2019-2020年九年级数学期中试卷及答案
2019-2020学年福建省福州九年级上学期期中考试数学试卷及答案解析
第 1 页 共 21 页
2019-2020学年福建省福州九年级上学期期中考试数学试卷
一.选择题:共10小题,每小题4分,共40分.每小题只有一项是符合题目要求的.
1.(4分)在平面直角坐标系中,若点A 在第一象限,则点A 关于原点的中心对称点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.(4分)方程x 2=4的解是( )
A .x =2
B .x =﹣2
C .x =0
D .x =2或x =﹣2
3.(4分)抛物线y =﹣x 2+2019的对称轴是( )
A .直线x =2019
B .直线x =﹣2019
C .x =﹣1
D .y 轴
4.(4分)如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( )
A .8
B .4
C .10
D .5
5.(4分)袋子中有2019个黑球、1个白球,他们除颜色外无其它差别.随机从袋子中摸出
一个球,则( )
A .摸到黑球、白球的可能性大小一样
B .这个球一定是黑球
C .事先能确定摸到什么颜色的球
D .这个球可能是白球
6.(4分)如图,一支反比例函数y =k x 的图象经过点A ,作AB ⊥x 轴于点B ,连接OA ,若
S △AOB =3,则k 的值为( )
A .﹣3
B .3
C .﹣6
D .6
7.(4分)国旗上大、小五角星的边长比是5:3,若大五角星的面积为50,则小五角星的
面积为( )。
2019-2020学年河北省保定十七中九年级(上)期中数学试卷(附答案详解)
2019-2020学年河北省保定十七中九年级(上)期中数学试卷一、选择题(本大题共17小题,共45.0分)1.下列方程中,是关于x的一元二次方程的是()A. 1x2+1x−2=0 B. ax2+bx+c=0C. 3x2+3x+7=3x2D. 5x2=42.如果2x=3y(x、y均不为0),那么下列各式中正确的是()A. xy =23B. xx−y=3 C. x+yy=53D. xx+y=253.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A.B.C.D.4.用配方法解一元二次方程x2−6x−10=0时,下列变形正确的为()A. (x+3)2=1B. (x−3)2=1C. (x+3)2=19D. (x−3)2=195.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A. 20B. 300C. 500D. 8006.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A. 12.36cmB. 13.6cmC. 32.36cmD. 7.64cm7.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A. 25B. 36C. 25或36D. −25或−368.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. OBCD =32B. αβ=32C. S1S2=32D. C1C2=329.若关于x的一元二次方程mx2+6x−9=0有两个实数根,则m的取值范围是()A. m≤1B. m≥−1C. m≤1且m≠0D. m≥−1且m≠010.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是()A. 1个B. 2个C. 3个D. 4个11.如图,在△ABC中,点D,E,F分别是AB,AC,BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于()A. 5:8B. 3:8C. 3:5D. 2:512.有长为24米的篱笆,一边利用墙(墙的最大可用长度为a=10米),围成如图所示的花圃,则能围成的花圃的最大面积为()平方米.A. 40B. 48C. 1003D. 140313.一个等腰三角形的两条边长分别是方程x2−7x+10=0的两根,则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或914.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEF=3,则S△BCF为()A. 3B. 6C. 9D. 1215.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a−b+ c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程2x2+mx+n=0既是“和谐”方程又是“美好”方程,则mn值为()A. 2B. 0C. −2D. 316.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N.设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A. 6B. 8C. 10D. 1217.如图,若干个正三角形的一边在同一条直线a上,这边对的顶点也在同一条直线b上,它们的面积依次为S1,S2,S3,S4…若S1=1,S2=2,则S6等于()A. 16B. 24C. 32D. 不能确定二、填空题(本大题共3小题,共10.0分)18.已知x=1是一元二次方程x2+mx+n=0的一个根,则2−m−n的值为______.19.如图,当太阳在A处时,小明测得某树的影长为2米,当太阳在B处时又测得该树的影长为8米.若两次日照的光线互相垂直,则这棵树的高度为______ 米.20.如图,已知在Rt△ABC中,AB=AC=3√2,在△ABC内作第一个内接正方形DEFG,则第1个内接正方形的边长______;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2020个内接正方形的边长为______.三、解答题(本大题共8小题,共76.0分)21.用适当的方法解方程:(1)2x2+3x=1;(2)(x−2)(x+5)=18;(3)(x−1)2=4;(4)x(3x−6)=(x−2)2.22.定义新运算“⊕”如下:当a≥b时,a⊕b=ab−a;当a<b时,a⊕b=ab+b.);(1)计算:(−2)⊕(−12(2)若2x⊕(x+1)=8,求x的值.23.如图,已知O是坐标原点,B、C两点的坐标分别为(3,−1)、(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)B点的对应点B′的坐标是______;C点的对应点C′的坐标是______(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标是______.24.小明正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题小明都不会,不过小明还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,随机选择一个选项,那么小明答对第一道题的概率是多少?(2)如果小明将“求助”留在第二题使用,请用画树状图或列表法求小明能顺利过关的概率.(3)请你从概率的角度分析,建议小明在第几题使用“求助”,才能使他过关的概率较大.25.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入−维护费用)26.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数分别是______、______.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第6个点阵中有______个圆圈;第n个点阵中有______个圆圈.(2)小圆圈的个数会等于331吗?请求出是第几个点阵.27.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF//AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2−7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S△AOE=16,试判断△AOE与△AOD是否相似?并说明理3由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.答案和解析1.【答案】D【解析】解:A、不是一元二次方程,故本选项不符合题意;B、当a=0时,不是一元二次方程,故本选项不符合题意;C、是一元一次方程,不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选:D.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键.2.【答案】B【解析】【分析】此题主要考查了比例的性质和应用,根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:A.∵2x=3y,∴xy =32,∴选项A不正确;B.∵2x=3y,∴xy =32,∴xx−y =33−2=3,∴选项B正确;C.∵2x=3y,∴xy =32,∴x+yy =3+22=52,∴选项C不正确;D.∵2x=3y,∴xy =32,∴xx+y =33+2=35,∴∴选项D不正确.故选B.3.【答案】C【解析】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选:C.根据左视图的定义,画出左视图即可判断.本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.4.【答案】D【解析】【分析】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.方程移项变形后,利用完全平方公式配方得到结果,即可做出判断.【解答】解:方程移项得:x2−6x=10,配方得:x2−6x+9=19,即(x−3)2=19.故选:D.5.【答案】C【解析】【分析】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中频率可以估计概率,难度不大.随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:C.6.【答案】A【解析】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比.理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.7.【答案】C【解析】解:设这个两位数的个位数字为x,那么十位数字应该是x−3,由题意得10(x−3)+x=x2,解得x1=5,x2=6;那么这个两位数就应该是25或36.故选:C.可设这个数的个位数为x,那么十位数字应该是x−3,由一个两位数等于它的个位数的平方,列出一元二次方程求解.本题要注意两位数的表示方法,然后根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.8.【答案】D【解析】【分析】根据相似三角形的性质判断即可.本题考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴OBOD =32,A错误;∴S1S2=94,C错误;∴C 1C 2=32,D 正确; 不能得出αβ=32,B 错误;故选:D . 9.【答案】D【解析】解:∵关于x 的一元二次方程mx 2+6x −9=0有两个实数根,∴△≥0且m ≠0,∴36+36m ≥0且m ≠0,∴m ≥−1且m ≠0,故选:D .根据一元二次方程的定义以及根的判别式的意义可得△=36+36m ≥0且m ≠0,求出m 的取值范围即可.本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a,b,c 为常数)根的判别式△=b 2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.【答案】C【解析】【分析】本题考查了相似三角形及相似多边形的判定,以及位似图形的概念;解题关键是熟练掌握相似三角形及相似多边形的性质及判定.解题时,根据相似三角形和相似多边形的判定方法进行判定即可.注意:对于菱形,矩形等多边形,即使角度对应相等,但边长的比例不确定,不能判断其相似.【解答】解:①中两个角对应相等,为相似三角形,故①正确;②顶角相等且为等腰三角形,即底角也相等,是相似三角形,故②正确;③菱形的角不确定,所以不一定相似,故③错误;④如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,题中所述正确,故④正确;所以①②④正确,故选C.11.【答案】A【解析】【分析】先由AD:DB=3:5,求得BD:AB的比,再由DE//BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF//AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.【解答】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE//BC,∴CE:AC=BD:AB=5:8,∵EF//AB,∴CF:CB=CE:AC=5:8.故选:A.12.【答案】D【解析】解:由题可知,花圃的宽AB为x米,则BC为(24−3x)米.24−3x≤10,x≥143,这时面积S=x(24−3x)=−3x2+24x=−3(x−4)2+48(143≤x<8),当x=143时,S有最大值是1403,∴能围成的花圃的最大面积为1403平方米,故选:D.可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式,求出最大值即可.本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.13.【答案】A【解析】【分析】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.求出方程的解,即可得出三角形的边长,再求出即可.【解答】解:x2−7x+10=0,(x−2)(x−5)=0,x−2=0,x−5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+ 5=12;即等腰三角形的周长是12.故选A.14.【答案】D【解析】【解析】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.利用平行四边形的性质得到AD//BC,AD=BC,则DE=1BC,再证明△DEF∽△BCF,然后根据相似三角形的性质计算S△BCF的值.2【答案】解:∵四边形ABCD为平行四边形,∴AD//BC,AD=BC,∵点E是边AD的中点,∴DE=1BC,2∵DE//BC,∴△DEF∽△BCF,∴S△DEFS△BCF =(DEBC)2=14,∴S△BCF=4×3=12.故选:D.15.【答案】B【解析】解:根据题意得“和谐”方程的一个根为1,“美好”方程的一个根为−1,所以一元二次方程2x2+mx+n=0的根为1和−1,所以2+m+n=0,2−m+n=0,解得m=0,n=−2,所以mn=0.故选:B.根据一元二次方程的定义,可判定“和谐”方程的一个根为1,“美好”方程的一个根为−1,则2+m+n=0,2−m+n=0,然后求出m、n的值后计算mn的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【答案】B【解析】【分析】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法及相似三角形的面积比等于相似比的平方是解题的关键.由条件可证明△BPQ∽△DKM∽△CNH,且能求得其相似比,再根据相似三角形的面积比等于相似比的平方,结合条件可求得S2.【解答】解:∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE//BF//DG//CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE//DF//CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴ABAD =BQMD=12,BQCH=ABAC=13,∴△BPQ∽△DKM∽△CNH,∴QBMD =12,∴S1S2=14,S1S3=19,∴S2=4S1,S3=9S1,∵S1+S3=20,∴S1=2,∴S2=8.故选:B.17.【答案】C【解析】解:∵△AEF、△BFG、△CGH 都是等边三角形,∴∠AFE=∠BGF=60°,∠BFG=∠CGH=60°,∴AF//BG,BF//CG,∴∠BAF=∠CBG,∠ABF=∠BCG,∴△ABF∽△BCG,∴AFBG =BFCG.∵△AEF、△BFG、△CGH都是等边三角形,∴△AEF∽△BFG∽△CGH,∴S△AEFS△BFG =(AFBG)2,S△BFGS△CGH=(BFCG)2,∴S△AEFS△BFG =S△BFGS△CGH,∴S1S2=S2S3,∴S22=S1⋅S3.∵S1=1,S2=2,∴S3=4.同理S32=S2⋅S4,则有S4=8;S42=S3⋅S5,则有S5=16;S52=S4⋅S6,则有S6=32.故选:C.易证△ABF∽△BCG,则有AFBG =BFCG.易得△AEF∽△BFG∽△CGH,则有S△AEFS△BFG=(AFBG)2,S△BFG S△CGH =(BFCG)2,从而可得S22=S1⋅S3,同理S32=S2⋅S4,S42=S3⋅S5,S52=S4⋅S6,就可求出S6,从而解决问题.本题主要考查了等边三角形的性质、相似三角形的判定与性质、三角形的面积等知识,运用相似三角形的面积比等于相似比的平方是解决本题的关键.18.【答案】3【解析】【分析】本题考查了一元二次方程的解.正确理解方程的解的含义是解答此类题目的关键.根据一元二次方程的解的定义,将x=1代入一元二次方程x2+mx+n=0,求得m+n 的值,即可得出答案.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴x=1满足一元二次方程x2+mx+n=0,∴1+m+n=0,∴m+n=−1,∴2−m−n=2−(m+n)=2+1=3.故答案是:3.19.【答案】4【解析】解:如图,∵两次日照的光线互相垂直,∴∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,又∵∠CDE=∠FDC=90°,∴△CDE∽△FDC,∴CDDF =DECD,由题意得,DE=2,DF=8,∴CD8=2CD,解得CD=4,即这颗树的高度为4米.故答案为:4.在图形标注字母,然后求出△CDE和△FDC相似,根据相似三角形对应边成比例可得CD DF =DECD,然后代入数据进行计算即可得解.本题考查了相似三角形的应用,平行投影,确定出相似三角形是解题的关键,标注字母更便于叙述.20.【答案】2122018【解析】解:∵在Rt△ABC中,AB=AC=3√2,∴∠B=∠C=45°,BC=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=13BC,∴DE=2,即第1个内接正方形的边长为2.∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴EIKI =PFEF=12,∴EI=12KI=12HI,∵DH=EI,∴HI=12DE=(12)2−1×2,第n个内接正方形的边长为:2×(12)n−1,则第n个内接正方形的面积为14n−2.∴第2020个内接正方形的边长为122018.故答案为:2;122018.首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出EI KI =PF EF =12,即可得出正方形边长之间的变化规律,得出答案即可.此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.21.【答案】解:(1)2x 2+3x −1=0,∵a =2,b =3,c =−1,∴Δ=b 2−4ac =32−4×2×(−1)=17>0,∴x =−b±√b 2−4ac 2a=−3±√174, ∴x 1=−3+√174,x 2=−3−√174;(2)(x −2)(x +5)=18;∵x 2+3x −28=0,∴(x +7)(x −4)=0,即x +7=0或x −4=0,∴x 1=−7,x 2=4;(3)∵x −1=±2,∴x −1=2或x −1=−2,∴x 1=3,x 2=−1;(4)x(3x −6)=(x −2)2,∵3x 2−6x =x 2−4x +4,∴x 2−x −2=0,∴(x −2)(x +1)=0,即x −2=0或x +1=0,∴x 1=2,x 2=−1.【解析】(1)先化为一般式2x 2+3x −1=0,可得a =2,b =3,c =−1,即可算出根的判别式△的值,根据求根公式计算即可得出答案;(2)先应用多项式乘法法则进行计算,再化为一般式,再应用十字相乘法进行分解即可得出答案;(3)应用直接开平方法进行求解即可得出答案;(4)先化为一般式,再应用十字相乘法进行求解即可得出答案.本题主要考查了解一元二次方程,熟练应用解一元二次方程的方法进行求解是解决本题的关键.22.【答案】解:(1)(−2)⊕(−12)=(−2)×(−12)+(−12)=1+(−12)=12;(2)当2x ≥x +1时,即:x ≥1时,2x(x +1)−2x =8,解得:x =±2,∵x ≥1,∴x =2;当2x <x +1时,即:x <1时,2x(x +1)+x +1=8,2x 2+3x −7=0解得:x 1=−3+√654,x 2=−3−√654, ∵x <1,∴x =−3−√654.【解析】(1)首先根据a ⊕b =ab −a ,认真分析找出规律,即可求出(−2)⊕(−12)的值;(2)首先分两种情况进行讨论,当2x ≥x +1和2x <x +1时,分别解出x 的取值范围,即可得出x 的值.此题考查了解一元二次方程−公式法,本题属于新定义题型,是近几年的考试热点之一.新定义题型需要依据给出的运算法则进行计算,这和解答实数或有理数的混合运算相同,其关键仍然是正确的理解与运用运算的法则.23.【答案】(1)如图,△OB′C′为所作;(2)(−6,2)(−4,−2)(3)(−2x,−2y)【解析】解:(1)见答案(2)B点的对应点B′的坐标是(−6,2);C点的对应点C′的坐标是(−4,−2);故答案为:(−6,2),(−4,−2)(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标为(−2x,−2y).故答案为:(−2x,−2y).(1)(2)把B、C点的横纵坐标都乘以−2得到B′、C′点的坐标,然后描点即可;(3)把P点的横纵坐标都乘以−2得到P′点的坐标.本题考查了作图−位似变换:利用关于原点为位似中心的对应点的坐标之间的关系先写出对应的坐标,然后描点画图.24.【答案】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:1;3;故答案为:13(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:19;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;∴建议小明在第一题使用“求助”.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】(1)60−x 10;200+x ;(60−x 10)×20;(2)依题意得:(200+x)(60−x 10)−(60−x 10)×20=14000,整理,得x 2−420x +32000=0,解得x 1=320,x 2=100.当x =320时,有游客居住的客房数量是:60−x 10=28(间).当x =100时,有游客居住的客房数量是:60−x 10=50(间).所以当x =100时,能吸引更多的游客,则每个房间的定价为200+100=300(元). 答:每间客房的定价应为300元.【解析】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为x 10,∴入住的房间数量=60−x 10,房间价格是(200+x)元,总维护费用是(60−x 10)×20.故答案为:60−x 10;200+x ;(60−x 10)×20;(2)见答案.(1)住满为60间,x 表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为x 10,入住量=60−房间空闲个数,列出代数式;(2)用每天的房间纯收入=每间房实际定价×入住量−总维护费用,每间房实际定价=200+x ,列出方程.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】48 6n 91 [n ×3(n −1)+1=3n 2−3n +1]【解析】解:图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以图8、图n 中黑点的个数分别是48,6n ;故答案为:48,6n ;(1)观察点阵可知:第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);发现规律:第n 个点阵中有圆圈个数为:n ×3(n −1)+1=3n 2−3n +1.故答案为:91;n ×3(n −1)+1=3n 2−3n +1.(2)会;第11个点阵.3n 2−3n +1=331整理得,n 2−n −110=0解得n 1=11,n 2=−10(负值舍去),答:小圆圈的个数会等于331,是第11个点阵.观察图形可得,图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数;(1)观察点阵可得,第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);进而发现规律:即可得第n个点阵中有圆圈个数;(2)3n2−3n+1=331,整理得,n2−n−110=0,解得n1=11,n2=−10(负值舍去),进而得结论.本题考查了规律型−图形的变化类,解决本题的关键是观察图形的变化,寻找规律,总结规律,运用规律.27.【答案】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO于点M,∴AM=12AO=52,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴APAC =AMAD,∴AP=t=258,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)如图2,过点O作OH⊥BC交BC于点H,则OH=12CD=12AB=3cm,由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE(ASA),∴BE=PD=8−t,则S△BOE=12BE⋅OH=12×3(8−t)=12−32t.∵FQ//AC,∴△DFQ∽△DOC,相似比为DQDC =t6,∴S△DFQS△DOC =t236,∵S△DOC=14S矩形ABCD=14×6×8=12cm2,∴S△DFQ=12×t236=t23,∴S五边形OECQF =S△DBC−S△BOE−S△DFQ=12×6×8−(12−32t)−t23=−13t2+32t+12;∴S与t的函数关系式为S=−13t2+32t+12;(3)存在,∵S△ACD=12×6×8=24,∴S五边形OECQF :S△ACD=(−13t2+32t+12):24=9:16,解得t=3,或t=32,∴t=3或32时,S五边形OECQF:S△ACD=9:16.【解析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)过点O作OH⊥BC交BC于点H,已知BE=PD,则可求△BOE的面积;可证得△DFQ∽△DOC,由相似三角形的面积比可求得△DFQ的面积,从而可求五边形OECQF的面积.(3)根据题意列方程得到t=3或t=32,可求解.本题是四边形综合题,考查了矩形的性质,角平分线的性质,相似三角形的判定和性质,图形面积的计算,全等三角形的判定和性质,正确的识别图形是解题的关键.28.【答案】解:(1)x2−7x+12=0,因式分解得,(x−3)(x−4)=0,由此得,x−3=0,x−4=0,所以,x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;(2)S△AOE=12×4⋅OE=163,解得OE=83,∵OEOA =834=23,OAOD=46=23,∴OEOA =OAOD,又∵∠AEO=∠OAD=90°,∴△AOE∽△AOD;(3)∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,∵OB=3,∴OC=6−3=3,由勾股定理得,AC=√OA2+OC2=√42+32=5,易求直线AB的解析式为y=43x+4,设点F的坐标为(a,43a+4),则AF2=a2+(43a+4−4)2=259a2,CF2=(a−3)2+(43a+4)2=259a2+143a+25,①若AF=AC,则259a2=25,解得a=±3,a=3时,43a+4=43×3+4=8,a=−3时,43a+4=43×(−3)+4=0,所以,点F的坐标为(3,8)或(−3,0);②若CF=AC,则259a2+143a+25=25,整理得,25a2+42a=0,解得a=0(舍去),a=−4225,4 3a+4=43×(−4225)+4=4425,所以,点F的坐标为(−4225,4425),③若AF=CF,则259a2=259a2+143a+25,解得a=−7514,4 3a+4=43×(−7514)+4=−4414,所以,点F的坐标为(−7514,−227),综上所述,点F的坐标为(3,8)或(−3,0)或(−4225,4425)或(−7514,−227)时,以A、C、F为顶点的三角形是等腰三角形.【解析】(1)利用因式分解法解一元二次方程即可;(2)利用三角形的面积求出OE,然后求出两个三角形夹直角的两边的比,再根据相似三角形的判定方法判定即可;(3)根据平行四边形的对边相等求出BC,再求出OC,然后利用勾股定理列式求出AC的长,再求出直线AB的解析式为y=43x+4,设出点F的坐标,然利用勾股定理列式求出AF2、CF2,再分三种情况列出方程求解即可.本题是四边形综合题型,主要利用了解一元二次方程,三角形的面积,相似三角形的判定与性质,等腰三角形的性质,难点在于(3)分情况讨论,利用勾股定理表示出△ACF的三条边求解更简便.。
2019-2020学年浙江省宁波市慈溪市九年级(上)期中数学试卷(解析版)
2019-2020学年浙江省宁波市慈溪市九年级(上)期中数学试卷一、选择题(每题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)“明年的11月8日是晴天”这个事件是()A.确定事件B.不可能事件C.必然事件D.不确定事件2.(4分)将抛物线y=x2向下平移一个单位,得到的抛物线解析式为()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2 3.(4分)如图,已知A,B,C在⊙O上,的度数为300°,∠C的度数是()A.30°B.40°C.50°D.60°4.(4分)黑色不透明口袋里装有红色、白色球共10个,它们除颜色外都相同.从口袋中随机摸出一个球,记下颜色后放回,并摇匀,不断重复上述实验1000次,其中200次摸到红球,则可估计口袋中红色球的个数是()A.2B.4C.6D.85.(4分)抛物线y=x2﹣2x﹣m2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限6.(4分)钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是()A.πB.πC.D.π7.(4分)一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是()A.B.C.D.8.(4分)在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有4个点在圆内,则r的取值范围为()A.2B.C.3D.59.(4分)已知抛物线y=x2+1具有如下性质:抛物线上任意一点到定点F(0,2)的距离与到x轴的距离相等,点M的坐标为(3,6),P是抛物线y=x2+1上一动点,则△PMF周长的最小值是()A.5B.9C.11D.1310.(4分)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了1.4m,则此时排水管水面宽为()A.1.2m B.1.4m C.1.6m D.1.8m11.(4分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个12.(4分)已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…04…y…0.37﹣10.37…则方程ax2+bx+1.37=0的根是()A.0或4B.或4﹣C.1或5D.无实根二、填空题(每空4分,共24分)13.(4分)如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为.14.(4分)已知⊙O的半径为1,则其内接正六边形的边长为.15.(4分)合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,求学生B坐在2号座位且C坐3号座位的概率是.16.(4分)过A,C,D三点的圆的圆心为E,过B,E两点的圆的圆心为D,如果∠A=60°,那么∠B为.17.(4分)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)18.(4分)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).若l经过这九个格点中的三个,则满足这样条件的抛物线条数为条.三、解答题(19题7分,20题9分,21-23题8分,24-25题12分,26题14分,共78分)19.(7分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.20.(9分)已知抛物线y=x2+(n﹣3)x+n+1经过坐标原点O,与x轴交于另一点A,顶点为B.求:(1)抛物线的解析式;(2)△AOB的面积;(3)要使二次函数的图象过点(10,0),应把图象沿x轴向右平移个单位.21.(8分)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°.求(1)⊙D的半径;(2)圆中阴影部分的面积(结果保留根号和π)22.(8分)在﹣2,﹣1,0,1,2这五个数中任意取两个数m,n,已知有二次函数y=(x ﹣m)2+n.(1)先取m=1,则从余下的数中任意取n,求二次函数图象与y轴交于负半轴的概率;(2)任意取两个数m,n,求二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率.23.(8分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中作出圆心O.24.(12分)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时:①请判断四边形BDCE的形状,并证明你的结论②当∠ABC为多少度时,点E在圆D上?请说明理由.25.(12分)某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了40%,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数y=kx+b,且x=35时,y=45;x=42时,y=38.(1)求一次函数y=kx+b的表达式;(2)若该商户每天获得利润(不计加工费用)为W元,试写出利润W与销售单价x之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?(3)若该商户每天获得利润不低于225元,试确定销售单价x的范围.26.(14分)已知如图,二次函数y=ax2+bx+2的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在y=ax2+bx+2的图象上,求出旋转中心P的坐标.2019-2020学年浙江省宁波市慈溪市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)“明年的11月8日是晴天”这个事件是()A.确定事件B.不可能事件C.必然事件D.不确定事件【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.【解答】解:“明年的11月8日是晴天”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题主要考查了必然事件、不可能事件、随机事件的概念.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.2.(4分)将抛物线y=x2向下平移一个单位,得到的抛物线解析式为()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=x2向下平移一个单位得到解析式:y=x2﹣1.故选:B.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.3.(4分)如图,已知A,B,C在⊙O上,的度数为300°,∠C的度数是()A.30°B.40°C.50°D.60°【分析】首先得到的度数,进而可得∠AOB的度数,再根据圆周角定理可得答案.【解答】解:∵的度数为300°,∴的度数为:360°﹣300°=60°,∴∠AOB=60°,∴∠C=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧所对的圆周角是圆心角的一半.4.(4分)黑色不透明口袋里装有红色、白色球共10个,它们除颜色外都相同.从口袋中随机摸出一个球,记下颜色后放回,并摇匀,不断重复上述实验1000次,其中200次摸到红球,则可估计口袋中红色球的个数是()A.2B.4C.6D.8【分析】由共摸了1000次,其中200次摸到红球,则有800次摸到白球,所以摸到红球与摸到白球的次数之比可求出,再用总球的个数乘以红球所占的百分比即可得出答案.【解答】解:共摸了1000次,其中200次摸到红球,则有800次摸到白球,∴红球与白球的数量之比为1:4,∴红球有10×=2(个).故选:A.【点评】本题考查的利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.解答此题的关键是要计算出口袋中红色球所占的比例..5.(4分)抛物线y=x2﹣2x﹣m2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据抛物线的顶点式求出抛物线y=x2﹣2x﹣m2(m是常数)的顶点坐标,再根据各象限内点的坐标特点进行解答.【解答】解:∵y=x2﹣2x﹣m2=(x﹣1)2+(﹣m2﹣1),∴顶点坐标为:(1,﹣m2﹣1),∵1>0,﹣m2﹣1<0,∴顶点在第四象限.故选:D.【点评】本题考查的是二次函数的性质及各象限内点的坐标特点,根据题意得出抛物线的顶点坐标是解答此题的关键.6.(4分)钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是()A.πB.πC.D.π【分析】从9点到9点15分分针扫过的扇形的圆心角是90°,利用扇形的面积公式即可求解.【解答】解:从9点到9点15分分针扫过的扇形的圆心角是90°,则分针在钟面上扫过的面积是:=π.故选:B.【点评】本题考查了扇形的面积公式,正确理解公式是关键.7.(4分)一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是()A.B.C.D.【分析】根据树形图即可求概率.【解答】解:根据树形图,可知蚂蚁可选择食物的路径有6条,即有6种等可能的结果,有食物的有两条.所以概率是.所以它获取食物的概率.故选:B.【点评】本题考查了用列表法与树形图法求概率,解决本题的关键是画出树形图.8.(4分)在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有4个点在圆内,则r的取值范围为()A.2B.C.3D.5【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.∵AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴3<r≤5时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有4个在圆内.故选:C.【点评】本题考查了点与圆的位置关系以及勾股定理,利用勾股定理求出各格点到点A 的距离是解题的关键.9.(4分)已知抛物线y=x2+1具有如下性质:抛物线上任意一点到定点F(0,2)的距离与到x轴的距离相等,点M的坐标为(3,6),P是抛物线y=x2+1上一动点,则△PMF周长的最小值是()A.5B.9C.11D.13【分析】过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,由PF=PE结合三角形三边关系,即可得出此时△PMF周长取最小值,再由点F、M的坐标即可得出MF、ME的长度,进而得出△PMF周长的最小值.【解答】解:过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,此时△PMF周长最小值,∵F(0,2)、M(3,6),∴ME=6,FM==5,∴△PMF周长的最小值=ME+FM=6+5=11.故选:C.【点评】本题考查了二次函数的性质以及三角形三边关系,根据三角形的三边关系确定点P的位置是解题的关键.10.(4分)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了1.4m,则此时排水管水面宽为()A.1.2m B.1.4m C.1.6m D.1.8m【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:作OE⊥AB于E,反向延长交CD于F,∵CD∥AB,∴EF⊥CD,∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了1.4m,∴OF=1.4﹣0.8=0.6m,∴CF===0.8m,∴CD=2CF=1.6m,∴此时排水管水面宽为1.6m,故选:C.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.11.(4分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选:B.【点评】主要考查图象与二次函数系数之间的关系.关键是注意掌握数形结合思想的应用.12.(4分)已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…04…y…0.37﹣10.37…则方程ax2+bx+1.37=0的根是()A.0或4B.或4﹣C.1或5D.无实根【分析】利用抛物线经过点(0,0.37)得到c=0.37,根据抛物线的对称性得到抛物线的对称轴为直线x=2,抛物线经过点(,﹣1),由于方程ax2+bx+1.37=0变形为ax2+bx+0.37=﹣1,则方程ax2+bx+1.37=0的根理解为函数值为﹣1所对应的自变量的值,所以方程ax2+bx+1.37=0的根为x1=,x2=4﹣.【解答】解:由抛物线经过点(0,0.37)得到c=0.37,因为抛物线经过点(0,0.37)、(4,0.37),所以抛物线的对称轴为直线x=2,而抛物线经过点(,﹣1),所以抛物线经过点(4﹣,﹣1),所以二次函数解析式为y=ax2+bx+0.37,方程ax2+bx+1.37=0变形为ax2+bx+0.37=﹣1,所以方程ax2+bx+0.37=﹣1的根理解为函数值为﹣1所对应的自变量的值,所以方程ax2+bx+1.37=0的根为x1=,x2=4﹣.故选:B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.二、填空题(每空4分,共24分)13.(4分)如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为.【分析】用阴影区域所占的面积除以总面积即可得出答案.,【解答】解:观察发现:图中阴影部分面积=S矩形∴针头扎在阴影区域内的概率为;故答案为:.【点评】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.14.(4分)已知⊙O的半径为1,则其内接正六边形的边长为1.【分析】如图,六边形ABCDEF是⊙O的内接正六边形,证明△OAB是等边三角形即可解决问题.【解答】解:如图,∵ABCDEF是⊙O的内接正六边形,∴∠AOB=60°,∵OA=OB=1,∴△ABO是等边三角形,∴AB=OA=1.故答案为1.【点评】本题考查正多边形和圆,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(4分)合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,求学生B坐在2号座位且C坐3号座位的概率是.【分析】画树状图展示所有6种等可能的结果数,再找出学生B坐在2号座位且C坐3号座位的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中学生B坐在2号座位且C坐3号座位的结果数为1,所以学生B坐在2号座位的概率=.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.16.(4分)过A,C,D三点的圆的圆心为E,过B,E两点的圆的圆心为D,如果∠A=60°,那么∠B为20°.【分析】首先连接DE,由过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,根据圆的内接四边形的性质可得:∠C+∠AED=180°,继而可求得∠C=90°+∠B,又由三角形内角和定理,即可求得答案.【解答】解:连接DE,∵过D、A、C三点的圆的圆心为E,∴∠C+∠AED=180°,∵过B、E、F三点的圆的圆心为D,∴∠BED=∠B=∠B,∴∠AED=180°﹣∠B,∴∠C=90°+∠B,∵∠A+∠C+∠B=180°,∴60°+90°+∠B+∠B=180°,解得:∠B=20°.故答案为:20°.【点评】此题考查了圆周角定理以及三角形内角和定理.此题难度适中,注意掌握辅助线的作法,注意数形结合与方程思想的应用.17.(4分)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)【分析】根据反比例函数的图象关于坐标原点对称,是中心对称图形可得:图中两个阴影面积的和等于扇形OAB的面积,又知A(1,),即可求出圆的半径.【解答】解:如图,∵A(1,),∴∠AOD=60°,OA=2.又∵点A、B关于直线y=x对称,∴∠AOB=2(60°﹣45°)=30°.又∵反比例函数的图象关于坐标原点对称,是中心对称图形,∴S阴影=S扇形AOB==.故答案是:.【点评】本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.18.(4分)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).若l经过这九个格点中的三个,则满足这样条件的抛物线条数为8条.【分析】分两种情况把两个点代入解析式即可得到关于b、c的方程组,从而求得b和c 的值,然后把格点坐标代入解析式即可判断.【解答】解:当n为偶数,则抛物线l的解析式为y=x2+bx+c,若经过O(0,0)和A (1,0),则,解得,∴抛物线为y=x2﹣x,点D(2,2)满足函数解析式,若经过B(2,0)和A(1,0),则,解得∴抛物线为y=x2﹣3x+2,点F(0,2)满足函数解析式,若经过A(1,0)和C(2,1),则,解得,∴抛物线为y=x2﹣2x+1,点H(0,1)满足函数解析式,抛物线为y=x2﹣2x+1向上平移一个单位得y=x2﹣2x+2,点F(0,2),G(1,1),D(2,2)满足函数解析式,当n为奇数,则抛物线l的解析式为y=﹣x2+bx+c,若经过F(0,2)和E(1,2),则,解得,∴抛物线为y=﹣x2+x+2,点B(2,0)满足函数解析式,若经过E(1,2)和D(2,2),则,解得∴抛物线为y=﹣x2+3x,点O(0,0)满足函数解析式,若经过E(1,2)和C(2,1),则,解得,∴抛物线为y=﹣x2+2x+1,点H(0,1)满足函数解析式,抛物线为y=﹣x2﹣2x+1向下平移一个单位得y=﹣x2+2x,点O(0,0),G(1,1),B(2,0)满足函数解析式,综上,满足条件的抛物线条数为8条.故答案为8.【点评】本题考查了待定系数法求函数的解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意抛物线有开口向上和开口向下两种情况.三、解答题(19题7分,20题9分,21-23题8分,24-25题12分,26题14分,共78分)19.(7分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10元购物券,至多可得到50元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.【分析】(1)如果摸到0元和10元的时候,得到的购物券是最少,一共10元.如果摸到20元和30元的时候,得到的购物券最多,一共是50元;(2)列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.【解答】解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):0102030第二次第一次0﹣﹣1020301010﹣﹣3040202030﹣﹣5030304050﹣﹣(以下过程同“解法一”)【点评】本题主要考查概率知识.解决本题的关键是弄清题意,满200元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比.20.(9分)已知抛物线y=x2+(n﹣3)x+n+1经过坐标原点O,与x轴交于另一点A,顶点为B.求:(1)抛物线的解析式;(2)△AOB的面积;(3)要使二次函数的图象过点(10,0),应把图象沿x轴向右平移个单位.【分析】(1)根据抛物线y=x2+(n﹣3)x+n+1经过坐标原点O,可把O(0,0)代入此解析式求出n的值.(2)利用(1)中的函数解析式求得点A、B的坐标,进而求得相关线段的长度,利用三角形的面积公式求解即可;(3)根据平移规律解答.【解答】解:(1)由题得:n+1=0,n=﹣1.∴抛物线解析式为:y=x2﹣4x;(2)y=x2﹣4x=(x﹣2)2﹣4,∴顶点B的坐标(2,﹣4),点A的坐标(0,4),所以△AOB的面积是:×4×4=8;(3)设抛物线y=(x﹣2)2﹣4的图象沿x轴向右平移a个单位,则平移后抛物线解析式是:y=(x﹣2﹣a)2﹣4,把(10,0)代入,得=(10﹣2﹣a)2﹣4=0.解得a=6或a=10.即图象沿x轴向右平移6或10 个单位.【点评】考查了抛物线与x轴的交点,二次函数的性质,二次函数图象与几何变换以及待定系数法确定函数关系式等知识点,难度不大.21.(8分)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°.求(1)⊙D的半径;(2)圆中阴影部分的面积(结果保留根号和π)【分析】(1)连接AB,根据∠AOB=90°可知AB是直径,再由圆周角定理求出∠OBA =∠C=30°,由锐角三角函数的定义得出OA及AB的长,则可得出圆D的半径长;(2)根据S阴影=S半圆﹣S△ABO即可得出结论.【解答】解:(1)连结AB,∵∠AOB =90°,∴AB 为⊙D 直径∵∠ABO 与∠C 是同弧所对圆周角,∴∠ABO =∠C =30°∴AB =2OA ,∵B 点坐标为(0,),∴OB =, 在直角三角形AOB 中,AB 2=OA 2+OB 2,∴AB 2=(AB )2+(2)2∵AB >0,∴AB =4,即⊙D 的半径为2;(2)圆中阴影部分的面积为:S 阴影=S 半圆﹣S △ABO =﹣×2×2=2π﹣2. 【点评】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.(8分)在﹣2,﹣1,0,1,2这五个数中任意取两个数m ,n ,已知有二次函数y =(x ﹣m )2+n .(1)先取m =1,则从余下的数中任意取n ,求二次函数图象与y 轴交于负半轴的概率;(2)任意取两个数m ,n ,求二次函数y =(x ﹣m )2+n 的顶点在坐标轴上的概率.【分析】(1)由概率公式即可得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:(1)先取m =1,则从余下的数中任意取n ,m 2+n 为负数的结果有1个为﹣2,∴二次函数图象与y 轴交于负半轴的概率为;(2)画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中作出圆心O.【分析】(1)延长BA、CA分别交半圆于F、E,利用圆周角定理得到∠E=∠B=∠C =∠F,则EF∥BC;(2)延长BE、CF交于G,连结GA并延长与直径交点即为圆心.【解答】解:(1)如图,EF为所作;(2)如图,点O为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和圆周角定理.24.(12分)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时:①请判断四边形BDCE的形状,并证明你的结论②当∠ABC为多少度时,点E在圆D上?请说明理由.【分析】(1)由∠ABC=∠DBE可知∠ABC+∠CBD=∠DBE+∠CBD,即∠ABD=∠CBE,根据SAS定理可知△ABD≌△CBE;(2)①由(1)可知,△ABD≌△CBE,故CE=AD,根据点D是△ABC外接圆圆心可知DA=DB=DC,再由BD=BE可判断出BD=BE=CE=CD,故可得出四边形BDCE 是菱形;②当∠ABC为60度时,∠DBE也为60度,△BDE为等边三角形,求得DE=DA,于是得到结论.【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABD=∠CBE,在△ABD与△CBE中,∵,∴△ABD≌△CBE(SAS);(2)解:四边形BDCE是菱形.证明如下:同(1)可证△ABD≌△CBE,∴CE=AD,∵点D是△ABC外接圆圆心,∴DA=DB=DC,又∵BD=BE,∴BD=BE=CE=CD,∴四边形BDCE是菱形;②当∠ABC为60度时,∠DBE也为60度,△BDE为等边三角形,∴DE=DA,点E在圆D上.【点评】本题考查的是三角形的外接圆与外心、全等三角形的判定与性质及菱形的判定定理,先根据题意判断出△ABD≌△CBE是解答此题的关键.25.(12分)某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了40%,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数y=kx+b,且x=35时,y=45;x=42时,y=38.(1)求一次函数y=kx+b的表达式;(2)若该商户每天获得利润(不计加工费用)为W元,试写出利润W与销售单价x之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?(3)若该商户每天获得利润不低于225元,试确定销售单价x的范围.【分析】(1)待定系数法求解可得;(2)先根据加工过程中质量损耗了40%求出宁波白茶的实际成本,再根据“总利润=每千克的利润×销售量”列出函数解析式,由“销售单价不低于成本单价,且每千克获利不得高于成本单价的60%”得出x的范围,结合二次函数与的性质即可得函数的最值;(3)根据“每天获得利润不低于225元”列出不等式,解不等式后结合30≤x≤48可得答案.【解答】解:(1)将x=35、y=45和x=42、y=38代入y=kx+b,得:,解得:,∴y=﹣x+80;(2)根据题意得:W=(x﹣30)(﹣x+80)=﹣(x﹣55)2+625,解得30<x≤48,所以x=55不在此范围内当x=48时,最大利润为576元;(3)当W=225时W=﹣(x﹣55)2+625=225,解得x=35 或x=75,由30<x≤48得,∴35≤x≤48.【点评】本题主要考查待定系数法求函数解析式及二次函数的应用,理解题意找到题目蕴含的相等关系是解题的关键.26.(14分)已知如图,二次函数y=ax2+bx+2的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在y=ax2+bx+2的图象上,求出旋转中心P的坐标.【分析】(1)证明△AHB≌△AGC(AAS),则点B(4,0),将点A、B的坐标代入二次函数y=ax2+bx+2,即可求解;(2)设圆的圆心为N,则点N在OC和OH中垂线的交点上,即点N(2,1),则圆的半径为,NQ==,即可求解;(3)设旋转中心P的坐标为:(m,n),由中点公式得:点O旋转后O′的坐标为(2m,2n),同理点A、C旋转后对应点A′、C′的坐标分别为:(2m﹣3,2n﹣3)、(2m,2n﹣2),再分点O′、A′在抛物线上,点C′、A′在抛物线上点C′,O′在抛物线上三种情况,分别求解即可.。
2019-2020学年四川省成都市武侯区西川中学九年级(上)期中数学试卷含答案
2019-2020学年四川省成都市武侯区西川中学九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)若=,则的值为()A.1B.C.D.2.(3分)如图所示的几何体的主视图是()A.B.C.D.3.(3分)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.顺次连接四边形的各边中点所得的四边形是平行四边形D.两条对角线互相平分且相等的四边形是正方形4.(3分)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m5.(3分)书架上有3本小说、2本散文,从中随机抽取1本恰好是小说的概率是()A.B.C.D.6.(3分)若关于x的一元二次方程x2+x﹣3m=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<C.m>D.m<7.(3分)对于反比例函数,下列说法不正确的是()A.点(﹣3,1)在它的图象上B.它的图象在第二、四象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小8.(3分)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°9.(3分)已知点C是线段AB的黄金分割点,且AC>BC,AB=200,则AC的长度是()A.200(﹣1)B.100(﹣1)C.100(3﹣)D.50(﹣1)10.(3分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=3,BC=4.点P为AB 边上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个二、填空题(共4小题,每小题4分,满分16分)11.(4分)若两个相似三角形的周长比为2:3,则它们的面积比是.12.(4分)已知x=2是关于x一元二次方程x2+kx﹣6=0的一个根,则另一根是.13.(4分)如图,在▱ABCD中,E在AD上,=,CE交BD于F,则S△BCF:S△DCF=.14.(4分)如图,函数y=kx(k≠0)与y=的图象交于A,B两点,过点A作AM垂直于x轴,垂足为点M,则△BOM的面积为.三、解答题(共54分)15.(10分)(1)解方程:x2+2x﹣8=0.(2)解方程:(2x﹣1)2﹣2(2x﹣1)=0.16.(8分)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.17.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).18.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘出“五一“长假期间旅游情况统计图,根据以下信息解答下列问题.(1)“五一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)甲、乙两个旅行团在A,B,D三个景点中进行选择,求同时选择去同一景点的概率为多少?(请用画树状图或列表法加以说明)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(x<0)的图象交于第二象限内的A、B两点,过点A作AC⊥x轴于点C,OA=5,OC=4,点B的纵坐标为6.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)写出kx+b﹣<0的解集.20.(10分)如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x2﹣2x﹣2=0,代数式(x﹣1)2+2019的值为.22.(4分)从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数作为m的值,则使函数y=(5﹣m2)x 的图象经过第一、第三象限,且使关于x的方程(m+1)x2+mx+1=0有实数根的概率是.23.(4分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.24.(4分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(6,8),则点A的坐标是.25.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②=;③DP2=PH•PB;④=.其中正确的是.(写出所有正确结论的序号)五、解答题(共3小题,满分30分)26.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?27.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.28.(12分)如图,已知在平面直角坐标系中,四边形OBCD为矩形,B点的坐标为(5,0),D的坐标为(0,4),A为x负半轴上一点,AD=CD.(1)求直线AC的解析式;(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.2019-2020学年四川省成都市武侯区西川中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若=,则的值为()A.1B.C.D.【解答】解:∵=,∴==.故选:D.2.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从前面看可得到左边有2个正方形,右边有1个正方形,所以选A.3.(3分)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.顺次连接四边形的各边中点所得的四边形是平行四边形D.两条对角线互相平分且相等的四边形是正方形【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行边形是菱形,所以B选项错误;C、顺次连接四边形的各边中点所得的四边形是平行四边形,所以C选项正确;D、两条对角线互相垂直平分且相等的四边形是正方形,所以D选项错误.故选:C.4.(3分)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴=,∴AB===100(米).则两岸间的大致距离为100米.故选:B.5.(3分)书架上有3本小说、2本散文,从中随机抽取1本恰好是小说的概率是()A.B.C.D.【解答】解:∵书架上有3本小说、2本散文,共有5本书,∴从中随机抽取1本恰好是小说的概率是;故选:D.6.(3分)若关于x的一元二次方程x2+x﹣3m=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<C.m>D.m<【解答】解:∵a=1,b=1,c=﹣3m,∴Δ=b2﹣4ac=12﹣4×1×(﹣3m)=1+12m>0,解得m>.故选:C.7.(3分)对于反比例函数,下列说法不正确的是()A.点(﹣3,1)在它的图象上B.它的图象在第二、四象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【解答】解:A、∵﹣=1,∴点(﹣3,1)在它的图象上,故本选项正确;B、k=﹣3<0,∴它的图象在第二、四象限,故本选项正确;C、k=﹣3<0,当x>0时,y随x的增大而增大,故本选项正确;D、k=﹣3<0,当x<0时,y随x的增大而增大,故本选项错误.故选:D.8.(3分)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°【解答】解:在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO=∠BAD=×50°=25°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.故选:B.9.(3分)已知点C是线段AB的黄金分割点,且AC>BC,AB=200,则AC的长度是()A.200(﹣1)B.100(﹣1)C.100(3﹣)D.50(﹣1)【解答】解:∵点C是线段AB的黄金分割点,且AC>BC,∴AC=AB,而AB=200,∴AC=×200=100(﹣1).故选:B.10.(3分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=3,BC=4.点P为AB 边上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设AP的长为x,则BP长为7﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(7﹣x)=3:4,解得:x=3②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(7﹣x),解得:x=4或3.∴满足条件的点P的个数是2个,故选:B.二、填空题(共4小题,每小题4分,满分16分)11.(4分)若两个相似三角形的周长比为2:3,则它们的面积比是4:9.【解答】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.12.(4分)已知x=2是关于x一元二次方程x2+kx﹣6=0的一个根,则另一根是﹣3.【解答】解:设方程的另一个根为x2,则2x2=﹣6,解得x2=﹣3,故答案为:﹣3.13.(4分)如图,在▱ABCD中,E在AD上,=,CE交BD于F,则S△BCF:S△DCF=3:1.【解答】解:∵,∴,∵四边形ABCD是平行四边形,∴AD∥BC,AD=CB,∴△DEF∽△BCF,∴,∴.故答案为:3:1.14.(4分)如图,函数y=kx(k≠0)与y=的图象交于A,B两点,过点A作AM垂直于x轴,垂足为点M,则△BOM的面积为.【解答】解:由题意得:OA=OB,则S△AOM=S△BOM,设A(a,b)(a>0,b>0),故OM=a,AM=b,将x=a,y=b代入反比例函数y=得:b=,即ab=3,又∵AM⊥OM,即△AOM为直角三角形,∴S△BOM=S△AOM=OM•AM=ab=.故答案是:.三、解答题(共54分)15.(10分)(1)解方程:x2+2x﹣8=0.(2)解方程:(2x﹣1)2﹣2(2x﹣1)=0.【解答】解:(1)∵x2+2x﹣8=0,∴(x+4)(x﹣2)=0,则x+4=0或x﹣2=0,解得x1=﹣4,x2=2;(2)令2x﹣1=a,则a2﹣2a=0,∴a(a﹣2)=0,∴a=0或a﹣2=0,解得a=0或a=2,当a=0时,2x﹣1=0,解得x=0.5;当a=2时,2a﹣1=2,解得x=1.5;综上,x1=0.5,x2=1.5.16.(8分)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.【解答】解:(1)图中点O为所求;(2)△ABC与△A′B′C′的位似比等于2:1;(3)△A″B″C″为所求;A″(6,0);B″(3,﹣2);C″(4,﹣4).17.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米18.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘出“五一“长假期间旅游情况统计图,根据以下信息解答下列问题.(1)“五一”期间,该市周边景点共接待游客50万人,扇形统计图中A景点所对应的圆心角的度数是108°,并补全条形统计图.(2)甲、乙两个旅行团在A,B,D三个景点中进行选择,求同时选择去同一景点的概率为多少?(请用画树状图或列表法加以说明)【解答】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),故答案为:50,108°;补全条形统计图如下:(2)画树状图可得:共有9种等可能的结果,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率为=.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(x<0)的图象交于第二象限内的A、B两点,过点A作AC⊥x轴于点C,OA=5,OC=4,点B的纵坐标为6.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)写出kx+b﹣<0的解集.【解答】解:(1)在Rt△AOC中,AC===3,故点A的坐标为(﹣4,3),将A(﹣4,3)代入y=得m=﹣12,∴反比例函数的解析式为y=﹣;∵当y=6时,x=﹣2,∴B(﹣2,6),将A(﹣4,3),B(﹣2,6)代入y=kx+b得,解得,∴一次函数的解析式为y=x+9;(2)设一次函数交x轴于点R,把y=0代入y=x+9得:x=﹣6,即R的坐标是(﹣6,0),OR=6,S△AOB=S△BOR﹣S△AOR=6×6﹣×6×3=9;(3)由图象知kx+b﹣<0的解集为:x<﹣4或﹣2<x<0.20.(10分)如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠DAF=∠DCE=90°,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS)∴∠ADF=∠CDE,∵∠ADE+∠CDE=90°,∴∠ADF+∠ADE=90°,即∠FDE=90°,∴DE⊥DF;(2)解:∵∠BGE=2∠BFE,∠BGE=∠BFE+∠GEF,∴∠GEF=∠GFE,∴GE=GF,∵△BGE的周长为16∴BE+GB+GE=16∴BE+GB+GF=16∴BE+BA+AF=16∵CE=AF,∴BA+CB=16,∴BC=BA=8,∴S四边形DEBF=S四边形DEBA+S△ADF=S四边形DEBA+S△DCE=S正方形ABCD=AB2=64;(3)过点H作HP⊥HC交CB的延长线于点P,∵GF=GE,DF=DE,∴DG垂直平分EF,∵∠FDE=90°,∴DH=EH,∠DHE=∠PHC=90°,∴∠DHE﹣∠EHC=∠PHC﹣∠EHC,即∠DHC=∠EHP,∵在四边形DHEC中,∠HDC+∠HEC=180°,∠HEC+∠HEP=180°,∴∠HEP=∠HDC,在△HDC和△HEP中,,∴△HDC≌△HEP(ASA)∴DC=PE=8,CH=HP=5,∴在Rt△PHC中,PC=10,∴EC=PC﹣PE=2,∴AF=2,BE=6,在Rt△BGE中,设EG=x,则BG=10﹣x,由勾股定理得,(10﹣x)2+62=x2解得:x=,∴AG=GF﹣AF=.四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x2﹣2x﹣2=0,代数式(x﹣1)2+2019的值为2022.【解答】解:∵x2﹣2x﹣2=0,即x2﹣2x=2,∴x2﹣2x+1=3,即(x﹣1)2=3,则原式=3+2019=2022.故答案为:2022.22.(4分)从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数作为m的值,则使函数y=(5﹣m2)x 的图象经过第一、第三象限,且使关于x的方程(m+1)x2+mx+1=0有实数根的概率是.【解答】解:∵所得函数的图象经过第一、三象限,∴5﹣m2>0,∴m2<5,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=﹣4<0,无实数根;将m=﹣1代入(m+1)x2+mx+1=0中得,﹣x+1=0,x=1,有实数根;将m=﹣2代入(m+1)x2+mx+1=0中得,x2+2x﹣1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为;故答案为:.23.(4分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.24.(4分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(6,8),则点A的坐标是(8,4).【解答】解:∵点D的坐标为(6,8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10,0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8,4),故答案是:(8,4).25.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②=;③DP2=PH•PB;④=.其中正确的是①③④.(写出所有正确结论的序号)【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD∠ABC=90°,∴∠ABE=∠DCF=30°,在△ABE与△CDF中,,∴△ABE≌△DCF(ASA),故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,∴===,故②错误;∵∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴PD2=PH•CD,∵PB=CD,∴PD2=PH•PB,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴=.故答案为:①③④.五、解答题(共3小题,满分30分)26.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【解答】解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.27.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y.∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD≌△DCE,则AB=CD,即2=2﹣x,将x=2﹣2,代入y=x+2.解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.28.(12分)如图,已知在平面直角坐标系中,四边形OBCD为矩形,B点的坐标为(5,0),D的坐标为(0,4),A为x负半轴上一点,AD=CD.(1)求直线AC的解析式;(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.【解答】解:(1)∵四边形OBCD为矩形,B点的坐标为(5,0),D的坐标为(0,4),∴CD=5,DO=4,∴AD=CD=5,在Rt△AOD中,由勾股定理得:AO===3.∴A(﹣3,0),C(5,4).设直线AC的解析式为,y=kx+b,由题意得,解得:.故直线AC的解析式为:y=x+.(2)∵当x=0时,y=,∴E(0,),∴OE=,∴DE=.在Rt△CDE和Rt△AOE中,由勾股定理得:CE=,AE=,∴AC=4.∵OA=3,OB=5,∴AB=8,∵BC=4,∴tan∠BAC=,sin∠BAC=,∴当0<t<时,S=﹣=﹣t2+t;当<t≤4时,S=﹣=t2﹣t.综上所述,S=;(3)①如图1,作NH⊥CD与H,MG⊥AB与G,QR⊥AB与R,∴∠MHN=∠MGP=∠PRQ=90°,∵四边形QPMN为正方形,∴MP=MN=PQ,∠NMP=∠MPQ=90°,∴∠NMH=∠GMP=∠QPR,在△MHN和△PRQ中,,∴△MHN≌△PRQ(AAS).∴NH=QR.在△GMP和△RPQ中,,∴△GMP≌△RPQ(AAS),∴GM=RP,GP=QR,∵GM=OD=4cm,∴RP=4cm.∵=,∴AR=8﹣2t,∴PR=8﹣2t﹣2t=4,∴t=1,∴AR=6,AP=2,∴PO=1,∵=,∴QR=3,∴GO=4,∴HN=3,MH=4,∴H、O在同一直线上,∴N(0,7);②如图2,作NS⊥CD于S,QH⊥AB于H,MR⊥AB于R,∴∠NSM=∠QHP=∠PRM=90°,∵四边形PQNM是正方形,∴∠QPM=∠PMN=90°,PQ=PM=MN,∴∠HPQ=∠PMR=∠NMS,∴同①可以得出△NSM≌△QHP≌△PRM,∴NS=QH=PR,HP=MR=SM=4,∵=,∴=,∴AH=8﹣2t,∴2t﹣(8﹣2t)=4,∴t=3,∴AH=2,HO=1,∴QH=SN=1,OR=4,∴SM=OR,∴S在y轴上,∴N(0,5).综上所述,N点的坐标为:(0,7)或(0,5).。
2019-2020学年浙江省杭州市余杭区九年级(上)期中数学试卷 解析版
2019-2020学年九年级(上)期中数学试卷一、选择题1.比较二次函数y=2x2与y=﹣x2+1,则()A.开口方向相同B.开口大小相同C.顶点坐标相同D.对称轴相同2.已知圆的半径为r,圆外的点P到圆心的距离为d,则()A.d>r B.d=r C.d<r D.d≤r3.如图,点A,B,C在⊙O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.36°C.18°D.54°4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.15.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°6.如图,三角形与⊙O叠合得到三条相等的弦AB,CD,EF,则以下结论正确的是()A.2∠AOB=∠AEBB.==C.==D.点O是三角形三条中线的交点7.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m 的取值范围是()A.m≤0 B.0<m≤1 C.m≤1 D.m≥18.若点A(﹣,y1),B(﹣1,y2),C(,y3)都在抛物线y=﹣x2﹣4x+m上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y2>y1>y39.如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB 于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α10.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,图象()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.向往右下方移动,再往右上方移动二、填空题:本题有6个小题,每小题4分,共24分.11.甲、乙、丙三人排成一排,其中甲、乙两人位置恰好相邻的概率是.12.二次函数y=ax2+bx+c(a≠0)的部分对应值如右表,则不等式ax2+bx+c>0的解集为.x﹣3 ﹣2 ﹣1 0 1 2 3 4y 6 0 ﹣4 ﹣6 ﹣7 ﹣4 0 613.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为.14.如图,A、B是⊙O上两点,弦AB=a,P是⊙O上不与点A、B重合的一个动点,连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=.(用含a的代数式表示).15.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3).求这个二次函数表达式.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED.求证:ED=EC.19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出k的取值范围;(3)当0<x<3时,写出函数值y的取值范围.20.一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?21.在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上的一点,连接BD、AD、OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中劣弧的长.22.如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b ﹣15)x+c+18的图象与x轴的交点分别是A,B,C.(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为﹣2,求这两个函数的解析式.23.四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.(1)如图1,∠ADB=60°.求证:AC=CD+CB.(2)如图2,∠ADB=90°.①求证:AC=CD+CB.②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.参考答案一、选择题:本题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.比较二次函数y=2x2与y=﹣x2+1,则()A.开口方向相同B.开口大小相同C.顶点坐标相同D.对称轴相同【分析】根据题意的函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵二次函数y=2x2与y=﹣x2+1,∴函数y=2x2的开口向上,对称轴是y轴,顶点坐标为(0,0);函数y=﹣x2+1的开口向下,对称轴是y轴,顶点坐标为(0,1);故选项A、C错误,选项D正确;∵二次函数y=2x2中的a=2,y=﹣x2+1中的a=﹣,∴它们的开口大小不一样,故选项B错误;故选:D.2.已知圆的半径为r,圆外的点P到圆心的距离为d,则()A.d>r B.d=r C.d<r D.d≤r【分析】直接根据点与圆的位置关系即可得出结论.解:∵⊙O的半径为r,点P到圆心的距离为d,P点在圆外,∴d>r,故选:A.3.如图,点A,B,C在⊙O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.36°C.18°D.54°【分析】由点A,B,C在⊙O上,∠BOC=72°,直接利用圆周角定理求解即可求得答案.解:∵点A,B,C在⊙O上,∠BOC=72°,∴∠BAC=∠BOC=36°.故选:B.4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.1【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.解:设两双只有颜色不同的手套的颜色为红和绿,列表得:(红,绿)(红,绿)(绿,绿)﹣(红,绿)(红,绿)﹣(绿,绿)(红,红)﹣(绿,红)(绿,红)﹣(红,红)(绿,红)(绿,红)∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率=.故选:B.5.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°【分析】利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故选:B.6.如图,三角形与⊙O叠合得到三条相等的弦AB,CD,EF,则以下结论正确的是()A.2∠AOB=∠AEBB.==C.==D.点O是三角形三条中线的交点【分析】根据圆心角,弧,弦之间的关系解决问题即可.解:∵AB=CD=EF,∴==,故选:B.7.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m 的取值范围是()A.m≤0 B.0<m≤1 C.m≤1 D.m≥1【分析】根据函数解析式可知,开口方向向下,在对称轴的右侧y随x的增大而减小,在对称轴的左侧,y随x的增大而增大.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.8.若点A(﹣,y1),B(﹣1,y2),C(,y3)都在抛物线y=﹣x2﹣4x+m上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y2>y1>y3【分析】先求出二次函数y=﹣x2﹣4x+m的图象的对称轴,然后判断出A(﹣,y1),B(﹣1,y2),C(,y3)在抛物线上的位置,再根据二次函数的增减性求解.解:∵二次函数y=﹣x2﹣4x+m中a=﹣1<0,∴开口向下,对称轴为x=﹣=﹣2,∵A(﹣,y1)到对称轴的距离大于B(﹣1,y2)到对称轴的距离,∴y1<y2,又∵B(﹣1,y2),C(,y3)都在对称轴的右侧,而在对称轴的右侧,y随x得增大而减小,故y2>y3.∵A(﹣,y1)到对称轴的距离小于C(,y3)到对称轴的距离,∴y1>y3,∴y2>y1>y3.故选:D.9.如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB 于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α【分析】连接OD,求得∠DCE=α,得到∠BCD=90°﹣α,根据等腰三角形的性质和三角形的内角和即可得到结论.解:连接OD,∵的度数为α,∴∠DCE=α,∵∠ACB=90°,∴∠BCD=90°﹣α,∵BC=DC,∴∠B=(180°﹣∠BCD)=(180°﹣90°+α)=45°+α,∴∠A=90°﹣∠B=45°﹣α,故选:A.10.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,图象()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.向往右下方移动,再往右上方移动【分析】先分别求出当b=﹣1、0、1时函数图象的顶点坐标即可得出答案.解:当b=﹣1时,此函数解析式为:y=x2+x+1,顶点坐标为:(﹣,);当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2﹣x+1,顶点坐标为:(,).故函数图象应先往右上方移动,再往右下方移动.故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.甲、乙、丙三人排成一排,其中甲、乙两人位置恰好相邻的概率是.【分析】根据题意可以画出相应的树状图,从而可以求得相应的概率.解:由题意可得,所列树状图如下图所示,故甲、乙两人位置恰好相邻的概率是,故答案为:.12.二次函数y=ax2+bx+c(a≠0)的部分对应值如右表,则不等式ax2+bx+c>0的解集为x>3或x<﹣2 .x﹣3 ﹣2 ﹣1 0 1 2 3 4y 6 0 ﹣4 ﹣6 ﹣7 ﹣4 0 6【分析】本题通过描点画出图象,即可根据图象在x轴上部的那部分得出不等式ax2+bx+c >0的解集.解:通过描点作图如下,从图中可看出不等式ax2+bx+c>0的解集为x>3或x<﹣2.13.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为6acm.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(cm).故答案为6cm.14.如图,A、B是⊙O上两点,弦AB=a,P是⊙O上不与点A、B重合的一个动点,连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=a.(用含a的代数式表示).【分析】先根据垂径定理得出AE=PE,PF=BF,故可得出EF是△APB的中位线,再根据中位线定理即可得出EF∥AB,EF=AB即可.解:连接AB,∵OE⊥AP于E,OF⊥PB于F,∴AE=PE,PF=BF,∴EF是△APB的中位线,∴EF∥AB,EF=AB=,故答案为:a.15.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为15°或75°.【分析】根据圆的轴对称性知有两种情况:两弦在圆心的同旁;两弦在圆心的两旁.根据垂径定理和三角函数求解.解:过点O作OM⊥AC于M,在直角△AOM中,OA=r.根据OM⊥AC,则AM=AC=r,所以cos∠OAM=,则∠OAM=30°,同理可以求出∠OAB=45°,当AB,AC位于圆心的同侧时,∠BAC的度数为45°﹣30°=15°;当AB,AC位于圆心的异侧时,∠BAC的度数为45°+30°=75°.故答案为15°或75°.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=1或0或.【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3).求这个二次函数表达式.【分析】根据二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3),可以设该函数的交点式,然后根据与y轴交于点(0,3),即可求得a的值,从而可以得到该函数的解析式.解:设二次函数的解析式为y=a(x+1)(x﹣3),∵该二次函数的图象与y轴交于点(0,3),∴3=a(0+1)×(0﹣3),解得,a=﹣1,∴该函数解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,即这个二次函数表达式是y=﹣x2+2x+3.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED.求证:ED=EC.【分析】连接AE,根据圆周角定理可得∠AEB=90°,再根据等腰三角形三线合一可得∠BAE=∠CAE,进而可得弧BE=弧DE,根据等弧所对的弦相等可得结论.【解答】证明:连接AE,∵AB是直径,∴∠AEB=90°,∵AB=AC,∴BE=CE,∠BAE=∠CAE,∴弧BE=弧DE,∴BE=ED,∴ED=EC19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出k的取值范围;(3)当0<x<3时,写出函数值y的取值范围.【分析】(1)根据函数图象中的数据可以得到方程ax2+bx+c=0(a≠0)的实数解;(2)根据图象中的数据可以得到方程ax2+bx+c=k有两个不相等的实数根时,k的取值范围;(3)根据图象中的数据可以得到当0<x<3时,函数值y的取值范围..解:(1)由图象可得,当y=0时,x=﹣1或x=3,故方程ax2+bx+c=0(a≠0)的实数解是x1=﹣1,x2=3;(2)由图象可知,函数y=ax2+bx+c(a≠0)的最小值是y=﹣4,故方程ax2+bx+c=k有两个不相等的实数根,k的取值范围是k>﹣4;(3)由图象可知,当0<x<3时,函数值y的取值范围﹣4≤y<0.20.一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?【分析】(1)由概率公式计算即可;(2)列举得出所有等可能的情况数,找出两次都是白球的情况数,即可求出所求的概率;(3)由题意得出方程,解方程即可.解:(1)将“恰好是白球”记为事件A,则P(A)==.(2)画树状图如图所示:共有12个等可能的结果,从中任意摸出2个球,“2个都是白球”记为事件B,则P(B)==.(3)设放入n个黑球,由题意得=,解得n=10,即放入了10个黑球.21.在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上的一点,连接BD、AD、OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中劣弧的长.【分析】(1)由在⊙O中,弦BC垂直于半径OA,根据垂径定理可得=,则可求得∠AOC的度数;(2)首先连接OB,由弦BC=6cm,可求得半径的长,继而求得图中劣弧的长.解:(1)∵在⊙O中,弦BC垂直于半径OA,∴=,∴∠AOC=2∠ADB=2×30°=60°;(2)连接OB,∴∠BOC=2∠AOC=120°,∵弦BC=6cm,OA⊥BC,∴CE=3cm,∴OC==2cm,∴劣弧的长为:=π.22.如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b ﹣15)x+c+18的图象与x轴的交点分别是A,B,C.(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为﹣2,求这两个函数的解析式.【分析】(1)根据a+3>a作出判断;(2)联立方程组,通过解方程组求得答案;(3)设所求解析式为y=a(x﹣3)2﹣2,把点B的坐标(2,0)代入求值.解:(1)因为a+3>a,所以经过B、D、C的图象是y=(a+3)x2+(b﹣15)x+c+18的图象.(2)解方程组解得x1=2,x2=3,∴点B,D的横坐标分别为2,3.(3)设所求解析式为y=a(x﹣3)2﹣2,把点B的坐标(2,0)代入,解得a=2,即y=2x2﹣12x+16,因此左边抛物线的解析式为y=﹣x2+3x﹣2.23.四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.(1)如图1,∠ADB=60°.求证:AC=CD+CB.(2)如图2,∠ADB=90°.①求证:AC=CD+CB.②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.【分析】(1)如图1中,在AC上截取AF=BC,连结DF.证明△DAF≌△DBC(SAS),推出△DFC为等边三角形即可解决问题.(2)①结论:AC=CD+CB,如图2,在AC上截取AF=BC,连结DF.证明△DAF≌△DBC(SAS)即可解决问题.②结论:BD=2DP.如图3,过点D作DF⊥AC于点F,证明△DFE≌△CBE(AAS),△ADE≌△BDP(ASA)即可解决问题.【解答】(1)证明:如图1中,在AC上截取AF=BC,连结DF.在△DAF与△DBC中,∴△DAF≌△DBC(SAS),∴DF=DC,∠CDB=∠ADF,∵∠CDF=∠CDB+∠EDF=∠ADF+∠EDF=∠ADB=60°,∴△DFC为等边三角形,∴DC=FC,∴AC=AF+FC=BC+CD.(2)①解:结论:AC=CD+CB.理由:如图2,在AC上截取AF=BC,连结DF.在△DAF与△DBC中,∴△DAF≌△DBC(SAS),∴DF=DC,∠CDB=∠ADF,∵∠CDF=∠CDB+∠EDF=∠ADF+∠EDF=∠ADB=90°,∴△DFC为等腰直角三角形,∴FC=DC,∴AC=AF+FC=CD+CB.②解:结论:BD=2DP.理由:如图3,过点D作DF⊥AC于点F,∵∠ACD=∠ABD=45°,∴△CFD是等腰直角三角形,∴CD=DF,∵CD=CB,∴DF=CB,在△DFE和△CBE中,,∴△DFE≌△CBE(AAS),∴DE=BE=BD,在△ADE和△BDP中,,∴△ADE≌△BDP(ASA),∴DP=DE=BE=BD,即BD=2DP.。
2019-2020学年山东省枣庄市台儿庄区九年级(上)期中数学试卷试题及答案(解析版)
2019-2020学年山东省枣庄市台儿庄区九年级(上)期中数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共36分.1.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图2.一元二次方程x2﹣6x﹣1=0配方后可变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x+3)2=8D.(x+3)2=10 3.下列判定错误的是()A.平行四边形的对边相等B.对角线互相垂直的平行四边形是菱形C.对角线相等的四边形是矩形D.正方形既是轴对称图形,又是中心对称图形4.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.B.C.D.5.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”6.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°7.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=91008.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)9.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a10.如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A.B.C.1D.111.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N,则下列式子一定正确的是()A.B.C.D.12.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE ⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4C.2D.8二、填空题:本题共6小题,每小题填对得4分,共24分.只要求填最后结果.13.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为.14.若x:y=1:2,则.15.已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.18.如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(﹣8,6),点P在矩形ABOC的内部,点E在BO边上,满足△PBE∽△CBO,当△APC是等腰三角形时,P点坐标为.三.解答题:解答要写出必要的文字说明或演算步骤.19.解方程(1)16x2+8x=3(公式法)(2)(3x+2)(x+3)=x+14(配方法)20.我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是人,m=,并补全条形统计图;(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)21.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.22.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?23.如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.24.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.2019-2020学年山东省枣庄市台儿庄区九年级(上)期中数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共36分.1.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.2.一元二次方程x2﹣6x﹣1=0配方后可变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x+3)2=8D.(x+3)2=10【解答】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,∴(x﹣3)2=10,故选:B.3.下列判定错误的是()A.平行四边形的对边相等B.对角线互相垂直的平行四边形是菱形C.对角线相等的四边形是矩形D.正方形既是轴对称图形,又是中心对称图形【解答】解:A、平行四边形的对边相等,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、对角线相等的平行四边形是矩形,故原说法错误,符合题意;D、正方形既是轴对称图形,又是中心对称图形,正确,不合题意;故选:C.4.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.B.C.D.【解答】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为,故选:C.5.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”【解答】解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,可得应该是下午.故选C.6.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°【解答】解:∵CD⊥AB,F为边AC的中点,∴DF AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.7.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.8.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴30°,∠F AE=60°,∵A(4,0),∴OA=4,∴2,∴,EF,∴OF=AO﹣AF=4﹣1=3,∴,.故选:D.9.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.10.如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A.B.C.1D.1【解答】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DCB=∠COD=∠BOC=90°,OD=OC,∴BD AB=2,∴OD=BO=OC=1,∵将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,∴DE=DC,DF⊥CE,∴OE1,∠EDF+∠FED=∠ECO+∠OEC=90°,∴∠ODM=∠ECO,在△OEC与△OMD中,,△OEC≌△OMD(ASA),∴OM=OE1,故选:D.11.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N,则下列式子一定正确的是()A.B.C.D.【解答】解:∵在▱ABCD中,EM∥AD∴易证四边形AMEN为平行四边形∴易证△BEM∽△BAD∽△END∴,A项错误,B项错误,C项错误,D项正确故选:D.12.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE ⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4C.2D.8【解答】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE2×22×1=2+1=3,∴S△ACB=4,故选:B.二、填空题:本题共6小题,每小题填对得4分,共24分.只要求填最后结果.13.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为x1=1,x2=﹣5.【解答】解:(x+2)※9=0,(x+2)2﹣9=0,(x+2)2=9,x+2=±3,x1=1,x2=﹣5,故答案为:x1=1,x2=﹣5.14.若x:y=1:2,则.【解答】解:设x=k,y=2k,∴.15.已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为1.【解答】解:∵x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个实数根,∴x1+x2=﹣(3k+1),x1x2=2k2+1.∵(x1﹣1)(x2﹣1)=8k2,即x1x2﹣(x1+x2)+1=8k2,∴2k2+1+3k+1+1=8k2,整理,得:2k2﹣k﹣1=0,解得:k1,k2=1.∵关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,∴△=(3k+1)2﹣4×1×(2k2+1)>0,解得:k<﹣3﹣2或k>﹣3+2,∴k=1.故答案为:1.16.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD AC×BD=24,∴AC=6,∴OC AC=3,∴BC5,∵S菱形ABCD=BC×AH=24,∴AH;故答案为:.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(﹣8,6),点P在矩形ABOC的内部,点E在BO边上,满足△PBE∽△CBO,当△APC是等腰三角形时,P点坐标为(,)或(﹣4,3).【解答】解:∵点P在矩形ABOC的内部,且△APC是等腰三角形,∴P点在AC的垂直平分线上或在以点C为圆心AC为半径的圆弧上;①当P点在AC的垂直平分线上时,点P同时在BC上,AC的垂直平分线与BO的交点即是E,如图1所示:∵PE⊥BO,CO⊥BO,∴PE∥CO,∴△PBE∽△CBO,∵四边形ABOC是矩形,A点的坐标为(﹣8,6),∴点P横坐标为﹣4,OC=6,BO=8,BE=4,∵△PBE∽△CBO,∴,即,解得:PE=3,∴点P(﹣4,3);②P点在以点C为圆心AC为半径的圆弧上,圆弧与BC的交点为P,过点P作PE⊥BO于E,如图2所示:∵CO⊥BO,∴PE∥CO,∴△PBE∽△CBO,∵四边形ABOC是矩形,A点的坐标为(﹣8,6),∴AC=BO=8,CP=8,AB=OC=6,∴BC10,∴BP=2,∵△PBE∽△CBO,∴,即:,解得:PE,BE,∴OE=8,∴点P(,);综上所述:点P的坐标为:(,)或(﹣4,3);故答案为:(,)或(﹣4,3).三.解答题:解答要写出必要的文字说明或演算步骤.19.解方程(1)16x2+8x=3(公式法)(2)(3x+2)(x+3)=x+14(配方法)【解答】解:(1)∵16x2+8x=3,∴a=16,b=8,c=﹣3,∴△=64﹣4×16×(﹣3)=256,∴x,∴x或x;(2)原方程化为:3x2+10x﹣8=0,∴x2,∴(x)2,∴x±20.我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是200人,m=35,并补全条形统计图;(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)【解答】解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),则m%100%=35%,即m=35,C景区人数为200﹣(20+70+20+50)=40(人),补全条形图如下:故答案为:200,35;(2)估计去B地旅游的居民约有1200×35%=420(人);(3)画树状图如下:由树状图知,共有12种等可能结果,其中选到A,C两个景区的有2种结果,所以选到A,C两个景区的概率为.21.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.22.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书(300﹣10x)本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:(300﹣10x).(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.23.如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN24.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.【解答】解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.。
2019-2020学年河南省南阳市方城县九年级(上)期中数学试卷(解析版)
2019-2020学年河南省南阳市方城县九年级(上)期中数学试卷一、选择题(下列各小题均有四个选项,其中只有一个是正确的,请将其序号填涂在答题卡上.每小题3分,共30分.)1.二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x>2.下列各式中,与是同类二次根式的是()A.B.C.D.3.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值是()A.2B.﹣2C.2或﹣2D.4.下列四条线段a、b、c、d不是成比例线段的是()A.a=4,b=8,c=5,d=10B.a=1.1cm,b=2.2cm,c=3.3cm,d=4.4cmC.a=2,b=,c=,d=D.a=0.8,b=3,c=0.64,d=2.45.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,需添加一个条件,则以下所添加的条件不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.=D.=6.已知关于x的方程(x﹣1)(x﹣2)=m2,则该方程的解的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法判断7.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则的值为()A.B.C.D.8.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=1759.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.810.已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12B.13C.14D.15二、填空题(每小题3分,共15分)11.计算:﹣=.12.若方程x2﹣2x﹣3=0可化为(x+m)2=k的形式,则m=.13.已知:,则=.14.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.三、解答题(本题含8个小题,共75分)16.计算:(1)3÷×(﹣)(2)|2﹣|+(﹣)+17.解下列方程(1)(3x﹣8)2=4(2x﹣3)2(2)5x(x﹣3)=6﹣2x18.如图,在4×4的正方形网格纸中,△ABC和△DEF的顶点都在边长为1的小正方形的格点上.(1)求证:△ABC∽△DEF;(2)直接写出△ABC和△DEF的周长比和面积比.19.已知关于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.(1)当k取何值时,方程有两个不相等的实数根?(2)在(1)的条件下,若k是满足条件的最小整数,求方程的根.20.数学兴趣小组的同学们,想利用自己所学的数学知识测量学校旗杆的高度:下午活动时间,兴趣小组的同学们来到操场,发现旗杆的影子有一部分落在了墙上(如图所示).同学们按照以下步骤进行测量:测得小明的身高1.65米,此时其影长为2.5米;在同一时刻测量旗杆影子落在地面上的影长BC为9米,留在墙上的影高CD为2米,请你帮助兴趣小组的同学们计算旗杆的高度.21.如图,把一张边长为10cm的正方形纸板的四周各剪去一个边长为xcm的小正方形,再折叠成一个无盖的长方体盒子.(1)当长方体盒子的底面积为81cm2时,求所剪去的小正方形的边长.(2)设所折叠的长方体盒子的侧面积为S,求S与x的函数关系式,并写出x的取值范围.(3)长方体盒子的侧面积为S的值能否是60cm2,若能,请求出x的值;若不能,请说明理由.22.“如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”(1)探究发现:如图②,若m=n,点E在线段AC上,则=;(2)数学思考:①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.2019-2020学年河南省南阳市方城县九年级(上)期中数学试卷参考答案与试题解析一、选择题(下列各小题均有四个选项,其中只有一个是正确的,请将其序号填涂在答题卡上.每小题3分,共30分.)1.二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x>【解答】解:由题意得:2x﹣5≥0,解得:x≥,故选:C.2.下列各式中,与是同类二次根式的是()A.B.C.D.【解答】解:A、=3,与不是同类二次根式;B、,与不是同类二次根式;C、,与不是同类二次根式;D、=,与是同类二次根式;故选:D.3.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值是()A.2B.﹣2C.2或﹣2D.【解答】解:原方程可变形为(m﹣2)x2+3x+(m+2)(m﹣2)=0,把x=0代入可得到(m+2)(m﹣2)=0,解得m=2或m=﹣2,当m=2时,m﹣2=0,一元二次方程不成立,故舍去,所以m=﹣2.故选:B.4.下列四条线段a、b、c、d不是成比例线段的是()A.a=4,b=8,c=5,d=10B.a=1.1cm,b=2.2cm,c=3.3cm,d=4.4cmC.a=2,b=,c=,d=D.a=0.8,b=3,c=0.64,d=2.4【解答】解:A、4×01=5×8,成比例线段,所以选项不符合题意;B、1.1×4.4≠2.2×3.3,不成比例线段,所以选项符合题意;C、2×5=2×,成比例线段,所以选项不符合题意;D、0.8×2.4=3×0.64,成比例线段,所以选项不符合题意;故选:B.5.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,需添加一个条件,则以下所添加的条件不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.=D.=【解答】解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故C正确;当时,∠A不是夹角,故不能判定△ADB与△ABC相似,故D错误.故选:D.6.已知关于x的方程(x﹣1)(x﹣2)=m2,则该方程的解的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法判断【解答】解:方程整理得:x2﹣3x+2﹣m2=0,∵△=9﹣4(2﹣m2)=4m2+1>0,∴方程有两个不相等的实数根,故选:B.7.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则的值为()A.B.C.D.【解答】解:∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:∴=,故选:B.8.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175【解答】解:设平均每月的增长率为x,则二月份工业产值为50(1+x)亿元,三月份工业产值为50(1+x)2亿元,依题意,得:50+50(1+x)+50(1+x)2=175.故选:D.9.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选:D.10.已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12B.13C.14D.15【解答】解:作CF⊥AB于点F,设最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E,∵DE∥AB,∴=,即=,解得:DE=,而整数部分是4,∴最下边一排是4个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则=,解得GH=,而整数部分是3,∴第二排是3个正方形;同理:第三排是:3个;第四排是2个,第五排是1个,第六排是1个,则正方形的个数是:4+3+3+2+1+1=14.故选:C.二、填空题(每小题3分,共15分)11.计算:﹣=4.【解答】解:原式=﹣3×=5﹣=4.故答案为:4.12.若方程x2﹣2x﹣3=0可化为(x+m)2=k的形式,则m=﹣1.【解答】解:∵x2﹣2x﹣3=0,∴x2﹣2x+1=4,∴(x﹣1)2=4,∴m=﹣1,k=4,故答案为:﹣1.13.已知:,则=.【解答】解:∵,∴=(更比定理),∴=(合比定理),即=.故答案是:.14.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是.【解答】解:如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴阴影部分面积为:S△ABC=××1=,故答案为:.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.【解答】解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.三、解答题(本题含8个小题,共75分)16.计算:(1)3÷×(﹣)(2)|2﹣|+(﹣)+【解答】解:(1)原式=3×2×(﹣)×=﹣;(2)原式=﹣2+﹣+=﹣2+﹣+=0.17.解下列方程(1)(3x﹣8)2=4(2x﹣3)2(2)5x(x﹣3)=6﹣2x【解答】解:(1)∵(3x﹣8)2=4(2x﹣3)2,∴3x﹣8=2(2x﹣3)或3x﹣8=﹣2(2x﹣3),解得x=2或x=﹣2;(2)∵5x(x﹣3)=﹣2(x﹣3),∴5x(x﹣3)+2(x﹣3)=0,∴(x﹣3)(5x+2)=0,则x﹣3=0或5x+2=0,解得x=3或x=﹣0.4.18.如图,在4×4的正方形网格纸中,△ABC和△DEF的顶点都在边长为1的小正方形的格点上.(1)求证:△ABC∽△DEF;(2)直接写出△ABC和△DEF的周长比和面积比.【解答】(1)证明:∵AB=2,BC==2,AC==2,DE==,EF=2,DF==,∴===,∴△ABC∽△DEF;(2)解:△ABC和△DEF的周长比==,△ABC和△DEF的面积比=()2=2.19.已知关于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.(1)当k取何值时,方程有两个不相等的实数根?(2)在(1)的条件下,若k是满足条件的最小整数,求方程的根.【解答】解:(1)∵关于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0有两个不相等的实数根,∴△=[﹣(4k+3)]2﹣4×2×(2k2+k)=16k+9>0,解得:k>﹣.∴当k>﹣时,方程有两个不相等的实数根;(2)根据题意,得:k=0,∴原方程为2x2﹣3x=0,即x(2x﹣3)=0,解得:x1=0,x2=.∴方程的根为x1=0,x2=.20.数学兴趣小组的同学们,想利用自己所学的数学知识测量学校旗杆的高度:下午活动时间,兴趣小组的同学们来到操场,发现旗杆的影子有一部分落在了墙上(如图所示).同学们按照以下步骤进行测量:测得小明的身高1.65米,此时其影长为2.5米;在同一时刻测量旗杆影子落在地面上的影长BC为9米,留在墙上的影高CD为2米,请你帮助兴趣小组的同学们计算旗杆的高度.【解答】解:作DH⊥AB于H,如图,易得四边形BCDH为矩形,∴BH=CD=2,DH=BC=9,∵小明的身高1.65米,此时其影长为2.5米,∴=,∴AH==5.94,∴AB=AH+BH=5.94+2=7.94.答:旗杆的高度为7.94m.21.如图,把一张边长为10cm的正方形纸板的四周各剪去一个边长为xcm的小正方形,再折叠成一个无盖的长方体盒子.(1)当长方体盒子的底面积为81cm2时,求所剪去的小正方形的边长.(2)设所折叠的长方体盒子的侧面积为S,求S与x的函数关系式,并写出x的取值范围.(3)长方体盒子的侧面积为S的值能否是60cm2,若能,请求出x的值;若不能,请说明理由.【解答】解:(1)根据题意,得(10﹣2x)2=81解得x1=0.5,x2=9.5(不符合题意,舍去)答:所剪去的小正方形的边长为0.5cm.(2)根据题意,得S=4x(10﹣2x)=﹣8x2+40x(0<x<5)答:S与x的函数关系式为S=﹣8x2+40x,x的取值范围为0<x<5.(3)答:不能.理由如下:﹣8x2+40x=60,整理得2x2﹣5x+15=0∵△=25﹣120=﹣95<0,∴此方程无解,答:长方体盒子的侧面积为S的值不能是60cm2.22.“如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”(1)探究发现:如图②,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴=,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴==1,∴=1,故答案为1.(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴=,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴==,∴=,故答案为.②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴=,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴==,∴=.(3)由(2)有,△ADE∽△CDF,∵==,∴===,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF===2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图4﹣1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.【解答】解:(1)∵x2﹣14x+48=0,解得:x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴A(8,0),C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,A(8,0),C(0,6),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),过A、C两点作x轴、y轴的垂线相交于B点,∴B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6),当以点P,B,C三点为顶点的三角形是等腰三角形时,分三种情况讨论:如图所示:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=82,解得:a=±,则P(﹣,)或(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得:a=,则﹣a+6=﹣,∴P(,﹣).综上所述,P点的坐标为(4,3)或(﹣,)或(,)或(,﹣).。
2019-2020学年陕西省汉中市城固县九年级(上)期中数学试卷试题及答案(解析版)
2019-2020学年陕西省汉中市城固县九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1.下列方程中,属于一元二次方程的是( )A .21x y +=B .20ax bx c ++=C .134x x +=D .220x -=2.下列命题中,真命题是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形的两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质3.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为( )A .2B .3C .4D .54.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A .3.5B .4C .7D .145.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:96.已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( )A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解7.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1:2,点A的坐标为(1,0),则E 点的坐标为( )A .(2,0)B .(1,1)C .D .(2,2)8.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,CH AF ⊥于点H ,那么CH 的长是( )A B C D 10.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF AC ⊥分别交DC 于F ,交AB 于E ,若点G 是AE 中点且30AOG ∠=︒,则下列结论正确的个数为( )(1)OGE ∆是等边三角形;(2)3DC OG =;(3)12OG BC =; (4)16AOE ABCD S S ∆=矩形A .1个B .2个C .3个D .4个二、填空题(共4小题,每小题3分,计12分)11.线段AB 长为10cm ,点C 是AB 的黄金分割点,则AC 的长为 (结果精确到0.1)cm .12.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为 粒.13.如图,一电线杆AB 的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN ,量得其影长MF 为0.5米,量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,则电线杆AB 的高为 米.14.如图,菱形ABCD 中,2AB =,120A ∠=︒,点E 、F 分别在边AB 、AD 上且AE DF =,则AEF ∆面积的最大值为 .三、解答题(共11小题,计78分,解答题应写出文字说明、证明过程或演算步骤)15.解方程:23(5)2(5)x x -=-16.先化简:242()222x x x x x++÷--,再从2,2-,1,0,1-中选择一个合适的数进行计算. 17.已知:ABC ∆中,36A ∠=︒,AB AC =,用尺规在AC 上找一点D ,使得到的BCD ∆与ABC ∆相似.(保留作图痕迹,不写作法)18.已知关于x 的方程220x ax a ++-=(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.19.(7分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知1DE=米,0.5DG=米,到旗杆的水平EF=米,测点D到地面的距离3距离40DC=米,求旗杆的高度.20.(7分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为)A、兴文石海(记为)B、夕佳山民居(记为)D的一个景点去游玩,他们各自在这四C、李庄古镇(记为)个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.21.(7分)如图,正方形ABCD的对角线AC与BD交于点O,过点C作//CE BD,过点D 作//DE AC,CE与DE交于点E.求证:四边形OCED是正方形.22.(7分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?23.太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D ,舍利塔的塔尖点B 正好在同一直线上,测得4EC =米,将标杆CD 向后平移到点C 处,这时地面上的点F ,标杆的顶端点H ,舍利塔的塔尖点B 正好在同一直线上(点F ,点G ,点E ,点C 与塔底处的点A 在同一直线上),这时测得6FG =米,53GC =米.请你根据以上数据,计算舍利塔的高度AB .24.如图,在ABC ∆中.AB AC =,AD BC ⊥于D ,作DE AC ⊥于E ,F 是AB 中点,连EF 交AD 于点G .(1)求证:2AD AB AE =;(2)若3AB =,2AE =,求AD AG的值.25.已知:如图,在平面直角坐标系中,ABC ∆是直角三角形,90ACB ∠=︒,点A ,C 的坐标分别为(3,0)A -,(1,0)C ,34BC AC = (1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得ADB ∆与ABC ∆相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连接PQ ,设AP DQ m ==,问是否存在这样的m ,使得APQ ∆与ADB ∆相似?如存在,请求出m 的值;如不存在,请说明理由.2019-2020学年陕西省汉中市城固县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1.下列方程中,属于一元二次方程的是( )A .21x y +=B .20ax bx c ++=C .134x x +=D .220x -=【解答】解:A 、含有2个未知数,故错误;B 、当0a =时不是一元二次方程,故错误;C 、为分式方程,故错误;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,正确;故选:D .2.下列命题中,真命题是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形的两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质【解答】解:A 、可判断为菱形,故本选项错误,B 、对角线相等的菱形是正方形,故本选项正确,C 、正方形的两条对角线相等,且互相垂直平分,故本选项错误,D 、菱形的对角线不一定相等,故本选项错误,故选:B .3.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为( )A .2B .3C .4D .5 【解答】解:根据题意得:20.42n =+, 解得:3n =,则n 的值为3,4.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A .3.5B .4C .7D .14【解答】解:菱形ABCD 的周长为28,2847AB ∴=÷=,OB OD =, H 为AD 边中点,OH ∴是ABD ∆的中位线,117 3.522OH AB ∴==⨯=. 故选:A .5.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:9【解答】解:两个相似三角形对应边之比是1:3, 又相似三角形的对应高、中线、角平分线的比等于相似比,∴它们的对应中线之比为1:3.故选:A .6.已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( )A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解【解答】解:关于x 的方程2(1)10kx k x +--=,A 、当0k =时,10x -=,则1x =,故此选项错误;B 、当1k =时,210x -=方程有两个实数解,故此选项错误;C 、当1k =-时,2210x x -+-=,则2(1)0x -=,此时方程有两个相等的实数解,故此选D 、由C 得此选项错误.故选:C .7.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1:2,点A 的坐标为(1,0),则E 点的坐标为( )A .(2,0)B .(1,1)C .D .(2,2)【解答】解:四边形OABC 是正方形,点A 的坐标为(1,0),∴点B 的坐标为(1,1),正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1:2,E ∴点的坐标为(2,2),故选:D .8.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+【解答】解:由题意可得, 21000(1)1000440x +=+,故选:A .9.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,CH AF ⊥于点H ,那么CH 的长是( )ABCD【解答】解:1CD BC ==,312GD ∴=-=,ADK FGK ∆∆∽, ∴DK AD GK GF=, 即13DK GK =, 14DK DG ∴=, 11242DK ∴=⨯=,33242GK =⨯=,KF ∴== CHK FGK ∆∆∽, ∴CH CK GF FK=,∴3CH =,CH ∴=. 方法二:连接AC 、CF ,利用面积法:AC CF CH AF =; 故选:A .10.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF AC ⊥分别交DC 于F ,交AB于E ,若点G 是AE 中点且30AOG ∠=︒,则下列结论正确的个数为( )(1)OGE ∆是等边三角形;(2)3DC OG =;(3)12OG BC =;(4)16AOE ABCD S S ∆=矩形A .1个B .2个C .3个D .4个 【解答】解:EF AC ⊥,点G 是AE 中点,12OG AG GE AE ∴===,30AOG ∠=︒,30OAG AOG ∴∠=∠=︒,90903060GOE AOG ∠=︒-∠=︒-︒=︒,OGE ∴∆是等边三角形,故(1)正确;设2AE a =,则OE OG a ==,由勾股定理得,AO ===, O 为AC 中点,2AC AO ∴==,1122BC AC ∴==⨯=,在Rt ABC ∆中,由勾股定理得,3AB a ==,四边形ABCD 是矩形,3CD AB a ∴==,3DC OG ∴=,故(2)正确;OG a =,12BC =,12BC BC ∴≠,故(3)错误; 21332AOE S a a a ∆==, 23333ABCD S aa a ==, 16AOE ABCD S S ∆∴=,故(4)正确; 综上所述,结论正确是(1)(2)(4),共3个.故选:C .二、填空题(共4小题,每小题3分,计12分) 11.线段AB 长为10cm ,点C 是AB 的黄金分割点,则AC 的长为 6.2cm 或3.8cm (结果精确到0.1)cm .【解答】解:点C 是线段AB 的黄金分割点,当AC BC >时,AC AB ∴=, 而10AB cm =,105) 6.2AC cm ∴==≈. 当AC BC <时,10 6.2 3.8AC cm =-=故答案为6.2cm 或3.8cm ..12.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为 1250 粒.【解答】解:设瓶子中有豆子x 粒豆子,根据题意得:1001008x =, 解得:1250x =,答:估计瓶子中豆子的数量约为1250粒.故答案为:1250.13.如图,一电线杆AB 的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN ,量得其影长MF 为0.5米,量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD的高为2米,则电线杆AB的高为8米.【解答】解:过C点作CG AB⊥于点G,3GC BD∴==米,2GB CD==米.90NMF AGC∠=∠=︒,//NF AC,NFM ACG∴∠=∠,NMF AGC∴∆∆∽,∴NM MFAG GC=,1360.5NM GCAGMF⨯∴===,628AB AG GB∴=+=+=(米),答:电线杆子的高为8米.故答案为:8.14.如图,菱形ABCD中,2AB=,120A∠=︒,点E、F分别在边AB、AD上且AE DF=,则AEF∆【解答】解:过点E作EM AD⊥交DA的延长线于点M,设AE x=,则AE DF x==,四边形ABCD 是菱形,120A ∠=︒,2AB AD ∴==,60MAE ∠=︒,2AF x ∴=-,sin 60EM AE ∴=︒=,211(2)1)22AEF S AF EM x x ∆∴==-=-+,AEF ∴∆三、解答题(共11小题,计78分,解答题应写出文字说明、证明过程或演算步骤)15.解方程:23(5)2(5)x x -=-【解答】解:原方程可变形为:23(5)2(5)x x -=-23(5)2(5)0x x ---=(5)[3(5)2]0x x ---= (5)(133)0x x --=则15x =,2133x =. 16.先化简:242()222x x x x x++÷--,再从2,2-,1,0,1-中选择一个合适的数进行计算. 【解答】解:原式242()222x x x x x+=-÷-- 24222x x x x-+=÷- (2)(2)222x x x x x +-=-+ 2x =,20x -≠、0x ≠、20x +≠,2x ∴≠、0x ≠、2x ≠-,将1x =代入,得原式212=⨯=.17.已知:ABC ∆中,36A ∠=︒,AB AC =,用尺规在AC 上找一点D ,使得到的BCD ∆与ABC ∆相似.(保留作图痕迹,不写作法)【解答】解:如图,BDC ∆即为所求.18.已知关于x 的方程220x ax a ++-= (1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.【解答】解:(1)将1x =代入方程220x ax a ++-=得,120a a ++-=,解得,12a =; 方程为213022x x +-=,即2230x x +-=,设另一根为1x ,则1312x =-,132x =-.(2)△22224(2)48444(2)40a a a a a a a =--=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根. 19.(7分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知1DE =米,0.5EF =米,测点D 到地面的距离3DG =米,到旗杆的水平距离40DC =米,求旗杆的高度.【解答】解:ADC FDE∠=∠,90ACD FED∠=∠=︒,ACD FED∴∆∆∽,∴AC CD EF DE=,即40 0.51 AC=,解得20AC=,AB BG⊥,DG BG⊥,DC AB⊥,90ABG BGD DCB∴∠=∠=∠=︒,∴四边形BGDC是矩形,3BC DG∴==,20323AB AC BC∴=+=+=米.答:旗杆AB的高度是23米20.(7分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为)A、兴文石海(记为)B、夕佳山民居(记为)C、李庄古镇(记为)D的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为4.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.【解答】解:(1)小明准备到宜宾的蜀南竹海(记为)A、兴文石海(记为)B、夕佳山民居(记为)C、李庄古镇(记为)D的一个景点去游玩,∴小明选择去蜀南竹海旅游的概率14 =,故答案为:14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去兴文石海旅游的概率116 =.21.(7分)如图,正方形ABCD的对角线AC与BD交于点O,过点C作//CE BD,过点D 作//DE AC,CE与DE交于点E.求证:四边形OCED是正方形.【解答】证明://CE BD,//DE AC,∴四边形CODE是平行四边形,正方形ABCD的对角线AC与BD交于点O,OD OC∴=,90DOC∠=︒,∴四边形CODE是正方形.22.(7分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?【解答】解:设每件衬衫应降价x元,由题意得:(40)(202)1200x x-+=,即22604000x x-+=,2302000x x∴-+=,(10)(20)0x x∴--=,解得:10x=或20x=为了减少库存,所以20x=.故每件衬衫应应降价20元.23.太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C 处垂直于地面竖立了高度为2米的标杆CD ,这时地面上的点E ,标杆的顶端点D ,舍利塔的塔尖点B 正好在同一直线上,测得4EC =米,将标杆CD 向后平移到点C 处,这时地面上的点F ,标杆的顶端点H ,舍利塔的塔尖点B 正好在同一直线上(点F ,点G ,点E ,点C 与塔底处的点A 在同一直线上),这时测得6FG =米,53GC =米.请你根据以上数据,计算舍利塔的高度AB .【解答】解:EDC EBA ∆∆∽,FHG FBA ∆∆∽, ∴GH FG BA FA =,DC EC BA EA =,DC HG =, ∴FG EC FA EA =, ∴64594CA CA =++, 106CA ∴=(米),DC EC BA EA=, ∴244106BA =+, 55AB ∴=(米),答:舍利塔的高度AB 为55米.24.如图,在ABC ∆中.AB AC =,AD BC ⊥于D ,作DE AC ⊥于E ,F 是AB 中点,连EF 交AD 于点G .(1)求证:2AD AB AE =;(2)若3AB =,2AE =,求AD AG的值.【解答】(1)证明:AD BC ⊥于D ,作DE AC ⊥于E , 90ADC AED ∴∠=∠=︒,DAE DAC ∠=∠,DAE CAD ∴∆∆∽, ∴AD AE CA AD=, 2AD AC AE ∴=,AC AB =,2AD AB AE ∴=.(2)解:如图,连接DF .3AB =,90ADB ∠=︒,BF AF =,1322DF AB ∴==, AB AC =,AD BC ⊥,BD DC ∴=,//DF AC ∴, ∴33224DFDG AEAG ===, ∴74AD AG =. 25.已知:如图,在平面直角坐标系中,ABC ∆是直角三角形,90ACB ∠=︒,点A ,C 的坐标分别为(3,0)A -,(1,0)C ,34BC AC =(1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得ADB ∆与ABC ∆相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连接PQ ,设AP DQ m ==,问是否存在这样的m ,使得APQ ∆与ADB ∆相似?如存在,请求出m 的值;如不存在,请说明理由.【解答】解:(1)(3,0)A -,(1,0)C ,4AC ∴=, 34BC AC =, 3434BC ∴=⨯=, (1,3)B ∴,设直线AB 的解析式为y kx b =+,∴303k b k b +=⎧⎨+=⎩, ∴3494k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为3944y x =+;(2)若ADB ∆与ABC ∆相似,过点B 作BD AB ⊥交x 轴于D ,90ABD ACB ∴∠=∠=︒,如图1, 此时AB AD AC AB=,即2AB AC AD =. 90ACB ∠=︒,4AC =,3BC =, 5AB ∴=,254AD ∴=,254AD ∴=, 2513344OD AD AO ∴=-=-=, ∴点D 的坐标为13(4,0).(3)AP DQ m ==,254AQ AD QD m ∴=-=-. Ⅰ、若APQ ABD ∆∆∽,如图2,则有AP AQ AB AD =, AP AD AB AQ ∴=, ∴25255()44m m =-, 解得259m =; Ⅱ、若APQ ADB ∆∆∽,如图3,则有AP AQ AD AB =, AP AB AD AQ ∴=, 25255()44m m ∴=-, 解得:12536m =, 综上所述:符合要求的m 的值为12536或259.。
2019-2020学年江西省南昌市进贤县九年级(上)期中数学试卷试题及答案(解析版)
2019-2020学年江西省南昌市进贤县九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分.选错、不选或多选均得零分.1.x=2满足下列方程的是()A.x2=2B.x2=4C.x2=8D.x2=162.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.把抛物线y=2x2向左平移1个单位,则所得抛物线的解析式是()A.y=2(x﹣1)2B.y=2(x+1)2C.y=2x2﹣1D.y=2x2+14.关于二次函数y=x2﹣4x﹣4的说法,正确的是()A.最大值为﹣4B.最小值为﹣4C.最大值为﹣8D.最小值为﹣8 5.不解方程,判断下列一元二次方程中,一定有实数根的是()A.x2﹣x+4=0B.﹣x2+x﹣2=0C.x2﹣4x﹣2019=0D.x2﹣x+2020=06.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=1007.若m,n是方程x2﹣2x﹣5=0两根,则(m2﹣2m)(m+n)的值为()A.5B.10C.﹣5D.﹣108.对于二次函数y=ax2﹣2ax+3(a≠0),下列说法错误的是()A.对称轴为直线x=1B.一定经过点(2,3)C.x<1时,y随x增大而增大D.当a>0,m≠1时,am2﹣2am+3>﹣a+3二、填空题(本大题共6小题,每小题3分,共18分)9.点P(﹣3,4)关于原点对称的点的坐标是.10.二次函数y=2(x+1)2﹣3的顶点坐标是.11.若α,β分别是方程x2﹣3x﹣6=0的两实根,则的值是.12.如图,在△ABC中,AB=AC,∠B=70°,把△ABC绕点C顺时针旋转得到△EDC,若点B恰好落在AB边上D处,则∠1=°.13.如图是抛物线y=ax2+bx+c的一部分,另一部分被墨水污染,发现:对称轴为直线x=1,与x轴的一个交点为(3,0),请你经过推理分析,不等式ax2+bx+c>0的解集是.14.用两块完全相同的直角三角形纸片,拼成一个四边形,若直角三角形两直角边分别为3,4,则拼成的四边形中,较长的对角线的长度可能为.三、解方程(本大题共1小题,每小题12分,共12分)15.(1)x2﹣4x﹣1=0(配方法);(2)2x2﹣3x﹣1=0(公式法);(3)x(x﹣2)﹣3x+6=0(因式分解法).四、解答题(本大题共2小题,每小题6分,共12分)16.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1,x2,且满足(x1•x2)2﹣(x1+x2)2=0,试求k的值.17.已知抛物线y=ax2+bx+c与x轴交于A,B,与y轴交于点C,请仅用无刻度直尺按要求作图:(1)在图1中,直线l为对称轴,请画出点C关于直线l的对称点;(2)在图2中,若CD∥x轴,请画出抛物线的对称轴.五、解答题(本大题共3小题,每小题8分,共24分)18.如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?19.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.20.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,据市场调查发现每月的销售量与售价的关系如表:(1)设每条裤子的售价为x元(x为正整数),每月的销售量为y条.直接写出y与x的函数关系式(不要求写x的取值范围);(2)若每月利润为4000元,且让消费者得到最大的实惠,则定价多少元?(3)设该网店每月获得的利润为w元,当销售单价定价多少元时,每月获得的利润最大,最大利润是多少?六、综合题(本大题共1小题,共10分)21.抛物线C1:y1=a1x2+b1x+c与抛物线C2:y2=a2x2+b2x+c中,若,则称抛物线C1,C2为“窗帘”抛物线.(1)已知y=x2+2x﹣3与y=2x2+bx﹣3是“窗帘”抛物线,①b的值为;②在如图的坐标系中画出它们的大致图象,并直接写出它们的交点坐标.(2)设抛物线y=x2+2x﹣3,y=nx2+2nx﹣3,y=3nx2+6nx﹣3(n>0)的顶点分别为D,E,F,①判断它们是否是“窗帘”抛物线?答:(填“是”或“不是”)②若EF=3DE,求n的值.2019-2020学年江西省南昌市进贤县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分.选错、不选或多选均得零分.1.x=2满足下列方程的是()A.x2=2B.x2=4C.x2=8D.x2=16【解答】解:A、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.B、当x=2时,左边=4=右边,即x=2满足该方程,故本选项符合题意.C、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.D、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.故选:B.2.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.3.把抛物线y=2x2向左平移1个单位,则所得抛物线的解析式是()A.y=2(x﹣1)2B.y=2(x+1)2C.y=2x2﹣1D.y=2x2+1【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,那么新抛物线的顶点为(﹣1,0),可设新抛物线的解析式为y=2(x﹣h)2+k,代入得y=2(x+1)2.故选:B.4.关于二次函数y=x2﹣4x﹣4的说法,正确的是()A.最大值为﹣4B.最小值为﹣4C.最大值为﹣8D.最小值为﹣8【解答】解:∵y=x2﹣4x﹣4=x2﹣4x+4﹣8=(x﹣2)2﹣8,∴二次函数y=x2﹣4x﹣4中,当x=2时,函数取得最小值﹣8,故选:D.5.不解方程,判断下列一元二次方程中,一定有实数根的是()A.x2﹣x+4=0B.﹣x2+x﹣2=0C.x2﹣4x﹣2019=0D.x2﹣x+2020=0【解答】解:A、∵△=(﹣1)2﹣4×1×4=﹣15<0,∴方程没有实数根;B、∵△=12﹣4×(﹣1)×(﹣2)=﹣7<0,∴方程没有实数根;C、∵△=(﹣4)2﹣4×1×(﹣2019)=8092>0,∴方程有两个不相等的实数根;D、∵△=(﹣1)2﹣4×1×2020=8079<0,∴方程没有实数根;故选:C.6.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=100【解答】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.7.若m,n是方程x2﹣2x﹣5=0两根,则(m2﹣2m)(m+n)的值为()A.5B.10C.﹣5D.﹣10【解答】解:∵m,n是方程x2﹣2x﹣5=0的两根,∴m2﹣2m=5,m+n=2,∴(m2﹣2m)(m+n)=5×2=10.故选:B.8.对于二次函数y=ax2﹣2ax+3(a≠0),下列说法错误的是()A.对称轴为直线x=1B.一定经过点(2,3)C.x<1时,y随x增大而增大D.当a>0,m≠1时,am2﹣2am+3>﹣a+3【解答】解:A、y=ax2﹣2ax+3(a≠0)=a(x﹣1)2﹣a+3,对称轴为直线x=1,不符合题意;B、当x=2时,y=4a﹣4a+3=3,一定经过点(2,3),不符合题意;C、当a>0,x<1时,y随x增大而减小,符合题意;D、当a>0,m≠1时,am2﹣2am+3>﹣a+3,即am2﹣2am+a=a(m﹣1)2>0,不符合题意.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).10.二次函数y=2(x+1)2﹣3的顶点坐标是(﹣1,﹣3).【解答】解:∵二次函数y=2(x+1)2﹣3,∴二次函数y=2(x+1)2﹣3的顶点坐标是:(﹣1,﹣3).故答案为:(﹣1,﹣3).11.若α,β分别是方程x2﹣3x﹣6=0的两实根,则的值是﹣2.【解答】解:∵α,β分别是方程x2﹣3x﹣6=0的两实根,∴α+β=3,αβ=﹣6,∴2.故答案为:﹣2.12.如图,在△ABC中,AB=AC,∠B=70°,把△ABC绕点C顺时针旋转得到△EDC,若点B恰好落在AB边上D处,则∠1=100°.【解答】解:∵AB=AC,∠B=70°,∴∠ACB=∠B=70°,∴∠A=180°﹣70°﹣70°=140°,∵△ABC绕点C顺时针旋转得到△EDC,∴∠CDE=∠B=70°,BC=CD,∴∠B=∠BDC=70°,∴∠ADE=180°﹣70°﹣70°=40°,∴∠1=180°﹣40°﹣40°=100°,故答案为:100.13.如图是抛物线y=ax2+bx+c的一部分,另一部分被墨水污染,发现:对称轴为直线x=1,与x轴的一个交点为(3,0),请你经过推理分析,不等式ax2+bx+c>0的解集是﹣1<x<3.【解答】解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1,∴抛物线与x轴的另一交点(﹣1,0),当y=ax2+bx+c>0时,图象在x轴上方,∴﹣1<x<3,故答案为:﹣1<x<3.14.用两块完全相同的直角三角形纸片,拼成一个四边形,若直角三角形两直角边分别为3,4,则拼成的四边形中,较长的对角线的长度可能为.【解答】解:∵直角三角形的斜边长BC5,∴拼成的四边形中,邻边长5和4的平行四边形的一条对角线BD最长,如图所示:作BE⊥CD于E,则CE=AB=4,BE=AC=3,∴DE=CD+CE=4+4=8,∴BD;故答案为:.三、解方程(本大题共1小题,每小题12分,共12分)15.(1)x2﹣4x﹣1=0(配方法);(2)2x2﹣3x﹣1=0(公式法);(3)x(x﹣2)﹣3x+6=0(因式分解法).【解答】解:(1)∵x2﹣4x﹣1=0,∴x2﹣4x+4=5,∴(x﹣2)2=5,∴x=2±;(2)∵2x2﹣3x﹣1=0,∴a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x;(3)∵x(x﹣2)﹣3x+6=0,∴x(x﹣2)﹣3(x﹣2)=0,∴(x﹣3)(x﹣2)=0,∴x=3或x=2;四、解答题(本大题共2小题,每小题6分,共12分)16.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1,x2,且满足(x1•x2)2﹣(x1+x2)2=0,试求k的值.【解答】解:(1)根据题意得△=(﹣2)2﹣4(2k﹣1)≥0,解得k≤1;(2)根据题意得x1+x2=2,x1x2=2k﹣1,∵(x1•x2)2﹣(x1+x2)2=0,∴x1+x2=x1x2或x1+x2+x1x2=0,即2=2k﹣1或2+2k﹣1=0,解得k或k,而k≤1,∴k的值为.17.已知抛物线y=ax2+bx+c与x轴交于A,B,与y轴交于点C,请仅用无刻度直尺按要求作图:(1)在图1中,直线l为对称轴,请画出点C关于直线l的对称点;(2)在图2中,若CD∥x轴,请画出抛物线的对称轴.【解答】解:(1)如图1:点C关于直线l的对称点为点D;(2)如图2:直线l为抛物线的对称轴.五、解答题(本大题共3小题,每小题8分,共24分)18.如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.19.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.【解答】(1)解:如图1,∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA(180°﹣30°)=75°,∴∠ADE=90°﹣75°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF AC,∵∠ACB=30°,∴AB AC,∴BF=AB,∵△ABC绕点C顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.20.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,据市场调查发现每月的销售量与售价的关系如表:(1)设每条裤子的售价为x元(x为正整数),每月的销售量为y条.直接写出y与x的函数关系式(不要求写x的取值范围);(2)若每月利润为4000元,且让消费者得到最大的实惠,则定价多少元?(3)设该网店每月获得的利润为w元,当销售单价定价多少元时,每月获得的利润最大,最大利润是多少?【解答】解:(1)根据表格数据可知:销售单价每降1元,每月可多销售5条,所以y=250+5(50﹣x)=﹣5x+500.答:y与x的函数关系式为y=﹣5x+500.(2)根据题意,得:(x﹣40)(﹣5x+500)=4000﹣5x2+700x﹣24000=0x2﹣140x+4800=0解得x1=60,x2=80.答:让消费者得到最大的实惠,则定价60元.(3)根据题意,得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500∵a=﹣5<0,∴当x=70时,w有最大值为4500,∴应定价70元.答:当销售单价定价70元时,每月获得的利润最大,最大利润是4500元.六、综合题(本大题共1小题,共10分)21.抛物线C1:y1=a1x2+b1x+c与抛物线C2:y2=a2x2+b2x+c中,若,则称抛物线C1,C2为“窗帘”抛物线.(1)已知y=x2+2x﹣3与y=2x2+bx﹣3是“窗帘”抛物线,①b的值为4;②在如图的坐标系中画出它们的大致图象,并直接写出它们的交点坐标.(2)设抛物线y=x2+2x﹣3,y=nx2+2nx﹣3,y=3nx2+6nx﹣3(n>0)的顶点分别为D,E,F,①判断它们是否是“窗帘”抛物线?答:是(填“是”或“不是”)②若EF=3DE,求n的值.【解答】解:(1)①∵y=x2+2x﹣3与y=2x2+bx﹣3是“窗帘”抛物线,∴,∴b=4,故答案为:4.②在坐标系中它们的大致图象如图所示,由图象可知交点坐标为(0,﹣3),(﹣2,﹣3).(2)①∵抛物线y=x2+2x﹣3,y=nx2+2nx﹣3,y=3nx2+6nx﹣3(n>0),∴,,,∴它们是“窗帘”抛物线;故答案为:是;②∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴抛物线y=x2+2x﹣3顶点D的坐标为(﹣1,﹣4),∵y=nx2+2nx﹣3=n(x+1)2﹣3﹣n,∴抛物线顶点E的坐标为(﹣1,﹣3﹣n),∵y=3nx2+6nx﹣3=3n(x+1)2﹣3﹣3n,∴抛物线顶点F的坐标为(﹣1,﹣3﹣3n),∴EF=|﹣3﹣n+3n+3|=|2n|,DE=|﹣4+3+n|=|﹣1+n|,∵EF=3DE,∴|2n|=3|n﹣1|,当2n=3(n﹣1)时,解得n=3,当2n=﹣3(n﹣1)时,解得n,故n的值为3或.。
山东省青岛市2019-2020学年四区联考九年级(上)期中数学试卷(含答案)
2019-2020学年九年级上学期期中数学试卷一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE =15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<37.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个二、填空题(共6小题)9.已知,则=.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有个白球.11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用张正方形纸片(不得把每个正方形纸片剪开).13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C 作CE∥BD交AB的延长线于点E,连接OE,则OE长为.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣117.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F (1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有种不同的放置方法.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s 的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.参考答案一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选:C.2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形解:A、有一组邻边相等的平行四边形是菱形,故A选项不符合题意;B、两条对角线互相垂直且平分的四边形是菱形,故B选项不符合题意;C、对角线相等的平行四边形是矩形,故C选项不符合题意;D、有一组邻边线段的菱形不是正方形,故D选项符合题意;故选:D.3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.解:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率==.故选:A.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE =15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=90°﹣30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故选:B.6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3 ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<3解:由表格可知:当x=2时,ax2+bx+c=4,当x=3时,ax2+bx+c=﹣2,∴关于x的一元二次方程ax2+bx+c=0(a≠0)的一个解x的范围是2<x<3,故选:D.7.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=解:∵DG∥AB,∴=,故本选项不符合题意;B、∵DF∥CE,∴△ADF∽△AEC,∴=≠,故本选项不符合题意;C、∵DF∥CE,∴△ADF∽△AEC,∴=,∵DG∥AB,∴=,∴=,故本选项符合题意;D、∵DF∥CE,∴=,∵DG∥AB,∴△DGE∽△ABE,∴=,∴≠,故本选项不符合题意;故选:C.8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,∵将△ABE,△ADF分别沿折痕AE,AF向内折叠,∴AB=AG=AD,BE=EG=1,DF=GF,∠BAE=∠GAE,∠DAF=∠GAF,∵∠BAE+∠GAE+∠DAF+∠GAF=90°,∴∠EAG+∠GAF=45°,即∠EAF=45°,∵EH⊥AE,∴∠EAH=∠H=45°,∴AE=EH,且EH⊥AE,∴△AEH是等腰直角三角形,故②符合题意,设DF=FG=x,在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,∴(x+1)2=22+(3﹣x)2,解得x=,∴DF=,∴DF=CF=DC,∴点F是CD中点,故③符合题意,由勾股定理可得:AF===,AE===,∴EH=AE=,∴AH===2,∴FH=AH﹣AF=,故④符合题意,∵=2,,∴∴△ADF与△ECF不相似,故①不合题意,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.已知,则=.解:∵,∴y=x,∴===,故答案为:.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有10个白球.解:设盒子中原有的白球的个数为x个,根据题意得:,解得:x=10,经检验:x=10是原分式方程的解;∴盒子中原有的白球的个数为10个.故答案为:10;11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为20(1+x)+20(1+x)2=75.解:设该校今明两年在实验器材投资上的平均增长率是x,依题意,得:20(1+x)+20(1+x)2=75.故答案为:20(1+x)+20(1+x)2=75.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用8张正方形纸片(不得把每个正方形纸片剪开).解:如图所示:根据图形的相似拼一个与它形状相同但比它大的长方形,相似比为1:2,所以至少要用8张正方形纸片.故答案为8.13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C 作CE∥BD交AB的延长线于点E,连接OE,则OE长为.解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,∵AB=2,∴OB=1,AO=OC=,∴DB=2,∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=2,∠ACE=90°,∴OE===,故答案为:.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为0.解:∵i4n+1=i,i4n+2=﹣1,i4n+3=﹣i,i4n+4=1,∴i+i2+i3+i4+…+i2019+i2020=i+(﹣1)+(﹣i)+1+i+(﹣1)+(﹣i)+1+…+i+(﹣1)+(﹣i)+1=0.故答案为0.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.解:如图,四边形ABCD为所作.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣1解:(1),则,∴.(2)3(x﹣1)2﹣(x2﹣1)=0,3(x﹣1)2﹣(x﹣1)(x+1)=0,(x﹣1)(3x﹣3﹣x﹣1)=0,(x﹣1)(2x﹣4)=0,∴x1=1,x2=2.17.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.解:四边形AECD是菱形,理由:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=BC=EC,∴平行四边形AECD是菱形.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?解:设仓库的边AB为x米,由题意得:x(32﹣2x+2)=140,整理,得x2﹣17x+70=0,解,得x1=10,x2=7,当x=10时,BC=14<18;当x=7 时,BC=20>18,∴x=7不合题意,应舍去.答:仓库的边AB为10米,BC为14米.20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F (1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.【解答】证明:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵EF⊥AE,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)解:∵E是BC的中点,BC=8,∴BE=EC=BC=4,∵∠B═90°,AB=3,∴AE===5,∵△ABE∽△ECF,∴,即∴EF=.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠BCD=90°∴∠GAB=∠B=∠BCH,∵AD∥BC,EF∥AC,∴四边形AGEC是平行四边形,∴AG=EC,∵AB∥CD,EF∥AC∴四边形AFHC是平行四边形,∴AF=CH,∴△AFG≌△CHE(SAS).(2)四边形ABCD是正方形理由:∵EF∥AC,∴∠G=∠CAD,∵∠G=∠BAC,∴∠BAC=∠CAD,∵∠BAD=90°,∴∠BAC=45°,∵∠B=90°,∴∠BAC=∠ACB=45°,∴BA=BC,∴矩形ABCD是正方形.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?解:设该设备的销售单价为x万元.由题意列方程,得,整理,得x2﹣115x+3250=0解这个方程,得x1=50,x2=65,∵获利不高于30%∴∴x≤52∴x=65不合题意,舍去.∴x=50答:该设备的销售单价为50万元.23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有4种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有m﹣1种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有(m ﹣n+1)种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有6种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有11种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有35种不同的放置方法.解:探究1:当m=5,n=2时,由图可知有4种不同的选择方法,根据根据规律可知:从m个连续的自然数中选择2个连续的自然数,有(m﹣1)种不同的选择方法;故答案为:4、m﹣1.探究2:选择3个连续的自然数,选择方法的数量比数的个数少2,选择4个连续的自然数,选择方法的数量比数的个数少3,以此类推,选择8个连续的自然数,选择方法的数量比数的个数少7,选择n个连续自然数,选择方法的数量比数的个数少(n﹣1);故从100个连续的自然数中选择3个连续的自然数,有100﹣2=98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有100﹣3=97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有100﹣7=93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.故答案为:98、97、93、100﹣n+1.【问题解决】由规律可知:从m个连续的自然数中选择n个连续的自然数(n≤m),有(m﹣n+1)种不同的选择方法.故答案为:(m﹣n+1).【实际应用】(1)从连续7天选择连续2天,则m=7,n=2,总共有(7﹣2+1)=6种选择;(2)3号到15号总共13张电影票,选择3连号,则m=13,n=3,总共有(13﹣3+1)=11种不同的选择;故答案为:6、11.【拓展延伸】图案向右移动,每次一格,可看作8选2,可得7种放置方法,图案向下移动,每次一格,可看作,6选2,可得5种放置方法,故总共7×5=35种放置方法.故答案为:35.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s 的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.解:(1)过点A作AD⊥BC于点D,如图1所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,若△BPQ为直角三角形,根据题意只能∠BPQ=90°,则∠ADB=90°=∠BPQ,∵∠B=∠B,∴△ABD∽△QBP,∴,即,解得,答:当t为s时,△BPQ为直角三角形.(2)在Rt△ABD中,,过点P作PM⊥BC于点M,如图2所示:∴∠PMB=90°,∵∠ADB=90°,∴∠PMB=∠ADB,∵∠C=∠C,∴△ABD∽△BPM,∴,即,∴,∵PE∥BC,∴∠C=∠AEP,∠B=∠APE,∴△ABC∽△APE,∴,即,∴,∵四边形CQFE是平行四边形,∴EF=t,∴y=S梯形BPFQ=,==答:y与t的函数关系式是y=.(3)存在,理由如下:若S四边形BPFQ:S△ABC=7:6,则y=S△ABC∵S△ABC=∴=解得t1=5,答:t的值为5s或s时,S四边形BPFQ:S△ABC=7:6;(4)存在,理由如下:连接BF,如图3所示:若点F在∠ABC的平分线上,∴BF平分∠ABC,∴∠ABF=∠FBQ,∵PF∥BC,∴∠PFB=∠FBQ,∴∠ABF=∠PFB,∴PB=PF,即:,∴,答:当s时,点F在∠ABC的平分线上.。
2019-2020学年河南省洛阳市九年级(上)期中数学试卷(解析版)
2019-2020学年河南省洛阳市九年级(上)期中数学试卷一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .85.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x ==7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3600(1)12000x +=B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过() A .第一象限B .第二象限C .第三象限D .第四象限10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1CD 二、填空题(每小题3分,共15分)11.计算23--= .12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 .13.二次函数224y x x =-+的顶点坐标是 .14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 个.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根. 20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标; (4)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标;21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.23.如图,抛物线2y x bx c=-++交x轴于A,B两点,交y轴于点C直线122y x=-+经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求PBC∆面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.2019-2020学年河南省洛阳市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-【解答】解:224-=-, 则比22-小1的数是5-, 故选:D .2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯【解答】解:171亿17= 100 000 10000 1.7110=⨯. 故选:B .3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒【解答】解://AB CD ,B EFC ∴∠=∠,2E EFC D B D D D D ∴∠=∠-∠=∠-∠=∠-∠=∠,22E ∠=︒, 22D ∴∠=︒,故选:A .4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .8【解答】解:连接OE ,与DC 交于点F , 四边形ABCD 为矩形,OA OC ∴=,OB OD =,且AC BD =,即OA OB OC OD ===, //OD CE ,//OC DE , ∴四边形ODEC 为平行四边形,OD OC =,∴四边形ODEC 为菱形,DF CF ∴=,OF EF =,DC OE ⊥, //DE OA ,且DE OA =, ∴四边形ADEO 为平行四边形,2AD =,2DE =,OE ∴=,即OF EF ==在Rt DEF ∆中,根据勾股定理得:1DF ==,即2DC =,则11222ODEC S OE DC =⋅=⨯=菱形.故选:A .5.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)【解答】解:观察图象可知(4,2)O '-,故选:C .6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==- B .121x x ==C .11x =,21x =-D .120x x ==【解答】解:(1)10x x x +--=,(1)(1)0x x x ∴+-+=,则(1)(1)0x x +-=, 10x ∴+=或10x -=,解得11x =-,21x =, 故选:C .7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( ) A .3600(1)12000x += B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=【解答】解:根据题意列出方程,得236003600(1)3600(1)12000x x ++++=. 故选:D .8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<【解答】解:抛物线的对称轴为直线1x =,抛物线与x 轴的一个交点坐标为(1,0)-, ∴抛物线与x 轴的另一个交点坐标为(3,0), ∴抛物线的解析式可设为(1)(3)y a x x =+-,把(0,3)-代入得31(3)a -=-,解得3a =,∴抛物线的解析式为(1)(3)y x x =+-,即223y x x =--,2(1)4y x =--,1x ∴=时,y 有最小值4-, 2x =时,2233y x x =--=-,∴当12x -<<,y 的取值范围是40y -<.故选:D .9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:点(,)m n 在坐标系中的第四象限, 0m ∴>,0n <, 20m ∴+>,40n -<,∴一次函数(2)4y m x n =++-的图象经过第一、三、四象限.故选:B .10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1 CD【解答】解:由旋转的特性可知,BM BN =, 又60MBN ∠=︒, BMN ∴∆为等边三角形. MN BM ∴=,点M 是高CH 所在直线上的一个动点,∴当BM CH ⊥时,MN 最短(到直线的所有线段中,垂线段最短). 又ABC ∆为等边三角形,且2AB BC CA ===,∴当点M 和点H 重合时,MN 最短,且有112MN BM BH AB ====. 故选:B .二、填空题(每小题3分,共15分) 11.计算23--= 12- . 【解答】解:原式93=-- 12=-.故答案为:12-.12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 2x - .【解答】解:解不等式12x-,得:2x -,解不等式74x -+>,得:3x <, 则不等式组的解集为2x -, 故答案为:2x -.13.二次函数224y x x =-+的顶点坐标是 (1,3) .【解答】解:224y x x =-+,∴12ba-= 244144344ac b a -⨯⨯-==, 即顶点坐标为(1,3), 故答案为:(1,3).14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 3 个.【解答】解:①因为抛物线的对称轴1x =, 所以12ba-=,即20b a +=, 所以①正确;②因为(1,0)A -,对称轴1x =,所以设抛物线与x 轴的另一个交点为E , 所以(3,0)E ,所以3x =时,0y =,即3x =是20ax bx c ++=的一个根. 所以②正确; ③如图:过点B 作BD ⊥对称轴于点D ,设对称轴交x 轴于点C , AP BP ⊥, 90APB ∴∠=︒, 90APC BPD ∴∠+∠=︒, 90BPD PBD ∠+∠=︒, PBD APC ∴∠=∠,AP BP =,Rt APC Rt PBD(AAS)∴∆≅∆ 1PC BD ∴==,2DP AC ==, 3DC ∴=, 3OB ∴=,(0,3)B ∴.又(3,0)E ,(1,0)A -.设抛物线解析式为(1)(3)y a x x =+-, 把(0,3)B 代入,解得1a =-, ∴抛物线解析式为223x x -++,当1x =时,4y =, 即4a b c ++=. 所以③正确. 故答案为3.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的【解答】解:分两种情况: ①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形, 90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上, 1452BAE B AE BAD ∴∠=∠'=∠=︒,AB BE ∴=, ∴315a =, 53a ∴=; ②当点B '落在CD 边上时,如图2. 四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上, 90B AB E ∴∠=∠'=︒,1AB AB ='=,35EB EB a ='=,DB ∴'==,3255EC BC BE a a a =-=-=.90B AD EB C AB D ∠'=∠'=︒-∠', 90D C ∠=∠=︒,ADB ∴∆'∽△B CE ',∴DB AB CE B E ''='12355a =,解得1a =2a =. 综上,所求a 的值为53或故答案为53三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 【解答】解:解方程220x x -=得:0x =或2,2234(1)121x x x x x ---÷+++2(2)(2)(1)1(2)(2)x x x x x x +-+=++- 1x =+,当2x =时,原式没有意义,舍去; 当0x =时,原式1=.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 50 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:48%50÷=(人),最喜爱戏曲的人数为:506%3⨯=(人);“娱乐”类人数占被调查人数的百分比为:18100%36%50⨯=, ∴ “体育”类人数占被调查人数的百分比为:18%30%36%6%20%----=, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是36020%72︒⨯=︒;故答案为:50,3,72︒.(2)20008%160⨯=(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.【解答】解:(1)对于直线y =+,令0x =,则y = 令0y =,则1x =-,故点A 的坐标为,点B 的坐标为(1,0)-,则AO =1BO =, 在Rt ABO ∆中,tan AOABO BO∠==,60ABO ∴∠=︒;(2)在ABC ∆中, AB AC =,AO BC ⊥, AO ∴为BC 的中垂线,即BO CO =,则C 点的坐标为(1,0),设直线l 的解析式为:(y kx b k =+,b 为常数),则0b k b ==+⎪⎩,解得:k b ⎧=⎪⎨=⎪⎩即函数解析式为:y =+.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根.【解答】解:(1)关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根, ∴210(2)4(1)(2)0k k k k +≠⎧⎨=--+->⎩, 解得:2k >-且1k ≠-,∴实数k 的取值范围为2k >-且1k ≠-.(2)2k >-且1k ≠-,∴满足条件的k 的最小整数值为0,此时原方程为220x -=,解得:1x =,2x =.20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标;(4)在x轴上找一点P,使PA PB+的值最小,请直接写出点P的坐标;【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.222(3)如图,点M即为所求,点M的坐标(1,0)-.(4)如图,点P即为所求,点P的坐标(2,0).21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;【解答】解:(1)设每箱新红星a 元,每箱红富士b 元,由题意可得: 40600.943001000.9354950a b a b +⨯=⎧⎨⨯+=⎩, 解得4050a b =⎧⎨=⎩,答:每箱新红星40元,每箱红富士50元;(2)设购置新红星x 箱,则购置红富士(120)x -箱,所需的总费用为y 元, 由题意可得:1(120)2x x -, 解得:40x , 又60x ,所以新红星箱数x 的取值范围:4060x , 当4050x <时, 40500.8(120)y x x =+⨯- 804800x =+,所以40x =时,y 有最小值80000元,当5060x 时,0.840500.8(120)724800y x x x =⨯+⨯-=+, 所以50x =时,y 有最小值8400元, 80008400<,∴购买新红星40箱,红富士80块,费用最少,最少费用为8000元.22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: 12S S = . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.【解答】解:(1)结论:12S S =.理由:如图1中,作EH BA ⊥交BA 的延长线于H ,CM AD ⊥于M .由题意CA AE =,AD AB =,90CAE DAF ∠=∠=︒, EAH CAM ∴∠=∠, sin sin CAM EAH ∴∠=∠,111sin 22S AD CM AD AC CAM ==∠,211sin 22S AB EH AB AE EAH ==∠, 12S S ∴=.故答案为12S S =.(2)结论:2BE AM =.理由:如图2中,延长AM 到T ,使得MT AM =,连接CT ,DT .CM DM =,AM MT =,∴四边形ADTC 是平行四边形,//AC DT ∴,AC DT =,180CAD ADT ∴∠+∠=︒,90CAE BAD ∠=∠=︒,180BAE CAD ∴∠+∠=︒,BAE ADT ∴∠=∠,AE AC DT ==,BA AD =,()BAE ADT SAS ∴∆≅∆,BE AT ∴=,AM MT =,2BE AM ∴=.(3)作//DT AC 交AH 的延长线于T .连接DE .=,AC AEAB AD∠=∠=︒,=,90BAD CAE∴∠=∠=︒,BAC DAE∠=∠,ABD ADB45∴∆≅∆,BAC DAE SAS()BC DE==,∴∠=∠=︒,2ADE ABC45∴∠=∠+∠=︒,BDE BDA ADE90BE∴===,∠=∠=︒,BAD CAE90∴∠+∠=︒,180CAD BAEAC DT,//∴∠+∠=︒,CAD ADT180∴∠=∠,BAE ADTAH BE⊥,∠+∠=︒,ABE BAT90DAT BAT∴∠+∠=︒,90∴∠=∠,DAT ABE=,AB AD∴∆≅∆,()ABE DAT ASA=,∴=,AE DTBE AT=,AC AE∴=,AC DT∠=∠,∠=∠,AHC DHTCAH T∴∆≅∆,()AHC THD AAS∴=,AH HT12AH BE ∴==. 23.如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C 直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m . ①求PBC ∆面积最大值和此时m 的值; ②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【解答】解:(1)直线122y x =-+经过点B ,C ,则点B 、C 的坐标分别为:(4,0)、(0,2), 将点B 、C 的坐标代入抛物线表达式并解得:72b =,2c =, 故抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点27(,2)2P m m m -++,点1(,2)2H m m -+, PBC ∆面积2211714(22)282222PH OB m m m m m =⨯⨯=⨯⨯-+++-=-+, 20-<,∴面积存在最大值为8,此时,2m =;②设27(,2)2P m m m -++,点1(,2)2Q n n -+,当AB 是平行四边形的边时, 点A 向右平移92个单位得到B ,同样点()P Q 向右平移92个单位得到()Q P , 则92m n ±=,2712222m m n -++=-+,解得:m =,n =当AB 是平行四边形的对角线时, 由中点公式得:4m n +=,27122222m m n -++-+=,解得:0m =或4(舍去4);综上点P 的坐标为,或,或,或或(0,2).。
河北省唐山市丰润区2019-2020学年九年级(上)期中数学试卷 含解析
2019-2020学年九年级(上)期中数学试卷一、选择题(本大题有12个小题,每小题2分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.若关于x的方程(a+1)x2+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠﹣1 B.a>﹣1 C.a<﹣1 D.a≠03.方程x2=2x的解是()A.x1=﹣2,x2=0 B.x1=,x2=0 C.x1=1,x2=2 D.x1=2,x2=0 4.抛物线y=x2+1的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=0 D.直线y=1 5.把方程x2﹣12x+33=0化成(x+m)2=n的形式,则m、n的值是()A.6,3 B.﹣6,﹣3 C.﹣6,3 D.6,﹣36.在平面直角坐标系中,有A(2,﹣1)、B(﹣1,﹣2)、C(2,1)、D(﹣2,1)四点.其中,关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A 7.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+38.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°9.下列对二次函数y=x2﹣x的图象的描述,正确的有()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧,抛物线从左到右下降10.某种药品经过了两次降价,从每盒54元降到每盒42元.若平均每次降低的百分率都为x,则根据题意,可得方程()A.54(1﹣x)2=42 B.54(1﹣x2)=42C.54(1﹣2x)=42 D.42(1+x)2=5411.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的周长为()A.16 B.12 C.16或12 D.2412.二次函数y=(x+1)2﹣2的图象大致是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分)13.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=.14.已知一元二次方程x2+2x﹣1=0的两实数根为x1,x2,则x1x2的值为.15.已知二次函数的图象经过点(1,3)和(3,3),则此函数图象的对称轴与x轴的交点坐标是.16.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为.17.二次函数y=﹣x2﹣2x+3的最大值是.18.如果关于x的一元二次方程2x(kx﹣4)﹣x2+6=0没有实数根,那么k的最小整数值是.19.如图,等腰Rt△ABC中,∠C=90°,BC=6cm,将△ABC绕点A顺时针旋转15°后得到△AB′C′,则图中阴影部分的面积是cm2.20.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac <0;④当y>0时,﹣1<x<3,其中正确的是.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)21.(1)解方程:x2+4x﹣7=0(2)解方程:3x(x﹣1)=2x﹣222.在如图网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC =3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并直接写出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2、B2、C2的坐标.23.已知m是方程x2﹣3x+1=0的一个根,求(m﹣3)2+(m+2)(m﹣2)的值.24.如图,在平面直角坐标系中,过抛物线的顶点A作x轴的平行线,交抛物线y=x2+1于点B,点B在第一象限.(1)求点A的坐标;(2)点P为x轴上任意一点,连结AP、BP,求△ABP的面积.25.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A′B′C′D'.设旋转角为α,此时点B′恰好落在边AD上,连接B'B.(1)当B'恰好是AD中点时,此时α=;(2)若∠AB'B=75°,求旋转角α及AB的长.26.双十一期间,某百货商场打算对某商品进行一次促销活动,该商品的进价为每件20元.在之前的销售过程中发现,当每件售价定为30元时,每月销售量为500件,若售价每提高1元,每月的销售量将减少10件.(1)设该商品售价提高x元时,每月获得的利润为y元,求y关于x的函数解析式;(2)如果商场想要获得的月利润为8000元,则该商品的销售单价应定为每件多少元?(3)若有关物价部门规定,该商品的销售单价不得高于其进价的两倍,则此时商场获得的最大月利润是多少?27.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.参考答案与试题解析一.选择题(共12小题)1.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的定义可直接得到答案.【解答】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、既是轴对称图形也是中心对称图形,故此选项错误;D、既是轴对称图形也是中心对称图形,故此选项错误;故选:B.2.若关于x的方程(a+1)x2+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠﹣1 B.a>﹣1 C.a<﹣1 D.a≠0【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得a+1≠0,再解即可.【解答】解:由题意得:a+1≠0,解得:a≠﹣1.故选:A.3.方程x2=2x的解是()A.x1=﹣2,x2=0 B.x1=,x2=0 C.x1=1,x2=2 D.x1=2,x2=0 【分析】先移项得到x2﹣2x=0,然后利用因式分解法解方程.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2.故选:D.4.抛物线y=x2+1的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=0 D.直线y=1【分析】由抛物线解析式可直接求得答案.【解答】解:∵抛物线y=x2+1,∴抛物线对称轴为直线x=0,即y轴,故选:C.5.把方程x2﹣12x+33=0化成(x+m)2=n的形式,则m、n的值是()A.6,3 B.﹣6,﹣3 C.﹣6,3 D.6,﹣3【分析】方程常数项移到右边,两边加上36变形即可得到结果.【解答】解:方程x2﹣12x+33=0变形得:x2﹣12x=﹣33,配方得:x2﹣12x+36=3,即(x﹣6)2=3,则m=﹣6,n=3.故选:C.6.在平面直角坐标系中,有A(2,﹣1)、B(﹣1,﹣2)、C(2,1)、D(﹣2,1)四点.其中,关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A【分析】根据关于原点对称,横纵坐标都互为相反数即可得出答案.【解答】解:A(2,﹣1)与D(﹣2,1)关于原点对称,故选:D.7.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.8.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠CAD=45°,∠ACD=90°﹣20°=70°,∴∠ADC=180°﹣45°﹣70°=65°,故选:C.9.下列对二次函数y=x2﹣x的图象的描述,正确的有()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧,抛物线从左到右下降【分析】由二次函数的性质利用二次函数的性质可排除A,B,D选项,再利用二次函数图象上点的坐标特征可求出二次函数y=x2﹣x的图象经过原点,此题得解.【解答】解:∵a=1,b=﹣1,c=0,∴二次函数y=x2﹣x的图象开口向上;对称轴为直线x=﹣=;在对称轴左侧,抛物线从左到右下降,在对称轴右侧,抛物线从左到右上升,∴选项A,B,D不正确;当x=0时,y=x2﹣x=0,∴二次函数y=x2﹣x的图象经过原点,选项C正确.故选:C.10.某种药品经过了两次降价,从每盒54元降到每盒42元.若平均每次降低的百分率都为x,则根据题意,可得方程()A.54(1﹣x)2=42 B.54(1﹣x2)=42C.54(1﹣2x)=42 D.42(1+x)2=54【分析】设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的54元降至42元,可列方程.【解答】解:设平均每次降价的百分率为x,54(1﹣x)2=42.故选:A.11.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的周长为()A.16 B.12 C.16或12 D.24【分析】先利用因式分解法解方程得到x1=3,x2=4,再根据菱形的性质可确定边AB的长是4,然后计算菱形的周长.【解答】解:(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4,∵菱形ABCD的一条对角线长为6,∴边AB的长是4,∴菱形ABCD的周长为16.故选:A.12.二次函数y=(x+1)2﹣2的图象大致是()A.B.C.D.【分析】分别根据抛物线的开口方向、对称轴的位置及抛物线与y轴的交点位置逐一判断可得.【解答】解:在y=(x+1)2﹣2中由a=1>0知抛物线的开口向上,故A错误;其对称轴为直线x=﹣1,在y轴的左侧,故B错误;由y=(x+1)2﹣2=x2+2x﹣1知抛物线与y轴的交点为(0,﹣1),在y轴的负半轴,故D错误;故选:C.二.填空题(共8小题)13.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n= 1 .【分析】根据两个点关于原点对称时,它们的坐标符号相反,可得出m、n的值,代入可得出代数式的值.【解答】解:∵点A(﹣3,m)和点B(n,2)关于原点对称,∴m=﹣2,n=3,故m+n=3﹣2=1.故答案为:1.14.已知一元二次方程x2+2x﹣1=0的两实数根为x1,x2,则x1x2的值为﹣1 .【分析】直接应用根与系数的关系,得结论.【解答】解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,∴x1•x2==﹣1.故答案为:﹣1.15.已知二次函数的图象经过点(1,3)和(3,3),则此函数图象的对称轴与x轴的交点坐标是(2,0).【分析】直接利用二次函数的图象经过点(1,3)和(3,3),得出二次函数的对称轴,进而得出此函数图象的对称轴与x轴的交点坐标.【解答】解:∵二次函数的图象经过点(1,3)和(3,3),∴抛物线的对称轴为:x==2,故此函数图象的对称轴与x轴的交点坐标是:(2,0).故答案为:(2,0).16.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为1或﹣4 .【分析】先把x=﹣2代入x2+ax﹣a2=0得4﹣3a﹣a2=0,然后解关于a的一元二次方程即可.【解答】解:把x=﹣2代入x2+ax﹣a2=0得4﹣3a﹣a2=0,整理得a2+3a﹣4=0,解得a1=1,a2=﹣4,故答案为1或﹣4.17.二次函数y=﹣x2﹣2x+3的最大值是 4 .【分析】将抛物线解析式配方成顶点式后,利用二次函数的性质即可得.【解答】解:∵y=﹣x2﹣2x+3=y=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴当x=﹣1时,y取得最大值4,故答案为:4.18.如果关于x的一元二次方程2x(kx﹣4)﹣x2+6=0没有实数根,那么k的最小整数值是 2 .【分析】先把方程化为一般形式:(2k﹣1)x2﹣8x+6=0,由关于x的一元二次方程2x (kx﹣4)﹣x2+6=0没有实数根,所以2k﹣1≠0且△<0,即解得k>,即可得到k 的最小整数值.【解答】解:把方程化为一般形式:(2k﹣1)x2﹣8x+6=0,∵原方程为一元二次方程且没有实数根,∴2k﹣1≠0且△<0,即△=(﹣8)2﹣4×(2k﹣1)×6=88﹣48k<0,解得k>.所以k的取值范围为:k>.则满足条件的k的最小整数值是2.故答案为2.19.如图,等腰Rt△ABC中,∠C=90°,BC=6cm,将△ABC绕点A顺时针旋转15°后得到△AB′C′,则图中阴影部分的面积是6cm2.【分析】AB与C′B′相交于点D,如图,根据等腰直角三角形的性质得AC=BC=6cm,∠CAB=45°,再根据旋转的性质得∠CAB=45°,∠CAC′=15°,则∠C′AD=30°,再利用含30度的直角三角形的三边的关系计算出C′D,然后根据三角形面积公式计算阴影部分的面积.【解答】解:AB与C′B′相交于点D,如图,∵等腰Rt△ABC中,∠C=90°,BC=6cm,∴AC=BC=6cm,∠CAB=45°,∵△ABC绕点A顺时针旋转15°后得到△AB′C′,∴∠CAB=45°,∠CAC′=15°,∴∠C′AD=30°,在Rt△AC′D中,C′D=AC′=×6=2,∴阴影部分的面积=×6×2=6.故答案为.20.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac <0;④当y>0时,﹣1<x<3,其中正确的是①④.【分析】根据二次函数的对称性与增减性等进行判断即可.【解答】解:①由图象可知,x=1时,y=a+b+c>0,因此①正确;②由图象可知,x=﹣1时,y=a+b+c=0,因此②错误;③由图象可知,函数图象与x轴有2个交点,因此b2﹣4ac>0,因此③错误;④∵对称轴为x=1,B(﹣1,0),∴A(﹣3,0),∴y>0时,﹣1<x<3,∴④正确,故答案为①④.三.解答题(共7小题)21.(1)解方程:x2+4x﹣7=0(2)解方程:3x(x﹣1)=2x﹣2【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+4x﹣7=0,b2﹣4ac=42﹣4×1×(﹣7)=44,x=,x1=﹣2+,x2=﹣2﹣;(2)移项得:3x(x﹣1)﹣2(x﹣1)=0,(x﹣1)(3x﹣2)=0,x﹣1=0,3x﹣2=0,x1=1,x2=.22.在如图网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并直接写出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2、B2、C2的坐标.【分析】(1)利用网格特点和旋转的性质画出B、C的对应点B1、C1即可;(2)利用B点坐标画出直角坐标系,然后写出A、C的坐标;(3)利用关于原点对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可.【解答】解:(1)如图,△AB1C1为所作;(2)如图,A点坐标为(0,1),C点的坐标为(﹣3,1);(3)如图,△A2B2C2为所作,点A2、B2、C2的坐标烦恼为(0,﹣1),(3,﹣5),(3,﹣1).23.已知m是方程x2﹣3x+1=0的一个根,求(m﹣3)2+(m+2)(m﹣2)的值.【分析】把x=m代入方程得:m2﹣3m+1=0,即m2﹣3m=﹣1,再整体代入原式=m2﹣6m+9+m2﹣4=2(m2﹣3m)+5可得.【解答】解:∵m是方程x2﹣3x+1=0的一个根,∴m2﹣3m+1=0,即m2﹣3m=﹣1,∴(m﹣3)2+(m+2)(m﹣2)=m2﹣6m+9+m2﹣4=2(m2﹣3m)+5=3.24.如图,在平面直角坐标系中,过抛物线的顶点A作x轴的平行线,交抛物线y=x2+1于点B,点B在第一象限.(1)求点A的坐标;(2)点P为x轴上任意一点,连结AP、BP,求△ABP的面积.【分析】(1)把抛物线化成顶点式求得即可;(2)根据题意得出B的纵坐标为2,代入y=x2+1求得B的坐标,即可求得AB,然后根据三角形面积公式求得即可.【解答】解:(1)抛物线=(x﹣4)2+2,∴顶点A的坐标为(4,2);(2)∵AB∥x轴,∴B点的纵坐标为2,代入y=x2+1得,2=x2+1,解得x=±1,∵点B在第一象限,∴B(1,2),∴AB=4﹣1=3,∴S△ABP==3.25.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A′B′C′D'.设旋转角为α,此时点B′恰好落在边AD上,连接B'B.(1)当B'恰好是AD中点时,此时α=60°;(2)若∠AB'B=75°,求旋转角α及AB的长.【分析】(1)由矩形的性质得出AD=BC=4,∠BCD=∠D=90°,当B'恰好是AD中点时,B'D=AD=2,得出B'D=BC,证出∠B'CD=30°,求出∠BCB'°=60°即可;(2)由平行线的性质和等腰三角形的性质得出∠CB'B=∠CBB'=75°,由三角形内角和定理得出∠BCB'=30°,即旋转角α为30°;作B'E⊥BC于E,由含30°角的直角三角形的性质即可得出答案.【解答】解:(1)∵四边形ABCD是矩形,∴AD=BC=4,∠BCD=∠D=90°,当B'恰好是AD中点时,B'D=AD=2,∴B'D=BC,∴∠B'CD=30°,∴∠BCB'=90°﹣30°=60°,即当B'恰好是AD中点时,此时α=60°;故答案为:60°;(2)∵四边形ABCD是矩形,∴AD∥BC,∴∠CBB'=∠AB'B=75°,由旋转的性质得:CB=CB',∴∠CB'B=∠CBB'=75°,∴∠BCB'=180°﹣75°﹣75°=30°,即旋转角α为30°;作B'E⊥BC于E,如图所示:则AB=B'E=CB'=2.26.双十一期间,某百货商场打算对某商品进行一次促销活动,该商品的进价为每件20元.在之前的销售过程中发现,当每件售价定为30元时,每月销售量为500件,若售价每提高1元,每月的销售量将减少10件.(1)设该商品售价提高x元时,每月获得的利润为y元,求y关于x的函数解析式;(2)如果商场想要获得的月利润为8000元,则该商品的销售单价应定为每件多少元?(3)若有关物价部门规定,该商品的销售单价不得高于其进价的两倍,则此时商场获得的最大月利润是多少?【分析】(1)根据销售问题的数量关系单件利润乘以销售量等于月利润即可求解;(2)根据(1)中求得的函数解析式,代入8000,利用一元二次方程即可求解;(3)根据销售单价不得高于其进价的两倍确定自变量的取值进而求得最大值.【解答】解:(1)根据题意,得y=(30﹣20+x)(500﹣10x)=﹣10x2+400x+5000.答:y关于x的函数解析式为y=﹣10x2+400x+5000.(2)当y=8000时,8000=﹣10x2+400x+5000.解得x1=10,x2=30.则30+x=40或60.答:该商品的销售单价应定为每件40元或60元.(3)y=﹣10x2+400x+5000.=﹣10(x﹣20)2+9000,因为商品的销售单价不得高于其进价的两倍,所以当x=10,即售价为40元时,月利润最大,最大月利润为8000元.答:最大月利润为8000元.27.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的解析式;(2)代入x=0求出y值,由此可得出点C的坐标,根据抛物线的解析式,利用二次函数的性质即可求出顶点D的坐标;(3)设点P的坐标为(m,n)(m>0,n>0),根据三角形的面积公式结合S△ABP=4S△COE,即可得出关于n的一元一次方程,解之即可得出n值,再代入n值求出m值,取其正值即可得出结论.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当x=0时,y=﹣x2+2x+3=3,∴点C的坐标为(0,3);∵抛物线的解析式为y=﹣x2+2x+3,∴顶点D的坐标为(1,4).(3)设点P的坐标为(m,n)(m>0,n>0),S△COE=×1×3=,S△ABP=×4n=2n,∵S△ABP=4S△COE,∴2n=4×,∴n=3,∴﹣m2+2m+3=3,解得:m1=0(不合题意,舍去),m2=2,∴点P的坐标为(2,3).。
南京市玄武区2019-2020学年度第一学期九年级数学期中试题(含答案)
2019~2020学年第一学期九年级期中质量监测卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.已知⊙O的半径为4,点A和圆心O的距离为3,则点A与⊙O的位置关系是A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定2.一元二次方程y2-4y+3=0配方后可化为A.()y-22=3 B.()y-22=0 C.()y+22=2 D.()y-22=1 3.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A,从乙袋中摸出红球记为事件B,则A. P(A)>P(B)B.P(A)<P(B)C.P(A)=P(B)D.无法确定4.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15岁和16岁的人数看不清,则下列关于年龄的统计量可以确定的是A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差5.如图,点A、B、C在半径为6的⊙O上,AB⌒的长为2π,则∠C的度数是A.20°B.30°C.45°D.60°(第5题)(第6题)6.如图,一个半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是A.8π3B.8π3-2 3 C.4π3- 3 D.23-2π3A OCB二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.方程x2=2x的解为▲ .8.一组数据:-1,3,2,0,4的极差是▲ .9.若x1,x2是一元二次方程x2-2x-4=0的两个实数根,则x1+x2-x1x2=▲ .10.某种商品原来售价100元,连续两次降价后售价为64元,则平均每次降价的百分率是▲ .11.如图,点A、B、C在⊙O上,若∠A=105°,则∠BOC=▲°.12.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为▲ cm.13.如图,A、B、C、D为一个外角为40°的正多边形的顶点,O为正多边形的中心.连接AD,则∠OAD=▲ °.14.如图,某单位院内有一块长30m,宽20 m的长方形花园,计划在花园内修两条纵向平行和一条横向弯折的道路(所有道路的进出口宽度都相等,且每段道路的对边互相平行),其余的地方种植花草.已知种植花草的面积为532 m2,设道路进出口的宽度为x m,根据条件,可列出方程▲ .15.如图,在△ABC中,∠A=90°,∠B=36°,点D为斜边BC的中点,将线段DC绕着点D逆时针旋转任意角度得到线段DE(点E不与A、B、C重合),连接EA,EC,则∠AEC=▲ °.16.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=▲ 时,满足条件的点C恰有三个.(第14题)(第16题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(11分)解下列方程:(1)x 2+2x -1=0; (2)()x -22=x -2.(3)直接写出x 3-x =0的解是 ▲ .18.(7分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩如图所示.(1)甲射击成绩的众数为 ▲ 环,乙射击成绩的中位数为 ▲ 环; (2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(7分)某市有A 、B 两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩. (1)甲去A 公园游玩的概率是 ▲ ;(2)求三位同学恰好在同一个公园游玩的概率.20.(8分)已知关于x 的一元二次方程x 2-2mx +2m -1=0(m 为常数). (1)若方程的一个根为0,求m 的值和方程的另一个根; (2)求证:不论m 为何值,该方程总有实数根.甲5次射击训练成绩条形统计图成绩/成绩/环乙5次射击训练成绩统计图②B 21.(8分)如图,在□ABCD 中,AD 是⊙O 的弦,BC 是⊙O 的切线,切点为B .(1)求证:AB ⌒=BD ⌒;(2)若AB =5,AD =8,求⊙O 的半径.22.(6分)已知⊙O ,请用无刻度的直尺完成下列作图.(1)如图①,四边形ABCD 是⊙O 的内接四边形,且AB =AD ,画出∠BCD 的角平分线; (2)如图②,AB 和AD 是⊙O 的切线,切点分别是B 、D ,点C 在⊙O 上,画出∠BCD 的角平分线.23.(7分)某商店销售一批小家电,每台成本40元,经市场调研,当每台售价定为52元时,可销售180台;若每台售价每增加1元,销售量将减少10台. (1)如果每台小家电售价增加2元,则该商店可销售 ▲ 台; (2)商店销售该家电获利2000元,那么每台售价应增加多少元?24.(8分)已知⊙O 经过四边形ABCD 的B 、D 两点,并与四条边分别交于点E 、F 、G 、H ,且 EF ⌒=GH ⌒.(1)如图①,连接BD ,若BD 是⊙O 的直径,求证:∠A =∠C ;(2)如图②,若EF ⌒的度数为θ,∠A =α,∠C =β,请直接写出θ、α和β之间的数量关系.(第21题)C②CB ①25.(9分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,与AC 、BC 分别交于点M 、N ,与AB 的另一个交点为E .过点N 作NF ⊥AB ,垂足为F .(1)求证:NF 是⊙O 的切线;(2)若NF =2,DF =1,求弦ED 的长.26.(8分)如图,已知正方形ABCD 的边长为4 cm ,点E 从点A 出发,以1cm/s 的速度沿着折线A →B →C 运动,到达点C 时停止运动;点F 从点B 出发,也以1cm/s 的速度沿着折线B →C →D 运动,到达点D 时停止运动.点E 、F 分别从点A 、B 同时出发,设运动时间为t (s ).(1)当t 为何值时,E 、F 两点间的距离为23cm ; (2)连接DE 、AF 交于点M ,①在整个运动过程中,CM 的最小值为 ▲ cm ;②当CM =4cm 时,此时t 的值为 ▲ .AB (第25题)(第26题)(备用图)27.(9分)【已有经验】我们已经研究过作一个圆经过两个已知点,也研究过作一个圆与已知角的两条边都相切,尺规作图如图所示:【迁移经验】(1)如图①,已知点M 和直线l ,用两种不同的方法完成尺规作图:求作⊙O ,使⊙O 过M点,且与直线l 相切.(每种方法作出一个..圆即可,保留作图痕迹,不写作法)①【问题解决】如图②,在Rt △ABC 中,∠C =90°,AC =8,BC =6.(2)已知⊙O 经过点C ,且与直线AB 相切.若圆心O 在△ABC 的内部,则⊙O 半径r 的取值范围为 ▲ .(3)点D 是边AB 上一点,BD =m ,请直接写出边AC 上使得∠BED 为直角时点E 的个数及相应的m 的取值范围.MlMl② C BA(备用图)C A2019~2020学年第一学期九年级期中质量监测卷数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分) 7.x 1=0 ,x 2=2 8.5 9.6 10.20% 11.150 12.6 13.30 14. (30-2x ) (20-x )=532 15.36或144 16.3或2 三、解答题(本大题共11小题,共88分) 17.(本题11分)(1)解:x 2 +2x -1=0x 2+2x +1=1+1 ................................................. 1分(x +1)2=2 ................................................ 2分 x +1=± 2 .................................... 3分∴x 1=-1+2,x 2=-1-2. ................................. 4分 (2)解:(x -2)2-(x -2)=0 ................................ 2分(x -2) (x -3)=0 ............................... 3分 ∴x 1=2,x 2=3. ................................ 4分(3)x 1=0,x 2=-1,x 3=1. .................................. 3分18.(本题7分)(1)① 7和8 ②8 .................................. 3分(2) _x 甲=_x 乙=8S 2甲=1.2,S 2乙=0.4 ................................ 5分(3)解:∵_x 甲=_x 乙,S 2乙<S 2甲∴选乙参赛更好,因为两人的平均成绩相同,但乙的方差较小,说明乙的成绩更稳定,所以选择乙参赛. ................................ 7分19.(本题7分)(1)12. ................................ 3分(2)解:共有8种可能的结果:(A ,A ,A )、(A ,A ,B )、(A ,B ,A )、(A ,B ,B )、(B ,A ,A )、(B ,A ,B )、(B ,B ,A )、(B ,B ,B ).(画树状图也可,共有8种可能的结果), ......................... 5分 它们是等可能的,记“三位同学恰好在同一个公园游玩”为事件A ,事件A 发生的可能有2种 ...................... 6分∴P (A)=14. .......................... 7分20.(本题8分)解:(1)把x =0代入原方程,得2m -1=0 ,解得:m =12. ............................ 2分∴x 2-x =0,x 1=1,x 2=0. ........................... 3分 ∴另一个根是1. ........................... 4分(2)b 2-4ac =4m 2-4(2m -1)=4m 2-8m +4, .......................... 5分∵4m 2-8m +4=4 (m -1)2≥0........................... 7分∴对于任意的实数m ,方程总有实数根. .......................... 8分 21.(本题8分)解:(1)连接OB,交AD 于点E.∵BC 是⊙O 的切线,切点为B ,∴OB ⊥BC . ................................................ 1分∴∠OBC =90°∵ 四边形ABCD 是平行四边形 ∴AD // BC∴∠OED =∠OBC =90°∴ OE ⊥BC .............................................. 2分 又 ∵ OE 过圆心O ∴ ⌒AB = ⌒BD .............................................. 4分(2)∵ OE ⊥BC ,OE 过圆心O∴ AE=12AD=4 .............................................. 5分在Rt △ABE 中,∠AEB =90°,BE =AB 2-AE 2=3, ...................................... 6分 设⊙O 的半径为r ,则OE=r -3 在Rt △ABE 中,∠OEA =90°,OE 2+AE 2 = OA 2即(r -3)2+42= r 2 ....................................... 7分 ∴r=256∴⊙O 的半径为256....................................... 8分22.(本题6分)∴射线CA 即为所求. ∴射线CE 即为所求.......... 6分①② AB23.(本题7分)解:(1) 160 ................................... 2分 (2)解:设每台家电增加x 元,根据题意得:(52-40+x )(180-10x )=2000. ..................... 4分 解得:x 1=8,x 2=-2. ................................... 5分 ∵增加的钱数不能为负,∴x 2=-2(舍). ...................................... 6分 则x =8. 答:每台家电增加8元. ......................................... 7分24.(本题8分) (1)连接DF 、DG∵BD 是⊙O 的直径 ∴∠DFB =∠DGB =90°, .............................................. 1分∵EF ⌒=GH ⌒∴∠EDF =∠HDG , ............................................. 3分 ∵∠DFB =∠EDF+∠A∠DGB =∠HDG+∠C , .............................................. 5分 ∴∠A =∠C ............................................... 6分 (2)α+β+θ =180° ................................................. 8分25.(本题9分)(1)证明:连接ON .∵在Rt △ACB 中,CD 是边AB 的中线,∴CD =BD , ................................... 1分 ∴∠DCB =∠B , ∵OC =ON ,∴∠ONC =∠DCB , ∴∠ONC =∠B ,∴ON // AB ................................. 3分 ∵ NF ⊥AB ∴∠NFB =90°∴∠ONF =∠NFB=90°, ................................. 4分 ∴ON ⊥NF又∵NF 过半径ON 的外端∴NF 是⊙O 的切线 .................................. 5分 (2)过点O 作OH ⊥ED,垂足为H ,设⊙O 的半径为r∵OH ⊥ED, NF ⊥AB , ON ⊥NF , ∴∠OHD =∠NFH=∠ONF=90°. .................................. 6分 ∴四边形ONFH 为矩形. ∴HF= ON=r ,OH=NF=2 ∴HD=HF-DF=r -1在Rt △OHD 中,∠OHD =90°∴OH 2+HD 2=OD 2即22+(r -1)2=r 2 ................................. 7分∴r =52.∴HD=32................................ 8分∵OH ⊥ED ,且OH 过圆心O∴ED=2HD=3 .................................. 9分 26.(本题8分)(1)解:当E 、F 两点分别在AB 、BC 上时,则AE = t ,EB=4-t ,BF= t ∵EB 2+BF 2=EF 2∴t 2+(4-t )2=(23)2 ....................................... 2分∴ t 1=2+2,t 2=2- 2. ....................................... 3分 当E 、F 两点分别在BC 、CD 上时,则CE =8-t ,EB=t -4∵CE 2+CF 2=EF 2∴(8-t )2+(t -4)2=(23)2 .................................. 4分∴ t 1=6+2,t 2=6- 2. .................................. 5分(2)① 25-2;② 2或8. ......................... 8分27.(本题9分) (4)分(2)2.43r ≤< .................................. 6分 (3)m 的范围 E 点的个数07.5m << 0个 7.510m m ==或 1个7.510m << 2个 ......................................9分。
山西省太原市2019-2020学年九年级上学期期中数学试卷 (含答案解析)
山西省太原市2019-2020学年九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程x2−3x=−2的解是()A. x1=1,x2=2B. x1=−1,x2=2C. x1=−1,x2=−2D. 方程无实数解2.如图,在△ABC中,点D在边AB上,BD=2AD,DE//BC交AC于点E,若线段DE=5,则线段BC的长为()A. 7.5B. 10C. 15D. 203.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为()A. 14B. 15C. 16D. 174.如图,在菱形ABCD中,对角线AC、BD交于点O.若∠ABC=60°,OA=1,则CD的长为()A. 1B. √3C. 2D. 2√35.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上.若BF=4.5cm,CE=2cm,则纸条GD的长为()A. 3cmB. 2√13cmC. 132cm D. 133cm6.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则()A. k=−4B. k=4C. k≥−4D. k≥47.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A. 5B. 10C. 12D. 138.温州某服装店十月份的营业额为8000元,第四季度的营业额共40000元.如果平均每月的增长率为x,则由题意可列方程为()A. 8000(1+x)2=40000B. 8000+8000(1+x)2=40000C. 8000+8000×2x=40000D. 8000[1+(1+x)+(1+x)2]=400009.从1、2、3、4中任取两个不同的数,其和大于6的概率是()A. 23B. 12C. 13D. 1610.如图,在菱形ABCD中,∠B=60∘,AB=4,则以AC为边的正方形的周长为()A. 14B. 15C. 16D. 17二、填空题(本大题共5小题,共10.0分)11.(1)已知a6=b5=c4,且a+b−2c=6,则a的值为;(2)如图,ADBD =AEEC,AD=10,AB=30,AC=24,则AE的长为.12.2018年5月12日是第107个国际护士节,从数串“2018512”中随机抽取一个数字,抽到数字2的概率是______.13.用配方法解x2−4x+1=0时,配方后所得到的方程是.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为______.15.如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.三、解答题(本大题共7小题,共50.0分)16.解方程:(1)2(x−2)=3x(2−x)(2)x2−x−1=017.有三张正面分别标有数字−1、1、2的卡片,它们除数字不同外其余均相同现将它们背面朝上洗匀后,从中抽出一张记下数字,放回后,再从中随机抽出一张记下数字.(1)将第一次抽到的数字记为x,第二次抽到的数字记为y,令M=x y,请借助画树状图或列表的方法,写出所有可能的M值;(2)求M是负数的概率.18.如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.求证:四边形AECF是矩形.19.如图,在所给的方格纸中,每个小正方形边长都是1,△ABC是格点三角形(顶点在方格顶点处).(1)在图中画格点△A1B1C1,使△A1B1C1与△ABC相似,相似比为2:1.(2)在图中画格点△A2B2C2,使△A2B2C2与△ABC相似,面积比为2:1.20.为丰富学生的学习生活,某校八年级某班组织学生参加素质拓展活动,所联系的旅行社收费标准如下:如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元.如果人数不超过25人,人均活动费用为100元.活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次素质拓展活动?21.如图,已知△ABC.(1)按如下步骤尺规作图(保留作图痕迹):①作AD平分∠BAC,交BC于D;②作AD的垂直平分线MN分别交AB、AC于点E、F;(2)连接DE、DF.若BD=12,AF=8,CD=6,求BE的长.22.如图,在矩形ABCD中,AB=8,BC=4,过对角线BD的中点O的直线分别交AB、CD于点E、F,连接DE,BF.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.-------- 答案与解析 --------1.答案:A解析:解:x2−3x=−2,x2−3x+2=0,∵(x−1)(x−2)=0,∴x−1=0,x−2=0,即:x1=1,x2=2.故选:A.先把方程化为一般式x2−3x+2=0,左边因式分解得到(x−1)(x−2)=0,这样一元二次方程转化为两个一元一方程x−1=0或x−2=0,然后解一元一次方程即可.本题考查了解一元二次方程−因式分解法:先把方程化为一般式,再把方程左边因式分解,然后把一元二次方程转化为两个一元一方程,再解一元一次方程即可得到原方程的解.2.答案:C解析:本题考查了平行线分线段成比例定理,理解定理内容是关键.根据平行线分线段成比例定理即可直接求解.解:∵DE//BC,∴ADAB =DEBC=AEAC,∵BD=2AD,DE=5,∴ADAD+2AD =5BC,解得BC=15.故选C.3.答案:C解析:解:画树状图为:共有36种等可能的结果数,其点数之和是7的结果数为6,所以其点数之和是7的概率=636=16.故选C.画树状图展示所有36种等可能的结果数,再找出点数之和是7的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.4.答案:C解析:解:∵四边形ABCD是菱形,∴AD=DC,OD⊥AC,OA=OC=1,∴AC=2OA=2,∵∠ABC=∠ADC=60°,∴△ADC是等边三角形,∴CD=AC=2,故选:C.首先求出AC的长,只要证明△ADC是等边三角形即可解决问题.本题主要考查了菱形的性质和等边三角形的判定以及性质等知识,解题的关键是熟练掌握菱形的性质和等边三角形的判定以及性质.5.答案:C解析:本题主要考查了相似三角形的应用和矩形的性质.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.根据题意推知△AGD∽△ABC,由该相似三角形的对应边成比例求得GD的长度即可.解:∵矩形EFGD,∴GD//BC,∴△AGD∽△ABC,∴GDBC =ADAC,即GD4.5+GD+2=12,解得GD=132(cm).故选C.6.答案:B解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.根据判别式的意义得到△=42−4k=0,然后解一次方程即可得到结果.解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42−4k=0,解得k=4.故选B.7.答案:B解析:解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD.∴OA=OB.∵∠BOC=120°,∴∠AOB=60°.∴△AOB是等边三角形.∴OB=AB=5.∴BD=2BO=10.故选:B.根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.本题考查了等边三角形的性质和判定,矩形性质的应用,证得△AOB是等边三角形是解题的关键.8.答案:D解析:【分析】本题主要考查从实际问题中抽象出一元二次方程,掌握公式:“a(1+x)n=b”,理解公式是解决本题的关键.本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果平均每月的增长率为x,根据题意即可列出方程.解:由题意得十一月份的营业额为8000(1+x)元,十二月份的营业额为8000(1+x)2元,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选D.9.答案:D解析:本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其和大于6的情况,再利用概率公式即可求得答案.解:画树状图得:,∴所以机会均等的结果有12种,其中和大于6有2种,∴P(和大于6)=212=16,故选D.10.答案:C解析:本题主要考查菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.根据菱形的性质可得AB=BC,得出△ABC是等边三角形,求出AC的长,根据正方形的性质得出AF= EF=EC=AC=4,求出正方形ACEF的周长即可.解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16.故选C.11.答案:(1)12;(2)8解析:(1)本题考查比例的性质,掌握比例的性质是解题关键.首先设a6=b5=c4=k,得出a=6k,b=5k,c=4k,然后代入a+b−2c=6求出k的值,再求a的值即可.解:设a6=b5=c4=k,∴a=6k,b=5k,c=4k,代入a+b−2c=6,可得6k+5k−8k=6,解得k=2,∴a=12.故答案为12;(2)本题考查了比例线段,根据已知线段的比,将已知数值代入到等式中即可求出AE的长.解:∵ADBD =AEEC,且AD=10,AB=30,AC=24,∴1030−10=AE24−AE,解得AE=8.故答案为8.12.答案:27解析:解:由题意可得,从数串“2018512”中随机抽取一个数字,抽到数字2的概率是:27;故答案为:27.直接利用2的个数除以总数字的个数即可得出抽到数字2的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.答案:(x−2)2=3解析:【分析】本题考查解一元二次方程−配方法,先把常数项移到等号的右边,再在等式的两边同时加上一次项系数的一半,配成完全平方的形式,即可得出答案.【解答】解:∵x2−4x+1=0,∴x2−4x=−1,x2−4x+4=−1+4,∴(x−2)2=3.14.答案:√2解析:本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到AE=EP,再证明△ABE≌△EMP(AAS),推出BE=PM=1,EM=AB=3,即可解决问题;解:在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°,∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°,∵PC平分∠DCM,∴∠PCM=45°,∠ECP=135°,∵AB=BC,BN=BE,∴AN=EC,∵∠AEP=90°,∴∠AEB+∠PEC=90°,∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴AE=PE,∵∠B=∠PME=90°,∠BAE=∠PEM,∴△ABE≌△EMP(AAS),∴BE=PM=1,EM=AB=3,∴CM=1,∴PC=√2,故答案为√215.答案:35°解析:【分析】本题考查了翻折变换,菱形的性质,熟练运用折叠的性质是本题的关键.由折叠的性质可得∠BCE=∠FCE,BC=CF,由菱形的性质可得BC//AD,BC=CD,可求∠BCF=∠CFD=70°,即可求解.【解答】解:∵将菱形纸片ABCD折叠,使点B落在AD边的点F处,∴∠BCE=∠ECF,BC=CF,∵四边形ABCD是菱形∴BC//AD,BC=CD∴CF=CD∴∠CFD=∠D=70°∵BC//AD∴∠BCF=∠CFD=70°∴∠ECF=12∠BCF=35°故答案为:35°16.答案:解:(1)∵2(x−2)=3x(2−x),∴2(x−2)+3x(x−2)=0,∴(x−2)(3x+2)=0,∴x=2或x=−23(2)∵x2−x−1=0,∴a=1,b=−1,c=−1,∴△=1+4=5,∴x=1±√52;解析:(1)根据因式分解法即可求出答案;(2)根据公式法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17.答案:解:(1)画树状图为:共有9种等可能的结果数,所有可能的M的值为−1,1,12,2,4;(2)共有9种等可能的结果数,M是负数的结果数为2,所以M是负数的概率=29解析:(1)画树状图展示所有9种等可能的结果数,根据乘方的意义和负整数指数幂计算出所有可能的M的值;(2)根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.18.答案:证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD//BC且AD=BC,∴AF//EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形).解析:根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证.本题考查了矩形的判定,菱形的性质,平行四边形的判定的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.19.答案:解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:解析:本题主要考查了相似变换,根据题意得出对应边的长是解题关键.(1)根据相似比进而得出各边扩大2倍得出答案;(2)根据相似比进而得出各边扩大√2倍得出答案.20.答案:解:∵25人的费用为2500元<2800元,∴参加这次春游活动的人数超过25人,设该班参加这次春游活动的人数为x名,由题意得[100−2(x−25)]x=2800,整理,得x2−75x+1400=0,解得x1=40,x2=35,当x1=40时,100−2(x−25)=70<75,不合题意,舍去;当x2=35时,100−2(x−25)=80>75,答:该班共有35人参加这次春游活动.解析:此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.判断得到这次春游活动的人数超过25人,设人数为x名,根据题意列出方程,求出方程的解即可得到结果.21.答案:解:(1)①∠BAC的平分线AD如图所示.②线段AD的垂直平分线MN,分别交AB、AC于点E、F,如图所示.(2)∵EA=ED,FA=FD,∴∠EAD=∠EDA,∠FAD=∠FDA,∵∠EAD=∠FAD,∴∠EDA=∠FAD,∠EAD=∠FDA,∴DE//AF,AE//DF,∴四边形AEDF是平行四边形,∵EA=ED,∴四边形AEDF是菱形,∴EA=ED=AF=DF=4,∵DE//AC,∴BEEA =BDDC,∴BE4=123,∴BE=16.解析:本题考查复杂作图、线段的垂直平分线的性质、菱形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)①∠BAC的平分线AD如图所示.②线段AD的垂直平分线MN,分别交AB、AC于点E、F,如图所示.(2)首先证明四边形AEDF是菱形,推出AE=DE=AF=DF=4,由DE//AC,推出BEEA =BDDC,由此即可解决问题.22.答案:(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB//DC,OB=OD,∴∠OBE=∠ODF.在△BOE和△DOF中,{∠OBE=∠ODF OB=OD∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形.(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=8−x.在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(8−x)2,解得x=5,即BE=5.∵BD=√AD2+AB2=√82+42=4√5,∴OB=12BD=2√5.∵BD⊥EF,∴EO=√BE2−OB2=√52−(2√5)2=√5,∴EF=2EO=2√5.解析:(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.。
2019-2020学年辽宁省鞍山市台安县九年级(上)期中数学试卷试题及答案(解析版)
2019-2020学年辽宁省鞍山市台安县九年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列方程中,属于一元二次方程的是( ) A .2250x y -+=B .21470x x-+= C .2210x x -+= D .2221x x x +=-2.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .直角三角形C .平行四边形D .正方形3.在平面直角坐标系中,将抛物线23y x =先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2y x =--4.下列说法中,不正确的个数是( )①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点. A .1个B .2个C .3个D .4个5.若三角形两边长分别为3和4,第三边的长是方程257(5)x x x -=-的根,则此三角形的周长为( ) A .12B .14C .12或14D .13或156.如图,在ABC ∆中,40B ∠=︒,将ABC ∆绕点A 逆时针旋转至在ADE ∆处,使点B 落在BC 的延长线上的D 点处,则(BDE ∠= )A .90︒B .85︒C .80︒D .40︒7.如图.O 的直径AB 垂直弦CD 于E 点,22.5A ∠=︒,4OC =,CD 的长为( )A.4B.8C.D.8.如图,等边ABCGDEDE=,60∠=︒,DG=,3∆边长为2,四边形DEFG是平行四边形,2→的方向以每秒1 BC和DE在同一条直线上,且点C与点D重合,现将ABC∆沿D E 个单位的速度匀速运动,当点B与点E重合时停止,则在这个运动过程中,ABC∆与四边形DEFG的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.二、填空题(每小题3分,共24分)9.写出一个开口向上,且顶点为(1,2)-的抛物线解析式为.10.在平面直角坐标系中,点(2,1)P-关于原点的对称点P'的坐标是.11.设a、b是方程220200a a b++的值是.+-=的两个不等实根,则22x x12.如图,已知O为四边形ABCD的外接圆,若120∠=︒,则BOD∠度数为.BCD13.如图,在边长为12的正方形ABCD中,点E在边DC上,13AE=,把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.14.如图,PA 、PB 分别与O 相切于点A 、B ,O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在AB 上,若PEF ∆的周长为8cm ,则PA 的长是 cm .15.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线1x =.给出下列结论:①0abc >;②20a b +=;③0a b c -+<;④方程21ax bx c ++=有两个不相等的实数根;⑤若点(,)A m n 在抛物线上,则2am bm a b ++…其中正确的有 .(只需填写序号即可)16.如图所示,在平面直角坐标系中,在x 轴正半轴上选取点1A ,2A ,3A ,⋯,n A ;以12A A ,23A A ,34A A ,⋯,1n n A A +为边作等边△121A A B ,△232A A B ,⋯,△1n n n A A B +;顶点1B ,2B ,3B ,⋯,n B 在直线l 上,且1130B OA ∠=︒,分别作△121A A B ,△232A A B ,⋯,△1n n n A A B +的内切圆1O ,2O ,3O ,⋯,n O ,若1O 的半径为1,则n O 的半径为 .(用含正整数n 的式子表示)三、解答题(每小题8分,共16分)17.用适当方法解方程:22(1)160x --=18.如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C . (1)将ABC ∆向下平移5个单位后得到△111A B C ,请画出△111A B C ; (2)将ABC ∆绕原点O 逆时针旋转90︒后得到△222A B C ,请画出△222A B C ; (3)判断以O ,1A ,B 为顶点的三角形的形状.(无须说明理由)四、解答题(每小题10分,共20分) 19.已知关于x 的方程220x ax a ++-=(1)若该方程的一个根是32-,求a 的值及该方程的另一个根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.20.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2014年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2016年底三年共累计投资9.5亿元人民币建设廉租房.若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2016年底共建设了多少万平方米的廉租房? 五、解答题(每小题10分,共20分)21.如图,BC 为O 的直径,AD BC ⊥于D ,P 是AC 上一动点,连接PB 分别交AD 、AC 于点E ,F .(1)当PA AB =时,求证:AE BE =;(2)当点P 在什么位置时,AF EF =?证明你的结论.22.如图,已知抛物线2(0)y ax bx a =+≠经过(3,0)A ,(4,4)B 两点. (1)求抛物线的解析式;(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标.六、解答题(每小题10分,共20分)23.如图,AB 是O 的直径,点C 、D 在圆上,且四边形AOCD 是平行四边形,过点D 作O 的切线,分别交OA 延长线与OC 延长线于点E 、F ,连接BF .(1)求证:BF 是O 的切线; (2)已知圆的半径为1,求EF 的长.24.在汛期到来之际,某水泵厂接到生产一批小型抽水泵的紧急任务.要求必须在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了水泵20台,以后每天生产的水泵都比前一天多2台.由于机器损耗等原因,当日生产的水泵数量达到28台后,每多生产一台,当天生产的所有水泵,平均每台成本就增加20元 (1)设第x 天生产水泵y 台,直接写出y 与x 之间的函数解析式,并写出自变量x 的取值范围.(2)若每台水泵的成本价(日生产量不超过28台时)为1000元,销售价格为每台1400元,设第x 天的利润为W 元,试求W 与x 之间的函数解析式,并求该厂哪一天获得的利润最大,最大利润是多少? 七、解答题25.如图,ABC ∆是等腰直角三角形,90ACB ∠=︒,D 为AC 延长线上一点,连接DB ,将DB 绕点D 逆时针旋转90︒,得到线段DE ,连接AE .(1)如图①,当CD AC =时,线段AB 、AE 、AD 三者之间的数量关系式是AB AE += AD .(2)如图②,当CD AC ≠时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)当点D 在射线CA 上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB 、AE 、AD 三者之间的数量关系式.八、解答题26.如图,已知抛物线23(0)y ax bx a =++≠经过点(1,0)A 和点(3,0)B ,与y 轴交于点C . (1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m . ①用含m 的代数式表示线段PD 的长.②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标.(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.2019-2020学年辽宁省鞍山市台安县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列方程中,属于一元二次方程的是( ) A .2250x y -+=B .21470x x-+= C .2210x x -+= D .2221x x x +=-【解答】解:A 、是二元二次方程,故A 不合题意; B 、是分式方程,故B 不合题意; C 、是一元二次方程,故C 符合题意;D 、是一元一次方程,故D 不合题意.故选:C .2.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .直角三角形C .平行四边形D .正方形【解答】解:A 、等边三角形是轴对称图形,不是中心对称图形,故本选项错误; B 、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误; C 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D 、正方形既是轴对称图形,又是中心对称图形,故此选项正确.故选:D .3.在平面直角坐标系中,将抛物线23y x =先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2y x =--【解答】解:抛物线23y x =的对称轴为直线0x =,顶点坐标为(0,0),∴抛物线23y x =向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线1x =,顶点坐标为(1,2),∴平移后抛物线的解析式为23(1)2y x =-+.故选:C .4.下列说法中,不正确的个数是( )①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点. A .1个B .2个C .3个D .4个【解答】解:①直径是特殊的弦.所以①正确,不符合题意; ②经过圆心可以作无数条直径.所以②不正确,符合题意; ③平分弦(不是直径)的直径垂直于弦.所以③不正确,符合题意; ④过不在同一条直线上的三点可以作一个圆.所以④不正确,符合题意; ⑤过圆心且垂直于切线的直线必过切点.所以⑤正确,不符合题意. 故选:C .5.若三角形两边长分别为3和4,第三边的长是方程257(5)x x x -=-的根,则此三角形的周长为( ) A .12 B .14C .12或14D .13或15【解答】解:257(5)x x x -=-,(5)7(5)0x x x ∴---=, (7)(5)0x x ∴--=, 7x ∴=或5x =,当7x =时, 347+=,3∴、4、7不能组成三角形,当5x =时, 345+>,3∴、4、5能组成三角形, ∴该三角形的周长为34512++=,故选:A .6.如图,在ABC ∆中,40B ∠=︒,将ABC ∆绕点A 逆时针旋转至在ADE ∆处,使点B 落在BC 的延长线上的D 点处,则(BDE ∠= )A .90︒B .85︒C .80︒D .40︒【解答】解:由旋转的性质可知,AB AD=,40∠=∠=︒,ADE B在ABD∆中,=,AB AD40∴∠=∠=︒,ADB B∴∠=∠+∠=︒.80BDE ADE ADB故选:C.7.如图.O的直径AB垂直弦CD于E点,22.5OC=,CD的长为()∠=︒,4AA.4B.8C.D.【解答】解:CO AO=,∴∠=∠=︒,OAC OCA22.5COE∴∠=︒,45⊥,CD ABCD CE∴∠=︒,2=,CEO90∴=,CE EO∴=︒==,sin454CE CO∴=,CD故选:D.8.如图,等边ABCDE=,60∠=︒,GDEDG=,3∆边长为2,四边形DEFG是平行四边形,2∆沿D E→的方向以每秒1 BC和DE在同一条直线上,且点C与点D重合,现将ABC个单位的速度匀速运动,当点B与点E重合时停止,则在这个运动过程中,ABC∆与四边形DEFG的重合部分的面积S与运动时间t之间的函数关系图象大致是()A .B .C .D .【解答】解:①当02t 剟时,如图1,由题意知CD t =,60HDC HCD ∠=∠=︒, CDH ∴∆是等边三角形,则2S =; ②当23t <…时,如图2,22S ==; ③当35t <…时,如图3,根据题意可得3CE CD DE t =-=-,60C HEC ∠=∠=︒, CEH ∴∆为等边三角形,则22223)ABC HEC S S S t ∆∆=-=-=+-;综上,02t 剟时函数图象是开口向上的抛物线的一部分,23t <…时函数图象是平行于x 轴的一部分,当35t <…时函数图象是开口向下的抛物线的一部分; 故选:B .二、填空题(每小题3分,共24分)9.写出一个开口向上,且顶点为(1,2)-的抛物线解析式为 2(1)2y x =++ . 【解答】解:根据顶点坐标为(1,2)-,可设方程为2(1)2y a x =++, 又开口向上,不妨取1a =, 可得方程2(1)2y x =++, 故答案为:2(1)2y x =++.10.在平面直角坐标系中,点(2,1)P -关于原点的对称点P '的坐标是 (2,1)- . 【解答】解:点(2,1)P -关于原点的对称点P '的坐标是(2,1)-. 故答案为:(2,1)-.11.设a 、b 是方程220200x x +-=的两个不等实根,则22a a b ++的值是 2019 . 【解答】解:a 、b 是方程220200x x +-=的两个不等实根, 220200a a ∴+-=,1a b +=-, 22020a a ∴+=,222()()202012019a a b a a a b ∴++=+++=-=.故答案为:2019.12.如图,已知O 为四边形ABCD 的外接圆,若120BCD ∠=︒,则BOD ∠度数为 120︒ .【解答】解:四边形ABCD 内接于O , 18060A BCD ∴∠=︒-∠=︒,由圆周角定理得,2120BOD A ∠=∠=︒, 故答案为:120︒.13.如图,在边长为12的正方形ABCD中,点E在边DC上,13AE=,把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为7或17.【解答】解:如图1,当点F在线段BC上时,四边形ABCD为正方形,==;AB BC∴∠=︒,1290B由题意得:13==;AF AE由勾股定理得:222=-,BF AF AB解得:5CF=;BF=,7如图2,当点F在CB的延长线上时,同理可求:5CF=.BF=,17故答案为7或17.14.如图,PA、PB分别与O相切于点A、B,O的切线EF分别交PA、PB于点E、∆的周长为8cm,则PA的长是4cm.F,切点C在AB上,若PEF【解答】解:EA、EC切O相切于点A、C,∴=,EA EC同理可知,FB FC =,PA PB =, PEF ∆的周长为8cm ,8PE PF EF PE EC PF FB PE EA PF FB PA PB ