2-5-1桥面板的计算分析
桥面板、横梁计算
(一) 活载内力1. 汽车-20级产生的内力将加重车后轮作用于铰缝轴线上,后轴作用力为P=130kN,轮压分布宽度如图2-4-1所示。
由《公路桥涵设计规范》查得,汽车-20级加重车后轮的着地长度a 2=0.2m ,宽度b 2=0.6m ,则得到板上荷载压力面的边长为a 1=a 2+2H=0.2+2×(0.05+0.04+0.01+0.1)=0.6mb 1=b 2+2H=0.6+2×(0.05+0.04+0.01+0.1)=1.0m 荷载对于悬臂根部的有效分布宽度: a=a 1+2'b =0.6+2×0.7=2.0ma 1、b 1—垂直于板跨及顺板跨方向车轮通过铺装层后分布于板顶的尺寸; a 2、b 2—垂直于板跨及顺板跨方向车轮的着地尺寸;'b —集中荷载通过铺装层分布于板顶的宽度外缘至腹板边的距离; H —铺装层厚度。
冲击系数为(1+μ)=1.2666 作用于每米宽板条上的弯矩为: M sp =-(1+μ))4(410b l aP -=-1.2666×)40.17.0(0.24130-⨯=-9.26kN.m作用于每米宽板条上的剪力为: Q sp =(1+μ)aP 4=1.2666×0.24130⨯=20.58kN 2.挂车-100产生的内力图2-4-2 挂车-100的计算图式(单位:m )挂车-100的轴重为P=250kN ,着地长度2a =0.2m 和宽度b 2=0.5m 。
车轮在板上的布置及其压力分布图形如图2-4-2所示,则a 1=a 2+2H=0.2+2×(0.05+0.04+0.01+0.1)=0.6mb 1=b 2+2H=0.5+2×(0.05+0.04+0.01+0.1)=0.9m铰缝处纵向2个车轮对于悬臂根部的有效分布宽度为: a=a 1+d+2'b =0.6+1.2+2×0.7=3.2m d —外轮的中距悬臂根部处的车轮尚有宽度为c 的部分轮压作用: c='b b --9.0(21)=)7.09.0(29.0--=0.25m 轮压面c ×a 1上的荷载对悬臂根部的有效分布宽度为: 'a =a 1+2c=0.6+2×0.25=1.1m轮压面c ×a 1上的荷载并非对称于铰缝轴线,为简化计算,这里还是偏安全的按悬臂梁来计算内力。
桥面板计算及预应力筋估算
第3章桥梁纵向分孔及横截面尺寸拟定3.1桥梁纵向分孔3.1.1变截面连续梁桥构造特点连续孔数一般不超过5跨,多于3跨的连续梁桥,除边跨外,其中间各跨一般采用等跨布置,以方便悬臂施工。
多于两跨的连续梁桥,其边跨一般为中跨的0.6~0.8倍左右,当采用箱形截面,边孔跨径其至可减少至中孔的0.5~0.7倍。
有时为了满足城市桥梁或跨线桥的交通要求而需增大中跨跨径时,可将边跨跨径设计成仅为中跨的0.5倍以下,此时,端支点上将出现较大的负反力,故必需在该位置设置能抵抗拉力的支座或压重以消除负反力。
3.1.2本设纵向分孔计本设计纵向分孔设置为:(3×50)预应力混凝土简支T梁+(56+2×86+56)变截面箱型连续梁+(3×40)预应力混凝土简支T梁,全长550米。
变截面连续梁段:边跨56m中跨86m,边跨为中跨的0.651倍符合要求。
3.2桥横截面尺寸拟定本设计横截面尺寸拟定如表3-1,示意图如图3-1。
. -可修编形式顶板厚腹板厚底板厚根部跨中56+2×86+56 连续梁0.651 单箱单室30 30→60 28→60 5.4 2.8表3-1 横截面拟定高跨比梁宽(m) 悬臂厚度(cm)梗腋形式(cm×cm)根部跨中顶底根部端部顶板与腹板腹板与底板1/15.92 1/30.7 14.0 8.0 65 20 120×30 60×30图3-1 横截面尺寸拟定示意图(cm)图5-2 支点截面尺寸示意图3.3箱型截面尺寸的拟定依据拟定依据参考文献:《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG_D62-2004)。
3.3.1顶板、底板、悬臂板长度拟定箱梁顶板宽度一般接近桥面总宽度,本设计中顶板长度为14m。
