用牛顿运动定律解决问题(二) PPT
合集下载
第7节 用牛顿运动定律解决问题(二) 瞬时性问题

(练习)如图所示,物体甲、乙质量均为m。弹簧和悬线的质量可 以忽略不计。当悬线被烧断的瞬间,甲、乙的加速度数值应是 下列哪一种情况: A.甲是0,乙是g B.甲是g,乙是g C.甲是0,乙是0运动定律
6
用牛顿运动定律解决问题(二)
——瞬时性问题
瞬时性问题:
(1)物体运动的加速度a与其所受的合外力 F有瞬时对应关 系. 每一瞬时的加速度只取决于这一瞬时的合外力,而与 这一瞬时之前或之后的力无关,不等于零的合外力作用 在物体上,物体立即产生加速度;若合外力的大小或方 向改变,加速度的大小或方向也立即(同时)改变;若合外 力变为零,加速度也立即变为零 (物体运动的加速度可以 突变)。
如图,四个质量均为m的小球,分别用三条轻绳和一根轻弹 簧连接,处于平衡状态,现突然迅速剪断轻绳A1、B1,让小球 下落。在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用 a1、 a2 、a3 、a4表示,则他们那分别等于多少:
a1 a2 g a3 2g
FT ' 2mg
FT ' 2mg
瞬时性问题:
两类模型的区别:
1、绳和支撑面: 是一种不发生明显形变就可产生弹力的物体,若剪断(或脱 离 ) 后,其弹力立即消失,不需要形变恢复时间,一般题目中所 给的细线和接触面在不加特殊说明时,均可按此模型处理。“突 变性”(外界条件发生变化时,力瞬间变化) 2、弹簧和橡皮筋: 当弹簧的两端与物体相连(即两端为固定端)时,由于物体具 有惯性,弹簧的长度不会发生突变,即形变恢复需要较长时间, 所以在瞬时问题中,其弹力的大小往往可以看成不变,即此时弹 簧的弹力不突变。“渐变性”(外界条件发生变化,力逐渐变化)
❸.不可伸长:即无论绳所受拉力多大,绳子的长度不 变,即绳子中的张力可以突变.
人教版高中物理必修一 用牛顿运动定律解决问题(二)1 PPT课件

F
F O F3 G
B
F2
例题2:如右图所示,重力为G的电灯通过两根细绳OB与OA悬挂于 两墙之间,细绳OB的一端固定于左墙B点,且OB沿水平方向,细 绳OA挂于右墙的A点。 1.当细绳OA与竖直方向成θ角时,两细绳 OA、OB的拉力FA、FB分别是多大? 分析与解: 根据题意,选择电灯受力分析,它分别受 到重力G,两细绳OA、OB的拉力FA、FB ,可 画出其受力图,由于电灯处于平衡状态,则 两细绳OA、OB的拉力FA、FB 的合力F与重力 大小相等,方向相反,构成一对平衡力。 可得:
4.7用牛顿运动定律 解决问题(二)
课程标准实验教科书 物理1 第四章
我来做一做!
用细棉线将一钩码轻轻提起。
1、钩码静止时,棉线受到的拉力为多少? 说出根据。 2、手拿棉线将钩码突然向上提升,棉线有 何变化?
用牛顿运动定律解决问题(二)
一、共点力的平衡条件
二、超重和失重
学习目标:
• (1)知识与技能 • ①知道什么是物体处于平衡状态及在共点力作用下物体的平衡条件。 • ②知道超重和失重现象的含义,能通过牛顿运动定律对它们进行定量分析, 并能说明一些简单的相关问题。 • ③ 能解答以自由落体为基础的竖直方向的运动学问题。 • (2)过程与方法 • ①通过学生亲手实验,培养其观察能力和分析推理能力。 • ②通过学生自主探究、合作探究,让学生真正参与到知识的形成过程中,让 学生学会学习。 • (3)情感态度与价值观 • ①借助课堂小实验、多媒体课件和丰富的网上资料,激发学生的兴趣,感受 物理与生活、社会与科学技术的相关性,培养学生热爱物理、热爱科学的情感。 • ②搭建学生自我展示的舞台,鼓励学生建立自信,敢于探索、 勇于质疑,学会交流与合作,以达到“我学习,我快乐”的 目的。
F O F3 G
B
F2
例题2:如右图所示,重力为G的电灯通过两根细绳OB与OA悬挂于 两墙之间,细绳OB的一端固定于左墙B点,且OB沿水平方向,细 绳OA挂于右墙的A点。 1.当细绳OA与竖直方向成θ角时,两细绳 OA、OB的拉力FA、FB分别是多大? 分析与解: 根据题意,选择电灯受力分析,它分别受 到重力G,两细绳OA、OB的拉力FA、FB ,可 画出其受力图,由于电灯处于平衡状态,则 两细绳OA、OB的拉力FA、FB 的合力F与重力 大小相等,方向相反,构成一对平衡力。 可得:
4.7用牛顿运动定律 解决问题(二)
课程标准实验教科书 物理1 第四章
我来做一做!
用细棉线将一钩码轻轻提起。
1、钩码静止时,棉线受到的拉力为多少? 说出根据。 2、手拿棉线将钩码突然向上提升,棉线有 何变化?
用牛顿运动定律解决问题(二)
一、共点力的平衡条件
二、超重和失重
学习目标:
• (1)知识与技能 • ①知道什么是物体处于平衡状态及在共点力作用下物体的平衡条件。 • ②知道超重和失重现象的含义,能通过牛顿运动定律对它们进行定量分析, 并能说明一些简单的相关问题。 • ③ 能解答以自由落体为基础的竖直方向的运动学问题。 • (2)过程与方法 • ①通过学生亲手实验,培养其观察能力和分析推理能力。 • ②通过学生自主探究、合作探究,让学生真正参与到知识的形成过程中,让 学生学会学习。 • (3)情感态度与价值观 • ①借助课堂小实验、多媒体课件和丰富的网上资料,激发学生的兴趣,感受 物理与生活、社会与科学技术的相关性,培养学生热爱物理、热爱科学的情感。 • ②搭建学生自我展示的舞台,鼓励学生建立自信,敢于探索、 勇于质疑,学会交流与合作,以达到“我学习,我快乐”的 目的。
4-7用牛顿运动定律解决问题(二)

和水球组成的系统其重心有向下的加速度,整个系统将处 于失重状态,故台秤的示数将变小. 答案:A
一个人站在体重计的测盘上,在人下蹲的过程中(如下
图所示),指针示数变化应是____________.
答案:先减小,后增加,再还原 解析:人蹲下的过程经历了加速向下、减速向下和静
止这三个过程.
一种巨型娱乐器械——“跳楼机”(如图所示)可以使人 体验超重和失重.一个可乘十多个人的环形座舱套装在竖 直柱子上,由升降机送上几十米的高处,然后让座舱自由
两力的合力与第三力等大、反向求源自,可以据力三角形求 解,也可用正交分解法求解.
解法1 用合成法
取足球作为研究对象,它们受重力G=mg、墙壁的支 持力F1和悬绳的拉力 F2三个共点力作用而平衡,由共点力 平衡的条件可知,F1和F2的合力F与G大小相等、方向相反, 即F=G,从图中力的平行四边形可求得:
Fx合=0 零.即 Fy合=0
特别提醒: 正确区分“静止”和“v=0”.物体处于静止状态时, v=0,a=0是平衡状态;但是,当v=0时,物体不一定处
于平衡状态,如自由落体运动初始状态或竖直上抛运动物
体到达最高点时v=0,但a=g,不是平衡状态.
如图所示,斗牛将人高高挑起处于静止状态,则下列 说法正确的是 ( )
点评:相对解析法而言,作图法比较直观,本题是定
性比较问题,选用作图法较为方便,平行四边形是由两个 全等的三角形构成,因而在分析动态变化问题时选用三角 形定则更为方便.
(安徽阜阳一中09-10学年高一上学期期末)在固定于
地面的斜面上垂直安放了一个挡板,截面为圆的柱状物体 甲放在斜面上,半径与甲相等的光滑圆球乙被夹在甲与挡 板之间,没有与斜面接触而处于静止状态,如图所示.现 在从球心O1处对甲施加一平行于斜面向下的力F,使甲沿
一个人站在体重计的测盘上,在人下蹲的过程中(如下
图所示),指针示数变化应是____________.
答案:先减小,后增加,再还原 解析:人蹲下的过程经历了加速向下、减速向下和静
止这三个过程.
一种巨型娱乐器械——“跳楼机”(如图所示)可以使人 体验超重和失重.一个可乘十多个人的环形座舱套装在竖 直柱子上,由升降机送上几十米的高处,然后让座舱自由
两力的合力与第三力等大、反向求源自,可以据力三角形求 解,也可用正交分解法求解.
解法1 用合成法
取足球作为研究对象,它们受重力G=mg、墙壁的支 持力F1和悬绳的拉力 F2三个共点力作用而平衡,由共点力 平衡的条件可知,F1和F2的合力F与G大小相等、方向相反, 即F=G,从图中力的平行四边形可求得:
Fx合=0 零.即 Fy合=0
特别提醒: 正确区分“静止”和“v=0”.物体处于静止状态时, v=0,a=0是平衡状态;但是,当v=0时,物体不一定处
于平衡状态,如自由落体运动初始状态或竖直上抛运动物
体到达最高点时v=0,但a=g,不是平衡状态.
如图所示,斗牛将人高高挑起处于静止状态,则下列 说法正确的是 ( )
点评:相对解析法而言,作图法比较直观,本题是定
性比较问题,选用作图法较为方便,平行四边形是由两个 全等的三角形构成,因而在分析动态变化问题时选用三角 形定则更为方便.
(安徽阜阳一中09-10学年高一上学期期末)在固定于
地面的斜面上垂直安放了一个挡板,截面为圆的柱状物体 甲放在斜面上,半径与甲相等的光滑圆球乙被夹在甲与挡 板之间,没有与斜面接触而处于静止状态,如图所示.现 在从球心O1处对甲施加一平行于斜面向下的力F,使甲沿
4-7-1用牛顿运动定律解决问题(二)共点力的平衡条件

例3搬运工用砖卡搬砖头时,砖卡对砖头的水 平作用力为F,如右图所示,每块砖的质量为 m,设所有接触面间的动摩擦因数均为μ,则 第二块砖对第三块砖的摩擦力大小为 ( )
mg A. 2 C.μF
μF B. 5 D.2mg
解析:先整体分析,将5块砖作为一个整体,可得: 砖块1的左侧面和砖块5的右侧面所受摩擦力大小相等, 5 均为 mg,方向均为竖直向上.然后将砖块1、2作为一 2 个小整体隔离出来,则它们受三个力的作用:重力 5 2mg、砖卡对它们向上的摩擦力 mg、砖块3对它们的摩 2 擦力.物体在三个力作用下处于平衡状态,因此第2块砖 mg 和第3块砖之间的摩擦力为 ,故答案应选A项. 2
3.正交分解法 将不在坐标轴上的各力分别分解到x轴上和y轴上, F 合=0 x 运用两坐标轴上的合力等于零的条件 解题, Fy合=0 多用于三个以上共点力作用下的物体的平衡.值得注 意的是:对x、y方向选择时,尽可能使落在x、y轴上的 力最多;被分解的力尽可能是已知力,不宜分解待求 力.
第一课时
共点力的平衡条件
知识与技能 1.理解共点力的平衡条件. 2.能应用共点力的平衡条件解决平衡问题. 过程与方法 学会应用共点力平衡条件求解平衡问题的基 本方法. 情感、态度与价值观 学会由牛顿定律推导物体的平衡条件.
你看过走钢丝的杂技表演吗?你玩过不倒翁 吗?(见下图)你想探究一下什么是平衡和平衡 条件吗?
1.平衡状态 一个物体在共点力作用下,保持静止状态或 匀速直线运动状态,则这个物体处于平衡状 态.例如沿水平路面匀速行驶的汽车、悬挂 在房顶的吊灯、工厂里耸立的大烟囱、宏伟 的跨海大桥等等,都处于平衡状态.
特别提醒: 静止与v=0是两个不同的概念.v=0且a=0同 时满足时为静止,仅有v=0但a≠0,不是静止, 例如小球上抛运动到最高点v=0但a=g,不是 静止状态,自然也不是平衡状态.
用牛顿运动定律解决问题(二)

第四章 第7节
第27页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
(五)类题训练巩固提升 如图所示,质量为m的物体,在水平力F的作用下,沿倾角 为α的粗糙斜面向上做匀速运动,求水平推力的大小.
第四章 第7节
第28页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
第四章 第7节
第31页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
2.超重、失重的分析
第四章 第7节
第32页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
第四章 第7节
第33页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
[例1]
共研经典 如图所示,在一细绳C点系住一重物P,细绳两端
A、B分别固定在墙上,使AC保持水平,BC与水平方向成30° 角,已知细绳最多只能承受200 N的拉力,那么C点悬挂重物的 重力最多为多少?这时细绳的哪一段即将拉断?
第四章 第7节
第23页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
课前新知预习 课堂师生共研 课后提升考能
(一)授你破题锦囊 由物体的重力大于钢丝的最大拉力,明确物体所处的状 态.
合力为零 2.平衡条件:__________.
第四章 第7节
第5页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
当物体的速度为零时,是否一定处在平衡状态?
提示:不一定,如物体竖直上抛到最高点时,速度为零, 但合外力为重力,物体没有处在平衡状态.
第27页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
(五)类题训练巩固提升 如图所示,质量为m的物体,在水平力F的作用下,沿倾角 为α的粗糙斜面向上做匀速运动,求水平推力的大小.
第四章 第7节
第28页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
第四章 第7节
第31页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
2.超重、失重的分析
第四章 第7节
第32页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
第四章 第7节
第33页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
[例1]
共研经典 如图所示,在一细绳C点系住一重物P,细绳两端
A、B分别固定在墙上,使AC保持水平,BC与水平方向成30° 角,已知细绳最多只能承受200 N的拉力,那么C点悬挂重物的 重力最多为多少?这时细绳的哪一段即将拉断?
第四章 第7节
第23页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
课前新知预习 课堂师生共研 课后提升考能
(一)授你破题锦囊 由物体的重力大于钢丝的最大拉力,明确物体所处的状 态.
合力为零 2.平衡条件:__________.
第四章 第7节
第5页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
当物体的速度为零时,是否一定处在平衡状态?
提示:不一定,如物体竖直上抛到最高点时,速度为零, 但合外力为重力,物体没有处在平衡状态.
高一物理《47 用牛顿运动定律解决问题(2)》课件

(g取10 m/s2).
【解析】 人举物体时,其最大举力是确定的,由于电梯做加速
运动,物体有“超重”和“失重”两种情况,其运动可由牛顿 第二定律分析.加速下降时,合外力向下,对物体而言,重力大于 举力.反之,重力小于举力. (1)站在地面上的人,最大举力为 F=m1g=60×10 N=600 N. 在加速下降的电梯内,人的最大举力F仍为600 N,由牛顿第二 定律得m2g-F=m2a,
a=0时,是静止,是平衡状态 v=0 a≠0时,不是静止,不是平衡状态
2.对共点力作用下物体平衡条件的理解 (1)合
=0. ,其中 Fx
合
Fx合=0 ② Fy合=0
和 Fy
合
分别是将力进
行正交分解后, 物体在 x 轴和 y 轴上所受的合力.
根据一个物体受三个力作用处于平衡状态,则三个力的 任意二个力的合力大小等于第三个力大小,方向与第三个力 方向相反.在如右图所示中可得出F1与F2的合力F合竖直向 上,大小等于F,由三角函数关系
可得出:F合=F1· 30°=F=mPg,F2=F1· 30°.当F1达到最 sin cos
大值200 N时,mPg=100 N,F2=173 N,在此条件下,BC段绳子即
(1)判断超、失重现象关键是看加速度方向,而不是运动方向.
(2)处于超重状态时,物体可能做向上加速或向下减速运动. (3)处于失重状态时,物体可能做向下加速或向上减速运动.
下列说法正确的是(
)
A.游泳运动员仰卧在水面静止不动时处于失重状态
B.蹦床运动员在空中上升和下落过程中都处于失重状态 C.举重运动员在举起杠铃后不动的那段时间内处于超重状态
mg A.F= B.F=mgtan θ tan θ mg C.FN= D.FN=mgtan θ tan θ
2014-2015学年高中物理 4.7 用牛顿运动定律解决问题(二)课件 新人教版必修1

【盲区扫描】 1.静止或匀速直线运动状态都是平衡状态。
2.处于平衡状态的物体所受的合力一定为零。
3.超重时物体的视重增大,失重时物体的视重减小。
4.加速度方向向上时物体超重,加速度方向向下时物体失重。
5.加速度为g时,物体完全失重。
6.物体向上运动时不一定超重,物体向下运动时不一定失重。
7.不管是超重还是失重,物体所受的重力不发生变化。
【通关1+1】 1.(拓展延伸)【示范题】中,假设物体Q与桌面之间的最大静摩 擦力为200N,若使物体Q仍保持静止,则OC绳所悬挂物体的重力 不得超过多少? 【解析】对结点O和物体Q受力分析,如图所示:
经分析可知,当物体Q所受的摩擦力为最大静摩擦力时,OC绳所 悬挂物体的重力最大, 此时FOB=Ffmax=200N。 对结点O,由平衡条件可得, 在x方向上:FAOsin30°=FBO 在y方向上:FAOcos30°=FCO
1 v 0 t- gt 2 (1)位移与时间的关系:x=_________ 。 2
2-v 2=-2gx v 0 (2)速度与位移之间的关系:______________ 。
【自我思悟】 物体在任何星球表面附近自由下落时的加速度都相同吗? 提示:一般不相同。物体在不同星球表面附近所受的重力一般 不同,故加速度一般不相同。
FN m人 g m人
=
以物体为研究对象,设弹簧测力计对物体的拉力为FT,则根据牛 顿第二定律得FT-mg=ma,所以FT=m(g+a)=50×(10+2)N=600N,即 弹簧测力计的示数为600N。 答案:600N
2.(多选)(2014·乌鲁木齐高一检测)弹簧测力计挂在升降机 的顶板上,下端挂一质量为2kg的物体。当升降机在竖直方向 运动时,弹簧测力计的示数始终是16N。如果从升降机的速度 大小为3m/s时开始计时,则经过1s,升降机的位移大小可能是 (g取10m/s2)( A.3m ) B.8m C.2m D.4m
4.7用牛顿运动定律解决问题(二)2

mg
☆补充习题
3.如果质量为20kg的物体在30°的斜面上正好匀速下 滑,求斜面所受物体给他的压力和物体沿斜面下滑时 所受摩擦力的大小。(g=10m/s2)
F
mg sin
α
f
mg
mg cos
f mg sin 20 10 0.5N 100 N
3 F mg cos 20 10 N 100 3N 2
一、共点力平衡 回顾
几个力如果作用在物体的同一点,或者它们 的作用线相交于同一点,这几个力叫做共点力. 想一想:这些是不是共点力?
F浮
F拉 F风 F拉 F1 限 速 40km/s F2
G
F拉
G
不是
是
是
一、共点力平衡 伴你整理要点
1.如果一个物体在力作用下保持 静止状态 或 匀速直线运动状态 ,我们就说这个物体处于 平衡状态。 2. 处于平衡状态的物体速度 不变 , 加速度 为零 ,合外力 为零 。
3.竖直上抛运动的物体到达最高点的瞬间是否
处于平衡状态?为什么? 不是,因为加速度不为零,物体的速度改变 .
二、探究共点力平衡条件 二力平衡条件
同体
等值
反向
共线
F2
F1
一对平衡力的合力等于 零 。
二、探究共点力平衡条件
二、探究共点力平衡探究 伴你整理要点 共点的平衡条件: 合外力等于零。
应用: 二力平衡:二力大小相等,方向相反,作用 在同一直线上。 三力平衡:任意两力的合力与第三个力大小相 等,方向相反,作用在同一直线上。
10N
20 N
☆补充习题
7.如图所示,木块B重160 N,它与水平面间的动摩擦
因数为0.2,最大静摩擦力为40N,为了保持系统平衡,
第4讲 牛顿运动定律的综合应用(二)

2 μgL 。显然,若v带< 2 μgL ,则物体在传送带上 其离开传送带时的速度为v= 2 μgL ,则物体在传送带上将一直加速运动。 将先加速,后匀速运动;若v带≥
甲 (2)v0≠0,且v0与v带同向,如图乙所示。
乙 ①v0<v带时,由(1)可知,物体刚放到传送带上时将做a=μ g的匀加速运动。假
v3=v1+a2Δt ⑩
碰撞后至木板和小物块刚好达到共同速度的过程中,木板的位移为
v1 v3 s1= Δt 2
小物块的位移木板的位移为
Δs=s2-s1
联立⑥⑧⑨⑩ 式,并代入数据得 Δs=6.0 m 因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0 m。 (3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加 速度为a4,此过程中小物块和木板运动的位移为s3。由牛顿第二定律及运动 学公式得
mg sin α(α为传送带的倾角)。
(2)物体和传送带一起加速运动 ①若物体和传送带一起向上加速运动,传送带的倾角为α,则对物体有f-mg sin α=ma,即物体受到的静摩擦力方向沿传送带向上,大小为f=ma+mg sin α。
②若物体和传送带一起向下加速运动,传送带的倾角为α,则静摩擦力的大 小和方向决定于加速度a的大小。 当a=g sin α时,无静摩擦力; 当a>g sin α时,有mg sin α+f=ma,即物体受到的静摩擦力方向沿传送带向下,
v 5 t 2= = s=1 s a 5 v 2 25 s2= = =2.5 m 2a 10
s3=s1-s2=(10-2.5) m=7.5 m,
3 t 3= =1.5 s
s v
t总=t1+t2+t3=4.5 s
甲 (2)v0≠0,且v0与v带同向,如图乙所示。
乙 ①v0<v带时,由(1)可知,物体刚放到传送带上时将做a=μ g的匀加速运动。假
v3=v1+a2Δt ⑩
碰撞后至木板和小物块刚好达到共同速度的过程中,木板的位移为
v1 v3 s1= Δt 2
小物块的位移木板的位移为
Δs=s2-s1
联立⑥⑧⑨⑩ 式,并代入数据得 Δs=6.0 m 因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0 m。 (3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加 速度为a4,此过程中小物块和木板运动的位移为s3。由牛顿第二定律及运动 学公式得
mg sin α(α为传送带的倾角)。
(2)物体和传送带一起加速运动 ①若物体和传送带一起向上加速运动,传送带的倾角为α,则对物体有f-mg sin α=ma,即物体受到的静摩擦力方向沿传送带向上,大小为f=ma+mg sin α。
②若物体和传送带一起向下加速运动,传送带的倾角为α,则静摩擦力的大 小和方向决定于加速度a的大小。 当a=g sin α时,无静摩擦力; 当a>g sin α时,有mg sin α+f=ma,即物体受到的静摩擦力方向沿传送带向下,
v 5 t 2= = s=1 s a 5 v 2 25 s2= = =2.5 m 2a 10
s3=s1-s2=(10-2.5) m=7.5 m,
3 t 3= =1.5 s
s v
t总=t1+t2+t3=4.5 s
4-7用牛顿运动定律解决问题(二)

