Matlab矩阵和数组的操作解读
Matlab——数组与矩阵
Matlab——数组与矩阵1 一维数组(向量)的创建1.1 直接输入法从键盘直接输入元素,列与列之间的数据用逗号或空格分隔,行与行之间的数据用分号分隔。
a=[1;2;3] 生成列向量b=[1,2,3] 生成行向量c=[1 2 3] 生成行向量说明:在一行中写多条语句时,逗号和分号可作为语句间的分隔符。
如果用分号,则命令窗不显示运行结果。
1.2 冒号生成法用于产生递增或递减的等差数列。
格式:初值:步长:终值说明:步长为1时可以省略。
a=1:2:6b=1:61.3 定数线性采样法用于产生起止于两点之间的n 个数据点。
格式:x = linspace(a,b,n)b= linspace(1,6,6) b=1:6说明:n 的默认值是100。
1.4 拼接法利用已有的一维数组创建新的一维数组。
将两个行向量或列向量拼接为一个行向量或列向量,也可以利用冒号抽取其中的部分数据生成新的一维数组。
行向量拼接:用方括号和逗号a3= [a1,a2]列向量拼接:用方括号和分号b3= [b1;b2]向量的抽取:用冒号a4= a3(1:2:end)抽取a3 中的奇数位置的元素组成新的数组例1 创建两个不同的一维行向量和列向量,并利用这两个向量拼接成一个新的行向量和列向量,然后再由新向量中的奇数位置元素组成新的向量。
x1= 1:3x2= linspace(5,20,4)x= [x1,x2]y1=[1:3]’y2= linspace(5,20,4)’y= [y1;y2]x3= x ( 1:2:end)y3= y ( 1:2:end)2 一维数组中元素的提取利用圆括号和索引号。
A= [1 2 3 4 5]a3=A(3)提取第3个元素3 二维数组(矩阵)的创建3.1 直接输入法从键盘直接输入元素。
输入规则如下:(1)矩阵元素必须在方括号内;(2)同行元素之间用空格或逗号隔开;(3)行与行之间用分号或回车符隔开;(4)元素可以是数值、变量、表达式或函数;(5)矩阵的维数不必预先定义。
Matlab矩阵和数组的操作
>>A=[1, 2, 3;2, 3, 1;3, 2,1] >>B=A^2 >>C=A^0.3
>>Z = zeros(2,4) Z= 0 0 0 0
>>F = 5*ones(3,3) F= 5 5 5
0 0 0 0
5 5 5
5 5 5
>>R = randn(4,4) R= 1.0668 0.2944 -0.6918 -1.4410 >>N = fix(10*rand(1,10)) N=
0.0593 -1.3362 0.8580 0.5711
3. 利用矩阵编辑器 Array Editor
先在命令窗口输入: >>A=1 在 Workspace 窗口,双击该变量,打开矩阵编 辑器,进行输入和修改。
4.利用MATLAB函数建立矩阵
几个产生特殊矩阵的函数: zeros 、 ones 、 eye 、 rand、randn。 这几个函数的调用格式相似,下面以产生零矩 阵的zeros函数为例进行说明。其调用格式是: zeros(m) 产生m×m零矩阵 zeros(m,n) 产生m×n零矩阵。 zeros(size(A)) 产生与矩阵A同样大小的零矩阵 相关的函数有: length(A) 给出行数和列数中的 较 大 者 , 即 length(A)=max(size(A)) ; ndims(A) 给出A的维数, size(A)多维矩阵各维长度
/(右除): A/B表示B右除A
设A是可逆矩阵的运算, AX=B的解是A左除B,
即X= A\B; XA=B的解是A右除B,即X=B /A
matlab中的矩阵运算和数组运算方法
matlab中的矩阵运算和数组运算方法MATLAB 具有两种不同类型的算术运算:数组运算和矩阵运算。
您可以使用这些算术运算来执行数值计算,例如两数相加、计算数组元素的给定次幂或两个矩阵相乘。
矩阵运算遵循线性代数的法则。
数组运算则是执行逐元素运算并支持多维数组。
句点字符(.) 将数组运算与矩阵运算区别开来。
但是,由于矩阵运算和数组运算在加法和减法的运算上相同,因此没有必要使用字符组合 .+ 和 .-。
数值运算加法,例如A+B,+B减法,例如A-B,-B按元素乘法。
点乘,A.*B 表示 A 和 B 的逐元素乘积。
按元素求幂,A.^B 表示包含元素 A(i,j) 的 B(i,j) 次幂的矩阵。
数组右除,A./B 表示包含元素 A(i,j)/B(i,j) 的矩阵。
数组左除,A.\B 表示包含元素 B(i,j)/A(i,j) 的矩阵。
数组转置,A.' 表示 A 的数组转置。
对于复矩阵,这不涉及共轭。
矩阵运算矩阵乘法,C = A*B 表示矩阵 A 和 B 的线性代数乘积。
A 的列数必须与 B 的行数相等。
矩阵左除,x = A\B 是方程 Ax = B 的解。
矩阵 A 和 B 必须拥有相同的行数。
A\B = inv(A)*B矩阵右除,x = B/A 是方程 xA = B 的解。
矩阵 A 和 B 必须拥有相同的列数。
有B/A = (A'\B')'。
矩阵幂,A^B 表示 A 的 B 次幂(如果 B 为标量)。
对于 B 的其他值,计算包含特征值和特征向量。
转置,A' 表示 A 的线性代数转置。
对于复矩阵,这是复共轭转置。
逆矩阵,inv(A)或者A^(-1),A必须是方矩阵,也就是需要行列数相等。
行列式值,det(A)说明当方程形式是Ax=B时,则x=A\B=inv(A)*B;当方程形式是xA=B时,则x=B/A=B*inv(A);其中inv()是求逆矩阵。
[Matlab]数组运算和矩阵运算
