )平方厘米。
6.把一个长16厘米、宽6厘米、高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是( )平方厘米。
二、选择。
(每小题5分,共25分)1.用如图所示的硬纸板折成的长方体盒子的表面积是( )cm2。
A.13 B.12C.10 D.82.如图为一个正方体的展开图,与4号面相对的面是( )号面。
A.1B.2C.3D.63.如图,用4个相同的小正方体拼成一个长方体,表面积比原来减少了56平方厘米,每个小正方体的表面积是( )平方厘米。
A.24 B.8 C.56 D.64 4.一个长1米、宽0.8米、高0.5米的长方体玻璃缸,前面和右面的玻璃损坏了,要把它修好,需要配( )平方米的玻璃。
A.(1×0.8+1×0.5+0.5×0.8)×2B.1×0.8+0.8×0.5C.1×0.5+0.8×0.5D.0.5×0.8×25.一个棱长为9 dm的正方体,如果把它切成3个相同的长方体,表面积将会增加( )dm2。
A.81 B.162 C.324 D.216三、计算下面的立体图形的表面积。
(单位:cm)(12分)四、解决问题。
人教版五年级数学下册期末 求长方体、正方体的表面积的方法 专项试卷附答案
人教版五年级数学下册核心考点专项评价6.求长方体、正方体的表面积的方法一、认真审题,填一填。
(每空3分,共18分)1.一个长方体长8 cm,宽6 cm,高5 cm,将它放在地面上,占地面积最小是( )cm2。
2.正方体一个面的周长是32厘米,它的表面积是( )平方厘米。
3.一个长方体的棱长总和是84 cm,它的长是8 cm,宽是7 cm,高是( )cm,它的表面积是( )cm2。
4.长方体相邻的三个面的面积分别是10 dm2、6 dm2、15 dm2,它的表面积是( )dm2。
5.一个长方体的长、宽、高分别扩大到原来的3倍,它的表面积扩大到原来的( )倍。
二、仔细推敲,选一选。
(每小题4分,共16分)1.挖一个长15 m,宽10 m,深4 m的水池,这个水池的占地面积是( )m2。
A.150B.40C.60D.80 2.把一个棱长为4 dm的正方体切成两个相同的长方体,每个长方体的表面积是( )。
A.48 dm2B.64 dm2C.40 dm2D.72 dm2 3.用两个棱长是2 cm的小正方体拼成一个长方体,拼成的长方体表面积与原来两个正方体表面积的和相比,( )A.增加了8 cm2B.减少了8 cm2C.不变D.无法比较4.右图中,甲的表面积( )乙的表面积。
A.大于B.小于C.等于三、求下面各图形的表面积。
(每小题8分,共16分)四、聪明的你,答一答。
(共50分)1.如图,做这样一个手提袋至少需要多少平方厘米的纸板?(8分)2.外卖方便了我们的生活,这种便利离不开外卖员的辛苦付出。
龙龙设计了一个棱长为60 cm的正方体外卖箱送给外卖员。
实际所用材料是外卖箱表面积的1.5倍。
实际需要多少材料?(10分)3.妈妈的生日快到了,典典给妈妈买了一个生日礼盒,礼盒长30 cm,宽20 cm,高10 cm。
为了美观,礼品店要给它包一层彩纸,至少要多少平方厘米的彩纸?如果要给礼盒各条棱贴上金线,至少需要多少厘米长的金线?(12分)4.某学校的演播厅长18 m,宽12 m,高5 m,门窗的面积是38 m2,四面墙壁需要进行粉刷(门窗不粉刷),如果每平方米需要20元的费用(含涂料费和手工费),粉刷这间演播厅需要多少钱?(10分)5.学校运动会的领奖台除了底面不涂漆外,其他各面都要涂漆,需要涂漆的面积是多少平方米?(单位:cm)(10分)答案一、1.302.384提示先求出正方体的棱长是32÷4=8(厘米),再由正方体的表面积公式S=6a2即可求出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级数学下册正方体表面积计算_题型归纳
10:20:32导学内容:
正方体表面积计算教材35面例2
导学目标;
1、掌握正方体表面积计算方法。
2、利用正方体表面积的计算方法解决生活中实际问题。
导学重点:
解决生活中实际问题
导学过程:
一、前置性作业:
1、口算:一个正方形的边长是3厘米,它的面积是多少?
2、口答:正方体有几个面?每个面是什么形状?它们有什么关系?
3、导入课题: 正方体的表面积指的是什么?
板书:正方体的表面积的计算
二、探究新知:
1、正方体表面积的计算方法
(1)自学例2:一个正方体礼品盒,棱长1.2dm,包装这个礼品盒至少用多少平方分米的包装纸?
思考:a.、这个礼品盒共包装了几个面?
b、求包装纸的面积就是求什么?
(2)讨论:怎样计算包装纸的面积?
(3)汇报交流
(4)师生小结:板书:正方体表面积=棱长x棱长x6
(5)练习:中队委员把一个棱长46cm的正方体纸箱的各面都贴上红纸,将它作为给希望小学募捐的“爱心箱”,他们至少需要多少平方厘米的红纸?
2、求几个面的面面积
自学:一个玻璃鱼缸的形状是正方体,棱长3dm。
制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)
思考:a、这是求几个面的面积?
b、怎样计算?
练习:一个正方体的礼品盒,棱长15厘米,在它的四周围上一圈商标纸(上、下面不贴),这张商标纸的面积是多少平方厘米?
三、深化练习:
1、一个正方体的棱长和是24dm,它的表面积是多少平方厘米?
四、课堂小结:
五、课后反思:。