第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
解法 3 用相似三角形求解
第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
取足球作为研究对象,其受重力 G、墙壁的支持力 F1、 悬绳的拉力 F2,如图所示,设球心为 O,由共点力的平衡条 件可知,F1 和 G 的合力 F 与 F2 大小相等、方向相反,由图 F AO 1 可知,三角形 OFG 与三角形 AOB 相似,所以G= AB= cosα F2=G/cosα=mg/cosα F1 OB G =AB=tanα F1=Gtanα=mgtanα。
第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
(3)在完全失重状态下,平常由重力产生的一切物理现象 都会完全消失,比如物体对桌面无压力,单摆停止摆动,浸 在水中的物体不受浮力等。靠重力才能使用的仪器,也不能 再使用,如天平、液体气压计等。
第四章
7.用牛顿运动定律解决问题(二)
第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
考点题型设计
第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
题型 1
物体的平衡
沿光滑的墙壁用网兜把一个足球挂在 A 点(如图),
足球的质量为 m, 网兜的质量不计, 足球与墙壁的接触点为 B, 悬绳与墙壁的夹角为 α, 求悬绳对球的拉力和墙壁对球的支持 力。
匀速直线运动 状态,则该物体处于平衡状态。
3.平衡条件: 共点力作用下物体的平衡条件是 合力为零,即 F 合=0。
第四章
牛顿第二定律及两类基本问题-PPT课件

31
解析:(1)物体做初速度为零的匀加速直线运动,设其加速度为 a0.
则有
L=
1 2
a0
t02
由牛顿第二定律得 F-Ff=ma0,Ff=μmg
联立以上三式,并代入数据得:μ=0.5. (2)有力作用时,设物体的加速度大小为 a,由牛顿第二定律 得:Fcos 37°-μ(mg-Fsin 37°)=ma
二、动力学两类基本问题
1.由受力情况判断物体的运动情况:处理这类问题 的基本思路是:先求出几个力的合力,由牛顿第二定 律(F 合=ma)求出加速度,再由运动学的有关公式求 出速度或位移.
4
2.由运动情况判断物体的受力情况:处理这类问题的 基本思路是:已知加速度或根据运动规律求出加速度, 再由牛顿第二定律求出合力,从而确定未知力.
27
(3)选取正方向或建立坐标系.通常以加速 度的方向为正方向或以加速度方向为某一 坐标轴的正方向. (4)求合力 F 合. (5)根据牛顿第二定律 F 合=ma 列方程求解, 必要时还要对结果进行讨论.
28
【例 3】(2013 菏泽模拟) 如图,质量 m=2 kg 的物体 静止于水平地面的 A 处,A、B 间距 L=20 m.用大小为 30 N,沿水平方向的外力拉此 物体,经 t0=2 s 拉至 B 处.(已知 cos 37°=0.8,sin 37°=0.6, 取 g=10 m/s2). (1)求物体与地面间的动摩擦因数μ; (2)用大小为 30 N,与水平方向成 37°的力斜向上拉此物体, 使物体从 A 处由静止开始运动并能到达 B 处,求该力作用的最 短时间 t.
木块 2 根据牛顿第二定律可得(m+M)g=Ma2,即
mM
a2=
g,因此选项 C 正确,选项 A、B、D 错误.
解析:(1)物体做初速度为零的匀加速直线运动,设其加速度为 a0.
则有
L=
1 2
a0
t02
由牛顿第二定律得 F-Ff=ma0,Ff=μmg
联立以上三式,并代入数据得:μ=0.5. (2)有力作用时,设物体的加速度大小为 a,由牛顿第二定律 得:Fcos 37°-μ(mg-Fsin 37°)=ma
二、动力学两类基本问题
1.由受力情况判断物体的运动情况:处理这类问题 的基本思路是:先求出几个力的合力,由牛顿第二定 律(F 合=ma)求出加速度,再由运动学的有关公式求 出速度或位移.
4
2.由运动情况判断物体的受力情况:处理这类问题的 基本思路是:已知加速度或根据运动规律求出加速度, 再由牛顿第二定律求出合力,从而确定未知力.
27
(3)选取正方向或建立坐标系.通常以加速 度的方向为正方向或以加速度方向为某一 坐标轴的正方向. (4)求合力 F 合. (5)根据牛顿第二定律 F 合=ma 列方程求解, 必要时还要对结果进行讨论.
28
【例 3】(2013 菏泽模拟) 如图,质量 m=2 kg 的物体 静止于水平地面的 A 处,A、B 间距 L=20 m.用大小为 30 N,沿水平方向的外力拉此 物体,经 t0=2 s 拉至 B 处.(已知 cos 37°=0.8,sin 37°=0.6, 取 g=10 m/s2). (1)求物体与地面间的动摩擦因数μ; (2)用大小为 30 N,与水平方向成 37°的力斜向上拉此物体, 使物体从 A 处由静止开始运动并能到达 B 处,求该力作用的最 短时间 t.
木块 2 根据牛顿第二定律可得(m+M)g=Ma2,即
mM
a2=
g,因此选项 C 正确,选项 A、B、D 错误.
物理:4.7《用牛顿运动定律解决问题(二)》课件(新人教版必修1)

学点1 学点 共点力的平衡条件
⑴平衡状态:如果一个物体在力的作用下,保持静止或匀速 平衡状态:如果一个物体在力的作用下, 直线运动状态,我们就说这个物体处于平衡状态。 直线运动状态,我们就说这个物体处于平衡状态。 ⑵共点力作用下物体的平衡条件是合力为0。 共点力作用下物体的平衡条件是合力为0 ⑶平衡条件的四个推论 若物体在两个力同时作用下处于平衡状态, ①若物体在两个力同时作用下处于平衡状态,则这两个力大小 相等、方向相反,且作用在同一直线上,其合力为零, 相等、方向相反,且作用在同一直线上,其合力为零,这就是初中 学过的二力平衡。 学过的二力平衡。 物体在三个共点力作用下处于平衡状态, ②物体在三个共点力作用下处于平衡状态,任意两个力的合力 与第三个力等大、反向。 与第三个力等大、反向。 物体在n个非平行力同时作用下处于平衡状态时 个非平行力同时作用下处于平衡状态时, 个力必定 ③物体在 个非平行力同时作用下处于平衡状态时,n个力必定 共面共点,合力为零,称为n个共点力的平衡 其中任意(n-1)个力 个共点力的平衡, 共面共点,合力为零,称为 个共点力的平衡,其中任意 个力 的合力必定与第n个力等大 反向,作用在同一直线上。 个力等大、 的合力必定与第 个力等大、反向,作用在同一直线上。 当物体处于平衡状态时, ④当物体处于平衡状态时,沿任意方向物体的合力均为零。
学点2 学点 超重和失重 (1)实重:物体实际所受的重力。物体所受重力不会因 实重:物体实际所受的重力。 物体运动状态的改变而变化。 物体运动状态的改变而变化。 视重:当物体在竖直方向有加速度时( (2)视重:当物体在竖直方向有加速度时(即ay≠0), ), 物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力, 物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力, 此时弹簧测力计或台秤的示数叫物体的视重。 此时弹簧测力计或台秤的示数叫物体的视重。 说明: 说明:正因为当物体竖直方向有加速度时视重不再等于 实重,所以我们在用弹簧测力计测物体重力时, 实重,所以我们在用弹簧测力计测物体重力时,强调应在静止 或匀速运动状态下进行。 或匀速运动状态下进行。 (3)对超重现象的理解 ) 特点: ①特点:具有竖直向上的加速度 运动形式:物体向上加速运动或向下减速运动 物体向上加速运动或向下减速运动。 ②运动形式 物体向上加速运动或向下减速运动。 说明:当物体处于超重状态时,只是拉力( 说明:当物体处于超重状态时,只是拉力(或对支持物的 压力)增大了,是视重的改变,物体的重力始终未变。 压力)增大了,是视重的改变,物体的重力始终未变。
4-7-2用牛顿运动定律解决问题(二)超重和失重、从动力学看自由落体运动

规律总结:(1)判断超重现象和失重现象,其 关键是看加速度的方向,而不是运动的方 向. (2)如知道物体处于超重状态,只能知道物体 的加速度方向向上,物体是向上加速、还是 向下减速却无法判断. (3)如求物体的视重,则可选加速度方向为正 方向,分析物体受力,利用牛顿第二定律求 得.
变式训练1 一个人站在磅秤上,在他蹲下的 过程中,磅秤的示数将 ( ) A.先小于体重,后大于体重,最后等于体 重 B.先大于体重,后小于体重,最后等于体重 C.先小于体重,后等于体重 D.先大于体重,后等于体重 答案:A
解析:人蹲下的过程经历了加速向下,减速 向下和静止这三个过程. 在加速向下时,人获得向下的加速度a,由牛 顿第二定律得: mg-FN=ma. FN=m(g-a)<mg. 由此可知弹力FN将小于重力mg.
F=mg F=mg
F=m(g F>mg +a) F=m(g F<mg
特别提醒:
(1)超重与失重不是重力本身变了,而是物体 对竖直悬绳的拉力或对水平支持物的压力发 生了变化,若弹力大于重力是超重,反之是 失重. (2)从牛顿第二定律可以知道,加速度方向是 超失重判断的关键,若加速度方向向上(包括 斜向上),物体处于超重状态;若加速度方向 向下(包括斜向下),物体处于失重状态. (3)利用超失重现象可以依据加速度方向定性 的分析弹力的情况,以避免直接列式计算的 繁琐.
1 2 2h ∵h= gt ,t= 2 g 2×0.45 t1= s=0.3s 10 从最高点下落至手触水面,所需的时间为: 2×10.45 t2= s≈1.4s. 10 所以运动员在空中用于完成动作的时间约为: t=1.7s.
第七课时 用牛顿运动定律解决问题(二)

栏 目 链 接
答案:AD
知 识 清 单
要点2
超重和失重
1 .不论物体处于何种运动状态,物体的重力并不发
生变化. 2.超重:当物体具有 ________ 向上 的加速度时 (包括向上 加速或向下减速两种情况),物体对支持物的压力(或对悬挂 物的拉力)________ 大于 物体所受重力的现象. 3.失重:物体具有 ________ 向下 的加速度时(包括向下加 速或向上减速两种情况),物体对支持物的压力(或对悬挂物 的拉力)________ 小于 自身重力的现象.
栏 目 链 接
由牛顿第三定律,人对座椅的压力FN2′=FN2,则 FN2′ 8 mg =3. 8 答案:(1)0 (2) 3 名师点睛:解此类题同样要正确选取研究对象,以加 速度方向为正方向,应用牛顿第二定律列式求解.还要注 意的是,应用牛顿第二定律求解的结果是人受的力,还要 根据牛顿第三定律加以说明.
零的状态.
综 合 拓 展
2.求解共点力作用下物体平衡的方法.
(1) 解三角形法:这种方法主要用来解决三力平衡问
题.根据平衡条件并结合力的合成或分解的方法,把三个
栏 目 链 接
平衡力转化为三角形的三条边,然后通过解这个三角形求
解平衡问题.若力的三角形不是直角三角形,可利用力的 三角形与空间几何三角形相似求解. (2)正交分解法:处理三力或三力以上的平衡问题时非 常方便.此时平衡条件可表示为Fx合=0,Fy合=0.
栏 目 链 接
解析:设座舱距地面30 m时速度为v,h1=50 m, h2=30 m. (1)开始自由下落过程人和座舱只受重力,此时a= g,由牛顿第二定律得:mg-FN1=ma则FN1=0
(2)开始自由下落的阶段,由运动学公式得: v2=2gh1① 制动减速阶段,由运动学公式得:v2=2ah2② 由牛顿第二定律得:FN2-mg=ma③ 5 由①②得:a= g④ 3 8 由③④得:FN2= mg 3
答案:AD
知 识 清 单
要点2
超重和失重
1 .不论物体处于何种运动状态,物体的重力并不发
生变化. 2.超重:当物体具有 ________ 向上 的加速度时 (包括向上 加速或向下减速两种情况),物体对支持物的压力(或对悬挂 物的拉力)________ 大于 物体所受重力的现象. 3.失重:物体具有 ________ 向下 的加速度时(包括向下加 速或向上减速两种情况),物体对支持物的压力(或对悬挂物 的拉力)________ 小于 自身重力的现象.
栏 目 链 接
由牛顿第三定律,人对座椅的压力FN2′=FN2,则 FN2′ 8 mg =3. 8 答案:(1)0 (2) 3 名师点睛:解此类题同样要正确选取研究对象,以加 速度方向为正方向,应用牛顿第二定律列式求解.还要注 意的是,应用牛顿第二定律求解的结果是人受的力,还要 根据牛顿第三定律加以说明.
零的状态.
综 合 拓 展
2.求解共点力作用下物体平衡的方法.
(1) 解三角形法:这种方法主要用来解决三力平衡问
题.根据平衡条件并结合力的合成或分解的方法,把三个
栏 目 链 接
平衡力转化为三角形的三条边,然后通过解这个三角形求
解平衡问题.若力的三角形不是直角三角形,可利用力的 三角形与空间几何三角形相似求解. (2)正交分解法:处理三力或三力以上的平衡问题时非 常方便.此时平衡条件可表示为Fx合=0,Fy合=0.
栏 目 链 接
解析:设座舱距地面30 m时速度为v,h1=50 m, h2=30 m. (1)开始自由下落过程人和座舱只受重力,此时a= g,由牛顿第二定律得:mg-FN1=ma则FN1=0
(2)开始自由下落的阶段,由运动学公式得: v2=2gh1① 制动减速阶段,由运动学公式得:v2=2ah2② 由牛顿第二定律得:FN2-mg=ma③ 5 由①②得:a= g④ 3 8 由③④得:FN2= mg 3
人教版高中物理必修一用牛顿运动定律解决问题(二)课件

如果人下蹲后又突然站起,情况又会怎样?
物体对支持物 的压力(或对悬 挂物的拉力) 等 于0的情况称为 完全失重现象。
四、完全失重
瓶中的水为什么不会流出?
这是因为液体受到重力 而使内部存在压力,小 孔以上部分的水对以下 部分的水的压力造成小 孔处的水流出。
当瓶子自由下落时,瓶中 的水处于完全失重状态, 小孔以上部分的水对以下 部分的水的没有压力,小 孔没有水流出。
三、从物理走向生活
1、电梯从底楼到顶楼
匀加速上升 匀速上升 匀减速上升 支持力大于重力 超重 支持力大于重力
支持力小于重力 失重
三、从物理走向生活
2、电梯从顶楼到底楼
匀加速下降 匀速下降 匀减速下降 支持力小于重力 失重 支持力等于重力
支持力大于重力 超重
特别注意
“超重”、“失重”现象与物体运动的速度 方向和大小均无关,只决定于物体的加速度方 向.
爱在哪里,哪里就有感动;
梦在哪里,哪里就有未来;
你在哪里,哪里就有
汇文中学的真诚祝福
(09广东)某人在地面上用弹簧秤 称得体重为490N。他将弹簧秤移至 电梯内称其体重,t0至t3时间段内, 弹簧秤的示数如图所示,电梯运行 的v-t图可能是(取电梯向上运动的 方向为正)
物体对支持物 的压力(或对悬 挂物的拉力) 大于物体所受 到的重力的情 况称为超重现 象。
思考
a 运动 v 类型 方向 方向 加速 上升 减速 上升 加速 下降 减速 下降 方程
发现
压力F,大小 F,与mg (F,=F) 谁大 现象
F—mg=ma F,=mg+ma F, >mg 超重
物体对支持物 的压力(或对悬 挂物的拉力) 小于物体所受 到的重力的情 况称为失重现 象。
4.7用牛顿运动定律解决问题(二)1

运动 过程 加速上升
速度 方向
ห้องสมุดไป่ตู้
加速度 合外力 FN与G 物体 方向 方向 的关系 状态
↑ ↓ ↑ ↓ ↓ ↑
↑ ↑ ↓ ↓ 0 0
↑ ↑ ↓ ↓ 0 0
FN>G FN>G FN<G FN<G FN=G FN=G
超重 超重 失重 失重 平衡 平衡
电 梯 的 运 动 过 程
减速下降 减速上升 加速下降 匀速下降 匀速上升
解:减速上升时,物体 处于失重状态
F1 mg ma
50 10 N 50 2 N 400 N
减速下降时,物体处于 超重状态
F2 mg ma
50 10 N 50 2 N 600 N
三、完全失重
三、完全失重
例3.在完全失重的情形下,下列说法不正确的是( )
2、如何判断物体处于超重还是失重状态? 1、只要物体向上运动,一定是超重。这种说法 正确吗?
例1. 质量为m人站在电梯中。 ①人和电梯匀速上升时,人对地板的压力F=
mg
. F
②人随电梯以加速度a匀加速上升时,人对地板的压力 F= mg ma .
③人随电梯以加速度a匀减速下降时,人对地板的压力 F= mg ma. mg
7
用牛顿运动定律解决问题(二) 第二课时
电梯里台秤的示数为什么会变化呢?
一、超重现象
一、超重现象 超重是否物体的重力增加了吗? 重力不变压力变 F F
mg
mg
v
a
向上加速
请思考:物体受到哪几个力?方向如何?谁大谁小? 与静止时相比较,哪个力发生了变化?如何求这几个 力的合力?
F mg ma
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当甲以30 N的力量收回绳子时,乙双手不动,只紧抓着绳子。
(1)在收绳过程中,是不是只有一人移动?
(2)求两人各自的加速度的大小和方向。
甲
乙
答(1)两个人同时受到30N的拉力,所以他们都移动
二,新课内容
1.什么样的状态叫做平衡状态?
答:如果物体在力的作用下保持静止或匀速直线运动 状态,我们就说这个物体处于平衡状态。
2.处于平衡状态的物体所受的合力有什么特点?
答:所受的合力为0。
例题1。城市中的路灯,无轨电车的供电线等,经常用三角形的结构悬挂。 图4.7-2为这类结构的一种简化模型。图中硬干OB可绕通过B点且垂直于 纸面的轴转动,钢索和干的重量都可忽略。如果悬挂物的重量是G,角 AOB等于θ,钢索OA对O点的拉力和杆OB对O点的支持力各是多大?
时开始制动,均匀减速。若某人手托着重力为50 N的铅球进行
这个游戏,当座舱下落至第4 s末的时刻,手对铅球托力大小是
125 N。
解:
F G ma
①
G mg m G 50 kg 5kg g 10
由①得
v/(m·s-1)
F
40
30
20
10
G
0 1 2 3 4 5 t/s
F G ma (50 515)N 125N
旁固定起来。物体的重力是40 N,绳子a与竖直方向的夹角 = 37°,绳子a与b
对物体的拉力分别是多大?
(sin 37° = 0.6,cos 37° = 0.8)
y
Fa
解:首先对物体进行受力分析,然后建立平面直 角坐标系,这时
Fb
x
Fa cos G 0
①
G
Fa sin Fb 0
②
由①得:
Fa
C
C.OC
D.OA
cos
G
Fa
G
cos
40N 0.8
50N
由②得:
Fa sin Fb Fb 50 0.6N 30N
超重和失重
例3.如图所示,人的质量为m,当电梯以加速度 a 加速上升时,人对 地板的压力 F' 是多大?
解: 沿向上的方向建立坐标轴 Oy ,根据牛顿第 二定律写出关于支持力F,重力G,质量m,加速度 a 的方程
三,强化练习
*1.有一种能获得强烈失重、超重感觉的巨型娱乐设施。先用电
梯把载有乘客的座舱送到大约二十几层楼高的高处,然后让座
舱自由落下,落到一定位置时,制动系统开始启动,座舱匀减
速运动至快到地面时刚好停下。座舱的v-t图象如图所示。座舱
加速下降过程中的加速度大小是 10m / s2
,座舱减速
下降过程中的加速度大小是 15m / s2 。座舱从开始落下 3 s
四,作业
1.复习本节课学过的内容 2.教材第89页问题与练习 1) 4)
2.三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,
它们共同悬挂一重物,如图所示,其中OB是水平的,A端、B
端固定。若逐渐增加C端所挂物体的质量,则最先断的绳是
(D )
y
A
A.可能是OB,也可能是OC B.OB
OBxBiblioteka 解:F2 F1 cos 0
F1 sin F3 0
(1) (2)
由(2)得出:
F1 sin
F3
F1
F3
sin
G
sin
由(1)得出:
F2
F1
cos
G sin
cos
cos sin
G
G tan
F1 sin F1 cos
例2.如图,用一根绳子a把物体挂起来,再用另一根水平的绳子b 把物体拉向一
F G ma
由此可得
F G ma mg ma m(g a)
人对地板的压力F’与地板支持力F的大小相等,
即 F' m(g a)
由于 m(g a) mg ,所以当电梯加速上升时,人对电梯地板的压力比 人受到的重力大。
物体对支持物的压力大于物体所受重力的现象,称为超重 现象
解:
物体对支持物的压力小于物体所受重力 的现象称为失重现象
一,课前检测
1.牛顿第二定律的内容是什么?它的表达式呢?
2.牛顿第三定律的内容是什么?
两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一 条直线上
3.如图所示,男生甲和女生乙各站在一块滑板上,分别抓着轻绳的一端。
甲与滑板的总质量为60 kg,乙与滑板的总质量为50 kg。忽略地面摩擦力。