上面方程是超定方程.要注意的:结果矩阵 x 是列向量形式.如果, >> a=[21 34 20 5; 78 20 21 14; 17 34 31 38]; >> b=[10 20 30]'; >> x=b\a x= 1.6286 1.2571 1.1071 1.0500 上面的方程为不定方程. 4. 矩阵与标量间的四则运算 矩阵与标量的四则运算和数组与标量间的四则运算完全相同,即矩阵中的每个元素与标量进 行加,减,乘,除四则运算.需要说明的是,当进行除法运算时,标量只能做除数. 5. 矩阵的幂运算 矩阵的幂运算与标量的幂运算不同.用符号"^",它不是对矩阵的每个元素进行幂运算,而是与 矩阵的某种分解有关. >> b=[21 34 20; 78 20 21; 17 34 31]; >> c=b^2 c= 3433 2074 1754 3555 3766 2631 3536 2312 2015 6. 矩阵的指数,对数运算与开方运算 矩阵的指数运算,对数运算与开方运算与数组相应的运算是不同的.它并不是对矩阵中的单个 元素的运算,而是对整个矩阵的运算.这些运算函数如下: expm, expm1, expm2, expm3 —— 指数运算函数; logm —— 对数运算函数; sqrtm —— 开方运算函数. >> a=[1 3 4; 2 6 5; 3 2 4]; >> c=expm(a) c= 1.0e+004 * 0.4668 0.7694 0.9200
矩阵 B 的逆乘标量 s A.^n 数组 A 的每个元素的 n 次方 A^n A 为方阵时,矩阵 A 的 n 次方 A+B 数组对应元素的相加 A+B 矩阵相加 A-B 数组对应元素的相减 A-B 矩阵相减 A.*B 数组对应元素的相乘 A*B 内维相同矩阵的乘积 A./B A 的元素被 B 的对应元素除 A/B A 右除 B B.\A 一定与上相同 B\A A 左除 B(一般与右除不同) exp(A) 以 e 为底,分别以 A 的元素为指数,求幂 expm(A) A 的矩阵指数函数 log(A)
Matlab实验报告(二)矩阵和数组操作
Matlab实验报告(二)矩阵和数组操作一、实验目的1.掌握矩阵和数组的一般操作,包括创建、保存、修改和调用等。
2.学习矩阵和数组的加减运算与乘法。
3.掌握对数组中元素的寻访与赋值,会对数组进行一般的操作。
二、预备知识1.常用的产生特殊矩阵的函数?eye(m,n) 单位阵?rand(m,n) 随机矩阵?randn(m,n) 正态分布的随机矩阵?zeros(m,n) 零矩阵?ones(m,n) 全部元素都为1的矩阵?compan(A) 矩阵A的伴随矩阵?bankel(m,n) n维Hankel矩阵?invhilb(n) n维逆Hilbert矩阵?magic(n) n维Magic矩阵?toeplitz(m,n) Toeplitz矩阵?wilkinson(n) n维Wilkinson特征值测试矩阵?handamard(n) n 维Handamard矩阵?hilb(n) n维Hilbert矩阵?kron(A,B) Kronecker 张量积?pascal(n) n维Pascal矩阵?vander(A) 由矩阵A产生Vandermonde矩阵2.通过矩阵的结构变换,获得新矩阵表2 矩阵结构变化产生新矩阵L=tril(A) L=tril(A,k) 0 U=triu(A) U主对角线及以上的元素取矩阵A的元素,其余为0 L主对角线及以下元素取矩阵A 的元素,其余为0 L及第k条对角线及以下元素取矩阵A的元素,其余为U=triu(A,k) 0 B=rot90(A) B=rot90(A,k) B=fliplr(A) B=flipud(A) B=reshape(A,m,n) U 第k条对角线及以上的元素取矩阵A的元素,其余为矩阵A逆时针旋转90°得到B 矩阵A逆时针旋转k*90°得到B 矩阵A左右翻转得到B 矩阵A上下翻转得到B 将矩阵A的元素重新排列,得到m*n的新矩阵(m*n就等于A的行列式之积。
matlab3-数组及矩阵运算
例如:
x=linspace(0,pi,11) %从0开始到pi等距产生 11个元素的行向量x
x =Columns 1 through 10 0 0.3142 0.6283 0.9425
Column 11 3.1416
1.2566
1.5708
1.8850
2.1991
2.5133
2.8274
矩阵运算与函数
函数名
含义
[]
空矩阵
eye(n) ones(m,n) rand(m,n) zeros(m,n)
n阶单位矩阵
元素全为1的m×n矩阵
元素服从0到1之间均匀分布的m×n矩阵 元素全为0的m×n矩阵
magic(n)
n阶魔方矩阵
向量和矩阵的建立与访问
在《射雕》中郭黄二人被裘 千仞追到黑龙潭,躲进瑛姑 的小屋。瑛姑出了一道题: 数字1-9填到三行三列的表 格中,要求每行、每列、及 两条对角线上的和都相等。 这道题难倒了瑛姑十几年, 被黄蓉一下子就答出来了。
b=[1 2 3;1 1 1]; %输入右端矩阵
X=b/a
%用/除法直接求方程组的解X
X= 3.0000 -2.0000 -6.0000 2.0000 -1.5000 -5.0000
linspace(a,b,n)
结果是将[a,b]等分称n-1段,返回由端点及分段点坐标所产生的n 个元素的行向量。
>> help linspace LINSPACE Linearly spaced vector. LINSPACE(X1, X2) generates a row vector of 100
linearly equally spaced points between X1 and X2.
在MATLAB中使用矩阵和数组
在MATLAB中使用矩阵和数组MATLAB(Matrix Laboratory)是一种流行的数值计算软件,广泛用于科学和工程领域。
它具有强大的功能,可以进行各种数学运算和数据分析。
在MATLAB 中,矩阵和数组是基本的数据结构,它们用于存储和处理数据。
一、矩阵和数组的定义和基本操作在MATLAB中,矩阵和数组都可以用来存储和操作多个数据。
矩阵是一个二维的数值数组,而数组可以有多个维度。
在定义矩阵或数组时,我们可以直接输入数据,也可以使用内置的函数来生成。
例如,我们可以用以下方式定义一个矩阵A:A = [1 2 3;4 5 6;7 8 9]这个矩阵A是一个3×3的矩阵,它的元素分别为1到9。
我们可以使用分号来表示矩阵的不同行,并用空格或制表符来分隔不同列。
同样地,在MATLAB中,我们可以使用以下方式定义一个数组B:B = [1, 2, 3, 4]这个数组B是一个包含4个元素的一维数组。
在定义数组时,元素之间通常使用逗号来进行分隔。
一旦定义了矩阵或数组,我们就可以对其进行各种操作。
在MATLAB中,我们可以使用运算符对矩阵和数组进行加、减、乘、除等数学运算。
例如,我们可以使用加法运算符来计算两个矩阵的和:C = A + A这里,C是一个3×3的矩阵,它的元素是矩阵A的对应元素和。
同样地,我们可以使用减法、乘法和除法运算符来进行相应的运算。
此外,MATLAB还提供了许多其他的函数和工具箱,用于矩阵和数组的操作。
例如,我们可以使用sum函数来计算矩阵的和:D = sum(A)这里,D是一个包含3个元素的一维数组,它的元素分别是矩阵A每一列的和。
二、矩阵和数组的索引和切片在MATLAB中,我们可以使用索引和切片操作来访问矩阵和数组中的元素。
索引用来指定元素在矩阵或数组中的位置,而切片则可以选择矩阵或数组的一个子集。
例如,我们可以使用索引获取矩阵A中的某个元素:a = A(2, 3)这里,a的值为6,它是矩阵A的第2行第3列的元素。
第一章 Matlab中的数组操作讲解
b=[2,3,-1,5,6], A=diag(b,1)
0 2 0 0 0 0
0 0 3 0 0 0 0 0 0 -1 0 0 0 0 0 0 5 0 0 0 0 0 0 6
B=diag(b,-2)
a=linspace(1,20,6)
a= 1.00 4.80 8.601,3,5个元素构成数组b: b=a(1:2:5) 提取a的第2到5个元素,并反转次序构成数组b1: b1=a(5:-1:2) 按条件提取子数组: 提取a的元素值大于10的元素构成数组b2 b2=a(find(a>10))
a= 'matlab' [2x3 double] [4x5 double] [ 20]
[1x10 double] [4x4 double]
a=
'matlab' [2x3 double] [4x5 double] [ 20] b=a(3,2)
[1x10 double] [4x4 double]
b=
[4x4 double]
0 0 -1 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0
例1.1 输入n阶矩阵
4 2 1 A 0 2 4 2 1 1 2 4 2 1 2 4 1 0 1 2 4
n=input('输入方阵阶数n=')
D=10
N=
M=
3
3
2
1
wxy
wxz
3
2
7
1
wyz
matlab 矩阵与数组解析
3.3.1 多项式表示法
多项式表示:
行向量——其中元素按多项式降 幂排列。
例如: f(x)=anxn+an-1xn-1+……+a0 行向量: [ an an-1 …… a0 ]
函数 poly2str() 将多项式系 数向量转换为完整形式。
[f,len]=poly2str(A,’x’);
2
3.1 矩阵运算
3.1.1 矩阵加、减(+,-)运算 3.1.2 矩阵乘(*)运算 3.1.3 矩阵除(/,\)运算 3.1.4 矩阵乘方—— A^n,a^p 3.1.5 矩阵关系运算符 3.1.6 矩阵逻辑运算符
3
3.1.1 矩阵加、减(+,-)运算
两矩阵对应元素相加减。 标量可以和任意矩阵相加减,且与所有元素分
12
3.2.1 数组加减(+,-)
对应元素相加减(与矩阵加减等效)
13
3.2.2 数组乘除(*,./,.\)
数组乘(.*)点乘
数组对应元素相乘 数组必须有相同的行和列
14
3.2.2 数组乘除(,./,.\)
A./B =B.\A —— A的元素被B的对应元素除 B./A =A.\B —— B的元素被A的对应元素除
10
3.1.6 矩阵逻辑运算符
比特方式逻辑运算符只接受逻辑和非负 整数类型的输入变量,它是针对输入变 量的二进制表示进行逻辑运算。
11
3.2 数组运算 数组运算指矩阵元素和元素之间
的算术运算 3.2.1 数组加减(+,-) 3.2.2 数组乘除(,/,\) 3.2.3 数组乘方(^) 3.2.4 运算优先级
矩阵与标量关系:标量与矩阵的所有元素进行 运算。
8
3.1.5 矩阵关系运算符
MATLAB矩阵与数组:定义、用法及应用案例
MATLAB 矩阵与数组:定义、用法及应用案例MATLAB 矩阵与数组:定义、用法及应用案例 .................................................................... 目录11.2. 3. 数组(Array )..........................................................................................................21.1 数组的定义........................................................................................................21.2 数组的基本用法................................................................................................2数组的逻辑运算.......................................................................................................34.4.3 矩阵运算和操作................................................................................................64.4 矩阵索引和切片................................................................................................64.5 应用案例............................................................................................................三维数组...................................................................................................................4矩阵(Matrix )........................................................................................................64.1 矩阵的定义........................................................................................................64.2 矩阵的创建........................................................................................................675.数组和矩阵的区别...................................................................................................75.1 维度....................................................................................................................75.2 操作....................................................................................................................75.3 创建....................................................................................................................85.4 索引和切片........................................................................................................85.5 应用.. (8)在MATLAB中,矩阵和数组是基础的数据结构,用于存储和处理多维数值数据。
Matlab数组、数组运算和矩阵运算
Matlab数组、数组运算和矩阵运算1、数值数组matlab中数组不需要声明。
(1)对一维数值数组赋初值逐个元素输入:x=[1 2 pi/2]冒号生成:x=1:0.1:4定数线性采样法:x=linspace (a,b,n)%相当于第一个数为a,最后一个数为b,以n为采样点数等间距采样。
x=logspace(a,b,n)%相当于第一个数为10a,最后一个数为10b,以n为采样点数等间距采样。
(2)对一维数值数组的寻访x(3) %寻访第三个元素x([1 2 3]) %寻访第1,2,3个元素x(1:3) %寻访第1到3个元素x(3:-1:1) %由前三个元素倒排成子数组x(find(x>0.5)) %由大于0.5的元素构成的子数组(3)对二维数值数组赋初值逐个赋值:x=[1,2,3; 3,4,6; 7,8,9]%“;”为二维数组“行”的分隔符号,而“,”和空格为同一行元素的分隔符。
整列赋值:x(:,[4,5])=4 %第4、5列赋值为4元素重排:A=reshape(1:9,3,3)%将1到9重新排列成一个(3*3)矩阵,注意matlab是列“优先”,即先排第一列再排第二列,而不是按行来排。
(4)二维数组元素的标识和寻访“全下标”标识:A(3,5) %第3行第5列元素“单下标”标识:对于一个(m*n)维数组A中第r行第c列元素,其“单下标”表示为:A(l) %这里l=(c-1)*m+r2、数组运算和矩阵运算(1)数组运算指令含义A.'相当于conj(A'),conj的作用help一下吧……A=s把标量s赋给A的每个元素s+B标量s分别与B元素之和s-B,B-s标量s分别与B元素之差s.*A标量s分别与A元素之积s./B,B.\ss分别被B的元素除A.^nA的每个元素自乘n次A.^p对A的各个元素分别求非整数幂p.^A以p为底,分别以A的元素为指数求幂A+B对应元素相加A-B对应元素相减A.*B对应元素相乘A./BA的元素被B的对应元素除B.\A同上exp(A)以e为底,分别以A的元素为指数求幂log(A)对A的各个元素求对数sqrt(A)对A的各个元素求平方根f(A)求A各个元素的函数值A#B对应元素的关系运算,#代表关系运算符A@B对应元素的逻辑运算,@代表逻辑运算符(2)矩阵运算含义A'共轭转置s*A标量s分别与A元素之积S*inv(B)B阵的逆乘sA^nA阵为方阵时,自乘n次A^p方阵A的非整数乘方p^AA阵为方阵时,标量的矩阵乘方A+B矩阵相加A-B矩阵相减A*B矩阵相乘A/BA右除BB\AA左除Bexpm(A)A的矩阵指数函数logm(A)A的矩阵对数函数sqrtm(A)A的矩阵平方根函数funm(A,'FN')一般矩阵函数3、逻辑数组看例子就明白了:A=zeros(2,5); %预生成一个(2*5)全零数组A(:)=-4:5; %运用“全元素”方法向A赋值L=abs(A)>3 %产生一个与A同维的“0 -1”逻辑值数组islogical(L) %判断L是否逻辑值数组。
matlab03数组与矩阵
20
21
简单数组的子数组寻访和赋值
所谓寻访就是要找出数组中的某个或数个元素。 数组元素用下标访问,如X(n)是X的第n个 元素。 同时访问一块元素,用冒号来表示。 [例2-6] 子数组的寻访。 [例2-7] 子数组的赋值。 22
二维数组的创建、寻访及赋值
从数据结构上看,矩阵和二维数组没什么区别,当二 维数组带有线性变换含义时,该二维数组就是矩阵。
29
所用指令有一维的interp1、二维的interp2、三维的 interp3。这些指令分别有不同的方法(method),设 计者可以根据需要选择适当的方法,以满足系统属性的 要求。Help polyfun可以得到更详细的内容。 y=interp1(xs,ys,x,’method’) 在有限样本点向量xs与ys中,插值产生向量x和y,所用 方法定义在method中,有4种选择: nearest:执行速度最快,输出结果为直角转折 linear:默认值,在样本点上斜率变化很大 spline:最花时间,但输出结果也最平滑 cubic:最占内存,输出结果与spline差不多 例 [2-12] exp2_12.m
提示:rand函数产生一个矩阵元素在0和1之间均匀分布的随机数的随 机矩阵。
8
⑤diag 生成一个对角阵或由对角线元素组成的向量 A=diag(V) 当V为n维向量时,产生一个以向量V的 元素为对角线的n维数组。 A=diag(V) 当V为n维矩阵时,产生 一个以V矩阵的 主对角线元素为元素的n 维数组。 注意:在MATLAB中,不需要事先定义矩阵的维数, MATLAB自动为矩阵分配存储空间。但如果在程序 运行过程中采用零矩阵为矩阵生成的全部元素,或 某一行、某一列的元素预先分配内存空间,将会大 大加快MATLAB程序的运算速度。
Matlab中的 矩阵和数组
>> A = [1 2 3;4 5 6;7 8 9]
A=
123
456
789
>> whos
Name Size
Bytes Class
A 3x3
72 double array
Grand total is 9 elements using 72 bytes
Matlab 矩 阵 和 数 组 在上面的例子中创建了一个3×3的矩阵,在创建矩阵的时 候,需要注意: * 整个矩阵的元素必须在“[]”中键入; * 矩阵的元素行与行之间需要使用分号“;”间隔,也可以 在需要分行的地方用回车键间隔; * 矩阵的元素之间可以使用逗号“,”或者空格间隔。 其实创建上面的矩阵时还可以这么做
在本例子中,使用linspace函数创建了一个具有五个元素的 向量,而元素之间彼此的间隔为 2 1 0.25 。
51
另外一个函数logspace被用来创建对数空间的向量,该函
数的基本语法为
x = logspace(x1,x2,n)
Matlab 矩 阵 和 数 组
其中: * 该函数创建的向量第一个元素值为x1,而最后一个元素
48 double array
B
6x1
48 double array
Grand total is 12 elements using 96 bytes
Matlab 矩 阵 和3数创组建 矩 阵
3.1 直接输入法
例子2-7 用直接输入矩阵元素的方法创建矩阵。
在MATLAB的命令行窗口中键入下面的指令:
然后通过工作空间浏览器打开数组编辑器,并在数组编辑 器中加载相应的变量。
在数组编辑器的工具栏中,分别修改矩阵的行数和列数, 例如设置矩阵的行、列数分别为14行、15列,则数组编辑器将 自动扩充矩阵,将未定义的元素赋初值为0,这时就可以双击 任意元素来修改矩阵的元素值了,如图2-4所示,即逐个修改必 要的元素,完成矩阵的定义。
Matlab 基础知识——矩阵操作及运算(矩阵、数组区别)
看论文时,经常看到矩阵,但在记忆里又看到数组。
那么问题来了,矩阵和数组分别是什么?二者有什么区别?看论文时,经常看到矩阵,但在记忆里又看到数组。
那么问题来了,矩阵和数组分别是什么?二者有什么区别?在数学上,定义m×n个数(i=1, 2…, m ; j=1, 2,…n)排成的m行n列的数表示为m行n列的矩阵,并且用大写加粗黑色字母表示。
只有一行的矩阵:,也称之为行向量;只有一列的矩阵,也称之为列向量。
矩阵最早来自于方程组的系数即常数所构成的方阵,这一个概念有19世纪英国数学家凯利首先提出。
数组是在程序设计中,为了处理方便,把具有相同类型的若干变量按有序的形式组织起来的一种形式。
这些按序排列的同类数据元素的集合称之为数组。
在Matlab中,一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。
因此按数组元素的类型不同,数组又可以分为数值数组、字符数组、单元数组、结构数组等各种类别。
看完上面的内容,矩阵和数组的区别似乎懂了一点。
矩阵和数组在Matlab中存在很多方面的区别:(1)矩阵是数学的概念,而数组是计算机程序设计领域的概念;(2)作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则。
而数组运算是Matlab软件定义的规则,其目的是为了使数据管理方便,操作简单,命令形式自然,执行计算有效。
二者联系主要体现在:在Matlab中,矩阵是以数组的形式存在的。
因此,一维数组相当于向量;二维数组相当于矩阵。
所以矩阵是数组的子集。
对矩阵的基本操作,主要有矩阵的构建、矩阵维度和矩阵大小的改变、矩阵的索引、矩阵的属性信息的获取、矩阵结构的改变等。
对于这些操作,Matlab中都有固定的指令或者相应的库函数与之相对应。
在程序用到的时候,每次都要上网查,网上的很散。
这里,我对我经常用的做了总结。
以后用到可以查阅。
1、矩阵下表引用下面将常用的几个举例说明:例如:A=[1 2 3 4 5;12 12 14 56 657;23 46 34 67 56 ];(1)将二维矩阵A转化成一维矩阵(列向量):Matlab 默认将其转化成列向量,需要行向量转置即可。
matlab_中数组与矩阵的联系与区别_概述说明
matlab 中数组与矩阵的联系与区别概述说明1. 引言1.1 概述在编程领域中,数组和矩阵是经常被使用的数据结构。
它们是存储和处理大量数据的重要工具。
而MATLAB作为一种数值计算和科学绘图的高级编程语言,也提供了强大的数组和矩阵操作功能。
本文将从概述、结构和目的三个方面对数组与矩阵之间的联系与区别进行详细说明。
通过对这两种数据结构进行全面比较和分析,我们可以更好地理解它们在MATLAB中的应用,并为相关领域的研究人员提供参考。
1.2 文章结构本文主要分为五个部分来探讨数组与矩阵之间的联系与区别。
首先,在引言部分,我们会对整篇文章做一个简单介绍,说明文章涉及到的内容以及目标。
然后,在第二部分,我们将深入探讨数组和矩阵的概念,并对它们之间的联系与区别进行详细描述。
接着,在第三部分,我们将介绍几种特殊类型的数组和矩阵,并探讨它们在MATLAB中的应用情况。
在第四部分,我们将比较数组和矩阵操作方法的差异,并分析它们对常用运算符的影响。
最后,在结论部分,我们将总结数组与矩阵之间的联系与区别,并说明它们在不同领域中的应用情况。
1.3 目的本文的目标是详细介绍和阐述MATLAB中数组和矩阵之间的联系与区别。
通过全面比较和分析这两种数据结构,我们旨在为读者提供更清晰的认识和理解。
同时,我们还希望通过具体实例和应用场景说明这些概念在实践中的重要性。
无论是初学者还是专业人士,都可以通过本文更好地理解并运用数组和矩阵相关的操作方法。
以上就是“1. 引言”部分内容,给出了文章整体概述、结构和目标。
2. 数组与矩阵的联系与区别2.1 数组概述数组是一种数据结构,可以用来存储相同类型的多个元素。
在Matlab中,数组可以有多个维度,也可以是多维的。
每个元素在数组中都有一个唯一的位置,该位置称为索引。
2.2 矩阵概述矩阵是特定类型的数组,其中包含行和列两个维度。
因此,矩阵是一个二维数组。
在Matlab中,矩阵可以用于表示线性方程组、向量空间以及其他数学和科学问题。
matlabmatlab 数组运算和矩阵运算的各个要求 -回复
matlabmatlab 数组运算和矩阵运算的各个要求-回复标题:Matlab中的数组运算和矩阵运算详解在Matlab中,数组和矩阵是两种基本的数据结构,它们在数值计算、科学计算、工程问题等领域有着广泛的应用。
理解和掌握Matlab中的数组运算和矩阵运算对于提升编程效率和解决实际问题具有重要意义。
以下将详细解析Matlab中数组运算和矩阵运算的各项要求和步骤。
一、Matlab中的数组运算1. 数组的定义与创建在Matlab中,可以通过直接赋值或者使用特定函数来创建数组。
例如,我们可以直接定义一个一维数组:matlaba = [1, 2, 3, 4, 5];或者使用`ones`, `zeros`, `linspace`, `rand`等函数创建特定类型的数组:matlabb = ones(1, 5); 创建全为1的一维数组c = linspace(0, 10, 5); 创建从0到10均匀分布的5个数的一维数组d = rand(1, 5); 创建包含5个0-1之间随机数的一维数组2. 数组的索引和切片在Matlab中,可以使用索引来访问和修改数组元素。
索引从1开始,例如:matlaba = [1, 2, 3, 4, 5];a(3) 返回数组a的第三个元素,即3a(3) = 6; 修改数组a的第三个元素为6同时,Matlab还支持数组的切片操作,通过冒号(:)可以获取数组的一部分:matlaba(2:4) 返回数组a的第二个到第四个元素,即[2, 3, 4]3. 数组运算Matlab支持多种数组运算,包括算术运算、逻辑运算、比较运算等。
- 算术运算:加(+)、减(-)、乘(*)、除(/)、乘方(^)等。
这些运算符既可以用于数组间的运算,也可以用于数组和标量间的运算。
matlaba = [1, 2, 3];b = [4, 5, 6];c = a + b; c = [5, 7, 9]d = a * 2; d = [2, 4, 6]- 逻辑运算:与(&)、或()、非(~)等。
matlabmatlab 数组运算和矩阵运算的各个要求 -回复
matlabmatlab 数组运算和矩阵运算的各个要求-回复数组运算和矩阵运算是Matlab 中非常重要的概念。
本文将分别介绍数组运算和矩阵运算,并详细介绍它们的各个要求。
一、数组运算要求1. 数组维度相等:在进行数组运算时,要求参与运算的数组维度必须相等。
如果参与运算的数组维度不相等,那么Matlab 将无法进行运算并将抛出错误信息。
例如,假设有两个数组A 和B,如果想要对它们进行相加操作,那么A 和B 的维度必须完全相同。
2. 数组大小一致:在进行数组运算时,要求参与运算的数组大小必须一致。
数组大小指的是数组中每个维度的元素个数。
例如,假设有两个数组C 和D,如果想要对它们进行相乘操作,那么C 和D 的大小必须一致。
3. 数组类型兼容:在进行数组运算时,要求参与运算的数组类型必须兼容。
数组的类型包括数值型、字符型、逻辑型等。
例如,假设有一个数值型数组E 和一个字符型数组F,如果想要对它们进行相加操作,那么E 和F 的类型不兼容,将无法进行相加。
4. 数组运算符合运算规则:在进行数组运算时,要求所使用的运算符符合运算规则。
例如,加法运算要求两个数组进行对应元素相加,而乘法运算要求两个数组进行对应元素相乘。
例如,对于数组G 和H,如果想要对它们进行相加操作,那么G 和H 的大小和维度必须相同,并且元素相加后的结果将分别填充到相应位置上。
二、矩阵运算要求1. 矩阵维度兼容:在进行矩阵运算时,要求参与运算的矩阵维度必须兼容。
矩阵维度兼容指的是两个矩阵的列数和行数必须满足一定的条件。
例如,假设有两个矩阵M 和N,如果想要对它们进行矩阵乘法操作,那么M 的列数必须等于N 的行数。
2. 矩阵大小一致:在进行矩阵运算时,要求参与运算的矩阵大小必须一致。
矩阵大小指的是矩阵中每个维度的元素个数。
例如,假设有两个矩阵P 和Q,如果想要对它们进行矩阵加法操作,那么P 和Q 的大小必须完全一致。
3. 矩阵类型兼容:在进行矩阵运算时,要求参与运算的矩阵类型必须兼容。
MATLAB中矩阵与数组的区别
MATLAB中矩阵与数组的区别,点运算符的运用正如matlab(矩阵实验室)这个名字一样,matlab的数据结构只有矩阵(array)一种形式(可细分为普通矩阵和稀疏矩阵)。
单个的数就是1*1的矩阵;数组或向量就是1*n或n*1的矩阵。
事实上对于matlab来说数、数组或向量和二维矩阵在本质上没有任何区别,他们的维数都是2,一切都是以矩阵的形式保存的。
**************************************************************************************** ***一维数组相当于向量,二维数组相当于矩阵,所以矩阵是数组的子集。
1.数组的运算是指数组对应元素之间的运算,也称点运算.2.矩阵是一个二维数组,所以矩阵的加、减、数乘等运算与数组运算是一致的。
3.矩阵的乘法、乘方和除法有特殊的数学含义,并不是数组对应元素的运算.但有两点要注意:(1)对于乘法、乘方和除法等三种运算,矩阵运算与数组运算的运算符及含义都不同:矩阵运算按线性变换定义,使用通常符号;数组运算按对应元素运算定义,使用点运算符;(2)数与矩阵加减、矩阵除法在数学是没有意义的,在MATLAB中为简便起见,定义了这两类运算。
**************************************************************************************** 数组中的元素可以是字符等;矩阵中的只能是数;这是二者最直观的区别。
因为矩阵是一个数学概念(线性代数里的),数组是个计算机上的概念。
《精通MATLAB6.5版》(张志涌编著,北京航空航天大学出版社)中说:从外观形状和数据结构上看,二维数组和数学中的矩阵没有区别。
但是矩阵作为一种变换或映射算子的体现,矩阵运算有着明确而严格的数学规则。
而数组运算是Matlab软件所定义的规则,其目的是为了数据管理方便、操作简单、指令形式自然和执行计算的有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或者:
savefile = 'D:\homework\mydata.mat';
2. 利用文件建立矩阵
对于比较大且比较复杂的矩阵,可以为它 专门建立一个M文件。
例: 利用M文件建立A矩阵。 (1) 启动有关编辑程序或 MATLAB 文本编辑器, 并输入待建矩阵. (2) 把 输 入 的 内 容 存 盘 ( 设 文 件 名 为 mymatrix.m)。 (3)运行该M文件,就会自动建立一个名为A的 矩阵,可供以后使用。
>>Z = zeros(2,4) Z= 0 0 0 0
>>F = 5*ones(3,3) F= 5 5 5
0 0 0 0
5 5 5
5 5 5
>>R = randn(4,4) R= 1.0668 0.2944 -0.6918 -1.4410 >>N = fix(10*rand(1,10)) N=
0.0593 -1.3362 0.8580 0.5711
二 矩阵的Leabharlann 存和调用 save mydata A X load mydata
系统自动沿设定好的路径以”.mat”格式存储文件
savefile = 'mydata.mat'; save(savefile, 'A', 'X') Load(savefile)
如果想存储在指定路径:
save D:\homework\mydata A X
(一) 利用MATLAB程序编辑器:
(1) MATLAB程序编辑器中输入: A = [ ...
16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0 9.0 6.0 7.0 12.0 4.0 15.0 14.0 1.0 ] (2) 存为: mymatrix.m (3) 运行: mymatrix
将矩阵的元素用方括号括起来,按矩阵行的顺 序输入各元素,同一行的各元素之间用空格或逗号 分隔,不同行的元素之间用分号分隔。 >>A = [16 3 2 13; 5,10,11 8; … 9 6 7 12; 4 15 14 1] A= 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1
linspace(a,b,n)与 a:(b-a)/(n-1):b 等价。
linspace 用于产生一个等差数列,括号里三项分 别表示起始值、终止值和元素数目;
logspace用于产生一个对数间隔行向量(等比数 列),b=logspace(0,4,5), 表示产生一个起始值为 100, 终止值为104, 元素数目为5的等比数列.
3. 利用矩阵编辑器 Array Editor
先在命令窗口输入: >>A=1 在 Workspace 窗口,双击该变量,打开矩阵编 辑器,进行输入和修改。
4.利用MATLAB函数建立矩阵
几个产生特殊矩阵的函数: zeros 、 ones 、 eye 、 rand、randn。 这几个函数的调用格式相似,下面以产生零矩 阵的zeros函数为例进行说明。其调用格式是: zeros(m) 产生m×m零矩阵 zeros(m,n) 产生m×n零矩阵。 zeros(size(A)) 产生与矩阵A同样大小的零矩阵 相关的函数有: length(A) 给出行数和列数中的 较 大 者 , 即 length(A)=max(size(A)) ; ndims(A) 给出A的维数, size(A)多维矩阵各维长度
>>A = 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1
>>reshape(A,2,8)
ans =
16
5
9
4
3
10
6
15
2
11
7
14
13 12
8 1
5. 建立大矩阵
大矩阵可由方括号中的小矩阵建立起来。 例如:
>>A=[1 2 3 ; 4 5 6 ; 7 8 9]; >>C=[A, eye(size(A)); ones(size(A)), A] C= 1 2 3 1 0 0
-0.0956 0.7143 1.2540 -0.3999 -0.8323 1.6236 -1.5937 0.6900
4 9 4 4 8 52 6 8 0
此外,常用的函数还有reshape(A,m,n),它在 矩阵总元素保持不变的前提下,将矩阵A重新 排成m×n的二维矩阵,其元素是以列的方式从 A中获得, A必须包含m×n个元素。
MATLAB 矩阵和数组的操作
一 二 三 四 五 矩阵的建立 矩阵的保存和调用 矩阵的拆分 多维矩阵 矩阵的运算
一 矩阵的建立
1. 直接输入法 2. 利用M文件建立矩阵 3. 利用矩阵编辑器Matrix Editor完成输入 和修改 4. 利用MATLAB函数建立矩阵 5. 建立大矩阵
1. 直接输入法
>>X=10:20 >>X=0:0.1:0.5 >>X=linspace(0,pi,11) 或 >>X= linspace(0,1,11)* pi X= Columns 1 through 7 0 2.1991 0.3142 2.5133 0.6283 2.8274 0.9425 3.1416 1.2566 1.5708 1.8850 Columns 8 through 11
(二) 利用其它文本编辑器: (文本或二进制格式)
(1) 编辑一个文本文件: 16.0 3.0 2.0 13.0 5.0 10.0 11.0 8.0 9.0 6.0 7.0 12.0 4.0 15.0 14.0 1.0 (2) 装入 该文本文件: load mymatrix.dat 或者: load mymatrix.txt (3) 创建一个变量名为mymatrix的矩阵 将以文本或二进制格式存储的数据读入 MATLAB 的另一种 方式是用 Import Wizard. File→Import Data
4 7 1 1 1 5 8 1 1 1 6 9 1 1 1 0 0 1 4 7 1 0 2 5 8 0 1 3 6 9
6 冒号操作符( The Colon Operator )
冒号表达式的一般格式:e1:e2:e3
还可以用 linspace 函数产生一个线性间隔的行向 量:linspace(a,b,n):a,b,n:初值,终值,点数