顶板两侧悬臂板的长度对活载弯矩数值的影响不大,但恒载及人群荷载弯矩随悬臂长度几乎成平方关系增加,故悬臂板长度一般不大5m,当长度超过3m后,宜布置横向预应力束筋。
桥面板的设计及计算ppt
剪力:支点、跨中按直线变化
弯矩:二次抛物线
Mx
4M max l2
x(l
x)
大跨径简支梁,还应计算l/4截面、截面变 化处等得弯矩与剪力。
第二章 简支板、梁桥-2
40
恒载内力计算
等截面梁桥,恒载为均布荷载:横隔梁、铺装层、 人行道、栏杆等均摊给各主梁。
组合式梁桥,分阶段计算恒载内力。 预应力砼简支梁桥,恒载分为先期恒载与后期恒
a a2 2H 2b' a1 2b'
分布荷载靠近板边为最不利,故
a a1 l0
履带荷载,跨中与支点均取一米板宽板条按实际 荷载强度 p 进行计算。
第二章 简支板、梁桥-2
22
履带荷载得分布宽度 a)单向板 b)悬臂板
自由边
a)
b)
第二章 简支板、梁桥-2
23
2、2、4 桥面板得内力计算
(a
a')2
悬臂板计算图式 a)铰接悬臂板 b)悬臂板
第二章 简支板、梁桥-2
30
悬臂板得内力
M
AP
(1
)
P 4ab1
l02
M
AP
(1
)
P 2a
(l0
b1 ) 2
(b1>= l0时) (b1< l0时)
M Ag
1 2
gl0 2
(荷载组合系数)
M A M Ap M Ag
第二章 简支板、梁桥-2
p/4
p/4
90
b2
H=11
a2
b1
a1
l0=71 l0=71
45°
b1
a1
120
a1
c
桥面板计算
一、中板计算箱梁顶板跨中厚度为,两腹板间板净距为5m,腹板宽度为,箱梁腹板处承托尺寸为×。
1.恒载内力取1m板宽计算将承托面积摊于桥面板上,则计算板厚t’=30+60×20/500=;桥面板每延米自重为:g1=×1×26=m;每延米桥面铺装荷载为:g2=×1×23= N/m;所以:Σg= g1 +g2=+= N/m;(1) 计算恒载弯矩弯矩计算跨径L=min{L0+t, L0+t,}=min{5+,5+}=;故M sg=1/8gL2=1/8××=。
(2) 计算恒载剪力剪力计算跨径L= L0=;故Q sg=1/2gL=1/2××=。
2. 活载内力取1m板宽计算采用城A级车辆荷载,车轮着地宽度为b0×a0=×;平行于板方向的分布宽度:b=b0+2h=+2×=。
当单个车轮作用在跨中桥面板时,垂直板跨径方向的荷载分布宽度为:a= a0+2h+L/3=+2×+3=<2L/3=;取a=,因为a>,且a<,故2、3轮的荷载分布宽度发生重叠。
则a= a0+2h+L/3+d=+2×+3+=<2L/3+d=;取a=。
对4轮,p=100/×=m2;对2、3轮,p=140/×=m2;可得出2、3况最不利。
支承处垂直板跨径方向的荷载分布宽度为:a'= a0+2h+t=+2×+=(1) 计算活载弯矩按L=简支梁计算,根据右图所示的计算图示,可计算出各参数如下:a1=,a2=,a3=,a4=;y1=,y2=;y3=,y4=,y5=;所以有:p1=P/ a1b=m2;同样算得:p2=m2;P3=m2;P4=m2;活载弯矩计算图示根据试算,按上图所示的荷载布置方式所算得的跨中弯矩与结构力学方法计算的跨中最大弯矩值非常接近,故采用这种方法计算,直观明了。
桥面板计算
248桥面板的计算248.1主梁桥面板按单向板计算根据《公桥规》4.1.1条规定,因长边与短边之比为60/6.6=9.09>2故按单向板计算。
人行道及栏杆重量为 8.5kN/m.1、恒载及其内力的计算每延米板的恒载g:防水混凝土少:0.08 1 25 2.0kN /m沥青混凝土磨耗层g2:0.02 1 25 0.5kN / m将承托的面积平摊于桥面板上,则:t 30 30 60/660 32.7cm桥面板g3:0.327 1.0 25=8.仃5k N / m横载合计为:g g1 g2+g310.915kN /m(1)计算M og计算跨径:丨min (I o t,l o b)l o+t=6.2+0.327=6.527 l°+b=6.2+0.4=6.6 取l=6.527m1 21 2M ag glo 10.915 6.2252.45kN mg 8 8(2)计算Q支gl0=6.2m,作用于每米宽板条上的剪力为:1 1Q 支g=3gl°=3 10.915 6.2=33.84kN2、活载内力公路-II级车辆荷载后轮轴重P=140kN,由《桥规》查得,车辆荷载的后轮着地长度为0.20m,宽度为0.60m。
板上荷载分布为:心2+2H=0.2+2 0.1=0.4mb1=b2+2H=0.6+2 0.1=0.8m有效分布宽度计算:a=a1+L 3=0.4+6.527 , 3=2.58 1.4m (两后轮轴距)两后轮有效分布宽度发生重叠,应一起计算其有效分布宽度。
纵向2个车轮对于单向板跨中与支点的有效分布宽度分别为:ap+d 1. 3 0.4 1.4 6.527 3 3.98mS2l 3+d2l:3 d 2 6.527 3+1.4=5.75m所以:a=5.75a'=a1 +t=0.4+0.327=0.727m<1.4 m,说明支点处有效分布宽度并无重叠。
可得板的有效分布宽度图,在影响线上进行最不利情况的加载,利用结构力学计算得出简支单向板的内力。
桥面板计算(2)
桥面板计算(2)简支梁桥桥面板计算, 桥面板作用:直接承受车轮荷载,把荷载传递给主梁,同时,它又能构成主梁截面的组成部分,并保证了主梁的整体作用。
, 桥面板分类:单向板、双向板;悬臂板、铰接板。
, 车轮荷载的分布:作用在桥面上的车轮压力,通过桥面铺装层扩散分布在钢筋混凝土板面上,荷载在o铺装层内的扩散程度,对于混凝土或沥青面层,荷载可以偏安全地假定呈45角扩散。
, 有效工作宽度:板在局部分布荷载p的作用下,不仅直接承压部分的板带参加工作,与其相邻的部分板带也会分担一部分荷载共同参与工作。
因此,在桥面板的计算中,就需要确定所谓板的有效工作宽度,, 桥面板内力计算:对于梁式单向板或悬臂板,只要借助板的有效工作宽度,就不难得到作用在每米宽板条上的荷载和其引起的弯矩。
对于双向板,除可按弹性理论进行分析外,在工程实践中常用简化的计算方法或现成的图表来计算。
桥面板的作用钢筋混凝土和预应力混凝土肋梁桥的桥面板(也称行车道板),是直接承受车辆轮压的承重结构,在构造上它通常与主梁的梁肋和横隔梁(或横隔板)整体相连,这样既能将车辆活载传给主梁,又能构成主梁截面的组成部分,并保证了主梁的整体作用。
桥面板一般用钢筋混凝土制造,对于跨度较大的桥面板也可施加横向预应力,做成预应力混凝土板。
从结构形式上看,对于具有主梁和横隔梁的简单梁格系(图a)以及具有主梁、横梁和内纵梁的复杂梁格系(图b),桥面板实际上都是周边支承的板。
桥面板的分类, 桥面板的受力特性:ll/laab 板的长边与短边之比值愈大,向跨度方向传递的荷载就愈少。
, 单向板:长宽比等于和大于2的周边支承板。
, 双向板:长宽比小于2的周边支承板。
, 悬臂板:l/l,2ab 的T形梁桥,翼缘板的端边为自由边。
, 铰接悬臂板:l/l,2ab 的T形梁桥,相邻翼缘板在端部互相做成铰接接缝的构造。
车轮荷载的分布作用在桥面上的车轮压力,通过桥面铺装层扩散分布在钢筋混凝土板面上,由于板的计算跨径相对于轮压的分布宽度来说不是相差很大,故计算时应较精确地将轮压作为分布荷载来处理,这样做既避免了较大的计算误差,并且能节约桥面板的材料用量。
桥面板计算思路
桥面板计算思路桥面板是指用于桥梁上的道路面层,它承载着车辆和行人的重量。
计算桥面板的设计参数是保证桥梁的安全和稳定性的重要一环。
本文将介绍桥面板计算的基本思路和步骤。
一、了解设计要求在进行桥面板计算之前,首先需要了解设计要求。
设计要求通常包括桥梁的跨度、荷载标准、使用寿命等。
这些要求将直接影响桥面板的尺寸和材料选择。
二、确定荷载标准根据桥梁所在地区的荷载标准,确定所需考虑的荷载类型和荷载值。
常见的荷载类型包括静载荷、动载荷、温度荷载等。
根据不同的荷载类型,需要采用不同的计算方法和参数。
三、选择桥面板材料根据设计要求和荷载标准,选择适合的桥面板材料。
常见的桥面板材料包括钢筋混凝土、预应力混凝土、钢板等。
不同的材料具有不同的强度和耐久性,需要根据实际情况进行选择。
四、计算桥面板尺寸根据荷载标准和所选材料的强度参数,计算桥面板的尺寸。
桥面板的尺寸包括长度、宽度和厚度等。
在计算过程中,需要考虑桥面板的受力情况,如弯曲、剪切、扭转等。
根据不同的受力情况,需要采用不同的计算方法和公式。
五、进行桥面板的受力分析根据桥面板的尺寸和材料参数,进行受力分析。
受力分析包括计算桥面板的弯矩、剪力、轴力等。
根据受力分析结果,确定桥面板的承载能力和安全性。
六、进行桥面板的验算根据受力分析结果,对桥面板进行验算。
验算包括比较桥面板的承载能力和实际荷载的大小,判断桥面板是否满足设计要求。
如果桥面板不满足设计要求,需要进行尺寸和材料的调整。
七、进行桥面板的构造设计根据桥面板的尺寸和材料参数,进行桥面板的具体构造设计。
构造设计包括确定桥面板的钢筋布置、预应力布置、缝隙处理等。
构造设计需要考虑桥面板的施工性和使用性。
八、进行桥面板的施工监理在桥面板施工过程中,需要进行施工监理,确保桥面板的质量和安全。
施工监理包括验收材料、检查施工工艺、监测施工质量等。
施工监理的目的是确保桥面板的设计要求得到满足。
九、进行桥面板的使用维护桥面板的使用维护是保证桥梁安全和寿命的重要一环。
第6讲 简支梁计算 第一部分桥面板计算
3. 桥面板计算中何时需要考虑多个车轮作用?(横向 和纵向问题);
4.桥面板内力计算中实际结构简化为力学计算模式时存 在哪些误差?
5.桥面板计算的主要步骤
桥梁工程
2016-03
40
第四次作业,请于3月26日前提交
根据以下桥例基本资料,进行该桥行车道板设计内力 计算:
1. 桥梁跨径及桥宽:标准跨径40m (墩中心距离),主梁全长 39.96m;计算跨径39.00m; 桥面净空:14m+2×1. 75m=17. 5m。
-1 μ p
l
0
-
b
1
4a 4
140 2
0.82
-1.3
0.71 -
4 3.24
4
-14.18kN m
作用于每米宽板条上的剪力为:
3.内力组合
Q Ap 1 μ p
140 2 1.3
28.09kN
4a
4 3.24
(1)承载能力极限状态内力组合计算
Mud 1.2M Ag 1.4M Ac 1.2(1.35)1.4(14.18)21.47kN m
桥梁工程
2016-03
32
第三章 第一节 桥面板的计算
2.汽车车辆荷载产生的内力
将汽车荷载后轮作用于铰缝轴线上,
后轴作用力为P=140kN,轮压分布宽
度如图所示。车辆荷载后轮着地长
度为a2=0.20m,宽度为b2=0.60m,则
a a 2H 0.20 20.11 0.42m
1
2
b b 2H 0.60 20.11 0.82m
(c)荷载靠近板的支承处
= + 2 ≤ (8)
*注意:算得有效分布宽度 不能大于板的全宽
桥面板计算
5.4 桥面板的计算5.4.1计算模型(1)整体现浇的T 梁:单向板、双向板(2)预制装配式T 形梁桥(长短边比大于等于2):悬臂板、铰接悬臂板5.4.2车辆荷载在板上的分布荷载在铺装层内的扩散程度,对于混凝土或沥青面层,荷载可以偏安全地假定呈45度角扩散。
这样最后作用在桥面板顶面的矩形荷载压力面的边长为: 沿行车方向:H a a 221+= 沿横向:H b b 221+=H —铺装层的厚度当有一个车轮作用在桥面板上时,作用于桥面板上的局部分布荷载为: 汽车:112/b a P p = P —汽车或挂车的轴重 5.4.3板的有效工作宽度 (1)单向板的有效工作宽度 1)荷载在跨径中间对于单独一个荷载 3/23/21l H a l a a ++=+= 但不小于l 3/2 l —两梁肋之间板的计算跨径 计算弯矩时,tl l +=0,但不大于bl +0;计算剪力时,l l =其中l 为净跨径,t 为板的厚度,b 为梁肋宽度。
对于几个靠近的相同荷载,如按上式计算各相邻荷载的有效分布宽度发生重叠时,应按相邻荷载共同计算其有效分布宽度。
3/23/21l d H a l d a a +++=++= d —最外两个荷载的中心距离2)荷载在板的支承处tH a t a a ++=+=221'但不得小于3/l3)荷载靠近板的支承处a a x 2'+= x —荷载沿支承边缘的距离(2)悬臂板的有效工作宽度根据弹性板理论分析,悬臂板的有效工作宽度接近于2倍悬臂长,因此荷载可近呈45度角向悬臂板支承处分布。
'12ba a += 'b —承重板上荷载压力面外侧边缘至悬臂根部的距离显然最不利情况就是0'l b = 此时12l a a +=注意:有且只有此时,H b b 221+= 5.4.4行车道板的内力计算 (1)多跨连续单向板的内力)2(8)1(1b l aP M op -+=μ281g lMog=opM — 1米宽简支板条的跨中活载弯矩 ogM — 1米宽板条的跨中恒载弯矩ogopMMM+=0计算支点剪力时,此时荷载必须靠近梁肋边缘布置,对于跨径内只有一个车轮荷载的情况。
桥面板计算讲演稿
• 鉴于行车道板的受力情况比较复杂,影 响的因素比较多,因此要精确计算板的 内力是有一定困难的。通常我们采用简 便的近似方法进行计算。对于弯矩先算 出一个跨度相同的简支板的跨中弯矩 M。,然后再根据实验及理论分析的数 据加以修正。弯矩修正系数可视板厚t与 梁肋高度h的比值来选用。
• 当t/h<1/4时(即主梁抗扭能力大 者)。 • 跨中弯矩 • 支点弯矩 M=+0.5M0 M=-0.7M0 (4-2)
b1 P M Ap =-(1+µ) ( l0 4a 4
每米板宽的恒载弯矩为:
)
(4-7)
M Ag
1 2 = − gl 0 2
注意,此处 l 0 为铰接双悬臂板的净跨径.。 最后,悬臂根部一米板宽的最大弯矩为: M A =M Ap +M Ag (4-9)
悬臂根部的剪力可以偏安全地按一般悬臂板的 图式来计算,
桥面板计算
桥面板计算图式 车轮的荷载分布 桥面板有效工作宽度
桥面板计算图式
车轮荷载在板上的分布
荷载分布宽度
荷载分布强度
• (一)单向板
板的有效工作宽度
上式我们就定义为板的有效工作宽度,或荷载有效分布宽度,以 此板宽来承受车轮荷载产生的总弯矩,既满足了弯矩最大值的 要求,计算起来也较方便。
比较上图可得以下四点结论
计算单向板的支点剪力时, 可不考虑板和主梁的 弹性固结作用, 此时荷载必须尽量靠近梁肋边缘 布置。 考虑了相应的有效工作宽度后, 每米板宽 承受的分布荷载。 对于跨径内只有一个车轮荷载 的情况,支点剪力 Q 支 的计算公式为:
gl 0 Q支= +(1+µ)(A 1 y 1 +A 2 y 2 ) 2
b1 b1 p = −(1 + µ ) • pb1 (l 0 − ) = −(1 + µ ) • • (l 0 − ) 2 2a 2
桥面板计算-规范法
1. 简支板1.1. 恒载铺装厚度为9cm ,桥面板厚度为23cm ,单位长度桥面板上恒载集度为:g=0.09*23+0.23*25=7.82kN/m 。
恒载下与计算跨径相同的简支板跨中弯矩:m kN gl M og ⋅=⨯⨯==128.32.382.72 1.2. 活载1.2.1. 最不利荷载布置方式根据《公路桥涵设计通用规范(JTG D60-2015)》4.3.1节车辆荷载加载方式,结合前面的弯矩影响线,对桥面板进行车辆布载。
图 2-1跨中弯矩最不利加载方式1.2.2. 荷载分布宽度根据《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》4.1节计算车辆荷载分布宽度。
车轮着地尺寸: a1=0.2,b1=0.6 横桥向荷载分布宽度: b=b1+2h=0.6+2*0.09=0.78m顺桥向荷载分布宽度:单个车轮在板的跨径中部时,a=a1+2h+l/3=0.2+2*0.09+3.2/3=1.447m>1.4m ,按多个车轮计算,a=a1+2h+d+l/3=0.2+2*0.09+1.4+3.2/3=2.847m 。
均布荷载大小:P1=2*(140/2)/(0.78*2.847)=63.044kN/m 2。
表 4.1加载点有效分布宽度1.2.3. 活载弯矩m kN M oq ⋅=⨯⨯-⨯=431.4139.039.0044.636.18907.28 2. 连续板梁高h=1.1m ,桥面板高度t=0.23m ,t/h<1/4,根据《公预规》4.1.2: 恒载支点弯矩M=-0.7*3.128=-2.190kN ·m ; 恒载跨中弯矩M=0.5*3.128=1.564kN ·m 。
活载支点弯矩M=-0.7*41.431=-29.002kN ·m ; 活载跨中弯矩M=0.5*41.431=20.716kN ·m 。
3. 效应组合承载力极限状态基本组合 冲击系数取0.3跨中:M ud =1.1*(1.2*1.564+1.8*(1+0.3)*20.716)=55.387kN ·m 支点:M ud =-1.1*(1.2*2.190+1.8*(1+0.3)*29.002)=-77.542kN ·m 正常使用极限状态频遇组合跨中:M fd =1.564+0.7*20.716=16.065 kN ·m 支点:M fd =-(2.190+0.7*29.002)=-22.491 kN ·m正常使用极限状态准永久组合跨中:M qd =1.564+0.4*20.716=9.850 kN ·m 支点:M qd =-(2.19+0.4*29.002)=-13.791kN ·m 标准组合跨中:M=1.564+20.716=22.28kN ·m 支点:M=-(2.19+29.002)=-31.192kN ·m4. 应力计算桥面板厚度为23cm ,单位宽度桥面板抗弯惯性距为:43100134.112m I y -⨯==。
桥面板计算
桥面板计算桥面板计算一、中板计算箱梁顶板跨中厚度为0.3m,两腹板间板净距为5m,腹板宽度为0.5m,箱梁腹板处承托尺寸为0.6m×0.2m。
1.恒载内力取1m板宽计算将承托面积摊于桥面板上,则计算板厚t’=30+60×20/500=32.4cm;桥面板每延米自重为:g1=0.324×1×26=8.424kN/m;每延米桥面铺装荷载为:g2=0.1×1×23=2.3k N/m;所以:Σg= g1 +g2=8.424+2.3=10.724 N/m;(1) 计算恒载弯矩弯矩计算跨径L=min{L0+t, L0+t,}=min{5+0.3,5+0.5}=5.3m;故M sg=1/8gL2=1/8×10.724×5.32=37.655kN.m。
(2) 计算恒载剪力剪力计算跨径L= L0=5.0m;故Q sg=1/2gL=1/2×10.724×5.0=26.81kN。
2. 活载内力取1m板宽计算采用城A级车辆荷载,车轮着地宽度为b0×a0=0.6×0.25m;平行于板方向的分布宽度:b=b0+2h=0.6+2×0.1=0.8m。
当单个车轮作用在跨中桥面板时,垂直板跨径方向的荷载分布宽度为:a=a0+2h+L/3=0.25+2×0.1+5.3/3=2.217m<2L/3= 3.533m;取a=3.533m,因为a>1.2,且a<3.6m,故2、3轮的荷载分布宽度发生重叠。
则a= a0+2h+L/3+d=0.25+2×0.1+5.3/3+1.2=3.417m< 2L/3+d=4.733m;取a况下的况:对4轮,p=100/(3.533×0.8)=35.38kN/m2;对2、3轮,p=140/(4.733×0.8)=36.97kN/m2;可得出2、3轮重叠时的车轮作用情况最不利。
桥梁工程桥面板计算
2.1 请详细说明桥面板内力计算的整体计算思路。
2.2
总结和归纳单向板、悬臂板、铰接悬臂板的恒载和活载内力(弯矩和剪力)计算方法(主要是计算模型和计算公式)。
1.要求恒载和活载的计算模型要分开画出;
2 .用表格的形式将单向板、悬臂板、铰接悬臂板的恒载和活载内力计算公式列出来,方便比较和分析。
作业题2.3
如图所示,该桥是一座桥面板为铰接的T
形截面简支梁桥,桥面铺装厚度为0.1m,桥面板端部厚0.08m,根部厚0.14m,净跨径为1.42m,试计算桥面板在公路-I级汽车荷载(中后轮着地宽度和长度分别为0.6m和0.2m)作用下的活载弯矩?(图中尺寸均以厘米计)。
桥面板的设计与计算.PPT文档共53页
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
桥面板的设计与计算.
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是ቤተ መጻሕፍቲ ባይዱ 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
桥面板验算报告
目录1 计算参数 (1)2 计算依据 (1)3 悬臂板验算 (1)3.1 悬臂板内力计算 (1)3.1.1 恒载内力计算 (2)3.1.2 活载内力计算 (3)3.1.3 荷载组合计算 (4)3.2 悬臂板承载能力验算 (5)3.3 悬臂板裂缝宽度验算 (6)3.4 悬臂板挠度验算 (6)4 箱梁间车道板验算 (7)4.1 车道板板内力计算 (7)4.1.1 恒载内力计算 (7)4.1.2 活载内力计算 (8)4.1.3 荷载组合计算 (10)4.2 车道板承载能力验算 (10)4.3 车道板裂缝宽度验算 (11)4.4车道板挠度验算 (12)5 箱梁横隔板验算 (12)5.1 中横隔板内力计算 (12)5.1.1 恒载内力计算 (13)5.1.2 活载内力计算 (14)5.1.3 荷载组合计算 (16)5.2 中横隔板承载能力验算 (16)5.3 中横隔板裂缝宽度验算 (18)5.4中横隔板挠度验算 (19)6 验算结论及建议 (19)xxx油墩街xxx大桥顶板、横隔板验算报告1 计算参数30米跨箱梁、横隔板采用C40混凝土,材料强度见表1-1。
人行道系(包括栏杆立柱、扶手、栏板、人行道板)采用C25混凝土,桥面铺装采用C40防水混凝土,钢筋混凝土材料的重力密度统一取25kN/m3。
结构重要性系数取1.0。
箱梁采用R235和HRB335钢筋,材料强度见表1-1所示。
桥梁汽车荷载按公路-II级计算,人群荷载取3.0kN/m2,车辆荷载按550kN重车考虑,重车轴重、轴距及轮距如图1-1所示。
验算箱梁悬臂板、横隔板、车道板时取车辆荷载,冲击系数取1.3。
图1-1 车辆荷载的平面、立面图2 计算依据[1]《公路桥涵设计通用规范》JTG D60-2004,人民交通出版社,2004[2]《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004,人民交通出版社,20043 悬臂板验算3.1 悬臂板内力计算30米跨箱梁桥横截面如图3-1所示,图中未示出人行道系构造,人行道系恒载取一标准节段(按2.5m 栏杆节段考虑)作为计算单元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车轮荷载的分布
②车轮压力面计算 作用于混凝土桥面板顶面的矩形压力面边长为: 沿桥纵向:a1=a2+2H 沿桥横向:b1=b2+2H a2——沿行车方向车轮着地长度; (公路:0.2m;城市:0.25m)
b2——垂直于行车方向车轮的着地长度; (公路:前轮0.3m; 中、后轮:0.6m) (城市:前轮0.25m;中、后轮:0.6m) H——桥面铺装层的平均厚度。
第二篇 钢筋混凝土和预应力混凝土简支梁桥
1 概论 2 桥面构造 3 板桥的设计与构造 4 装配式简支梁桥的设计与构造 5 简支梁桥的计算 6 梁式桥的支座 7 简支梁桥的施工
5 简支梁桥的计算
§5-1 概述
1、桥梁工程计算的内容 内力计算 —— 《结构力学》《桥梁工程》《基础工程》等 截面验算 —— 《混凝土结构原理》等 变形验算 —— 《材料力学》《结构力学》《桥梁工程》等
la/lb≥2,荷载主要由短跨承受,在长跨方向只需 适当配置分布钢筋即可(在桥面板中较为常用) la/lb<2,需按两个方向的内力分别配置受力钢 筋,用钢量大,构造复杂(桥面板中较少采用)
常用的行车道板,按受力可分为三类: 单向板(美国规范:la/lb≥1.5时按单向板计算) 悬臂板(主梁的翼板间采用钢板联结)
§5-2 桥面板的计算
1、桥梁工程计算的内容 内力计算 —— 《结构力学》《桥梁工程》《基础工程》等 截面验算 —— 《混凝土结构原理》等 变形验算 —— 《材料力学》《结构力学》《桥梁工程》等
桥面板的力学模型
1、桥面板的力学模型 混凝土肋梁桥的行车道板既保证了桥梁的整体作用, 又将荷载传递给主梁。
车轮荷载的分布
车 辆 荷 载 主 要 技 术 指 标
项目 车辆重力标准值 前轴重力标准值 单位 kN kN 技术指标 550 30
中轴重力标准值 后轴重力标准值 项目
轴距 轮距 前轮宽×长 中后轮宽×长 车辆外形长×宽
kN kN 单位
m m m m m
2×120 2×140 技术指标
3+1.4+7+1.4 1.8 0.3×0.2 0.6×0.2 15×2.5
单向板的荷载有效分布宽度
板的有效工作宽度
1)车轮位于板的跨中
单个车轮在板的跨中时(如图a):
多个车轮在板的跨中时(如图b,当各单个车轮按上 式计算的荷载分布宽度发生重叠时,按下式计算):
板的有效工作宽度
2)车轮位于板的支承处(如图c)
3)车轮位于板的支承处附近,距离支点 x 时
式中:l ——板的计算跨径; d ——多个车轮时外轮之间的中距; t ——板的厚度; x ——荷载作用点至支承边缘的距离。
铰接悬臂板(主梁的翼板间采用铰接缝联结)
车轮荷载的分布
2、桥面板的受力分析 (1)车轮荷载在板上的分布
①基本假定 ◆轮压经桥面铺装扩散分布于行车道板,在计算中将 轮压作为分布荷载来处理;
◆为计算方便,将较为复杂的轮压布形态近似当作
矩形; ◆据试验研究,铺装层对轮压近似呈45°扩散。
车轮和在的分布
板的有效工作宽度
悬臂板规定的有效宽度为(如图):
式中:b' ——承重板上的荷载压力面外缘至悬臂板 根部的距离,b'≤2.5m。
对分布荷载靠近板边的最不利情况,有: a =a1+2l0
【注】当 b' > 2.5m时,悬臂根部的负弯矩应扩大为 1.15~1.30倍。 此外,车轮荷载作用点下方 还会出现正弯矩,尚应考虑正弯矩配筋。
板的有效工作宽度
简便起见,用宽为a,高为mxmax的矩形面积代替弯 矩图曲线面积来计算轮载总弯矩,即
等效弯矩图 的总宽度为
轮载产生的 跨中总弯矩 荷载中心处最 大单宽弯矩值
a 即为荷载有效工作宽度或板的有效分布宽度; 每延米板条荷载强度为:
p =P / (2ab1)
板的有效工作宽度
《公预规》(JTG D62-2004)对单向板的荷载有效分布宽 度a 规定如下:
板的有效工作宽度
(2)板的有效工作宽度(荷载有效分布宽度) 行车道板不仅直接承压部分(例如宽度为a1)的板带参加工 作,与其相邻的部分板带也会分担一部分荷载而共同参与工作。 因此,桥面板计算中,需要确定板的有效工作宽度(共同 参与工作的板的宽度范围)。 两边固结的板有效工作宽度比简支的小30%~40% 全跨满布条形荷载有效工作宽度比局部分布荷载小 荷载越靠近支承边,有效工作宽度也越小
5 简支梁桥的计算
2、简支梁桥计算的构件 上部结构 行车道板:直接承受车辆荷载 主梁:主要承重构件 横隔梁:增强横向刚度和结构整体性,同时起到分布荷载 的作用 支座 下部结构——桥墩、桥台 计算顺序:先桥面板后主梁 先上部,后下部
5 简支梁桥的计算
3、简支梁桥计算流程
5 简支梁桥的计算
板的有效工作宽度
①单向板
板的有效工作宽度
已知跨径为 l 的单向板,车轮荷载以a1×b1 的分布面积作用 在行车道板上,则 ◆板在计算跨径 x 方向产生挠曲变形 ωx ,同时也在 y 方向产生
挠曲变形 ωy ;
◆直接承压的宽为 a1 的板条受力最大,其邻近板也参与工作,
共同承受轮载产生的弯矩;
◆离荷载越远的板条承受的弯矩越小。
板的有效工作宽度
②悬臂板
板的有效工作宽度
由理论分析,当板端作 用集中力P 时(如图b),板 条的最大负弯矩为 mxmax=−0.465P,而荷载引起的 总弯矩为M0=−Pl0。因此,按 最大负弯矩换算的有效工作 宽度为(如图a):
因此,可以近似的认为 荷载按45°角向悬臂板支承边分 布。
板的有效工作宽度
要点总结
行车道板荷载有效作用宽度的要点总结
1、荷载有效分布宽度,同样适用于剪力计算。
2、单向板的有效工作宽度,靠近根部最小,靠近跨中最大,从
根部到中部按45°线变化。 3、求悬臂板的弯矩时,荷载最不利位置在铰处(或边缘),但 求的是根部弯矩。 4、考虑有效作用宽度,不能直接求荷载效应,必须先把“力”
结构形式:行车道板实际上是周边支承的板。 受力特点:当长短边之比 la/lb≥2时,荷载绝大部分沿 短跨方向传递,而沿长跨方向传递的荷载 不足6%(均布)。
桥面板的力学模型
梁格构造和桥面板支承方式
桥面板的力学模型
双向板工作原理模型
桥面板的力学模型
为此,可将四边支承的板分为两类: 单 向 板 双 向 板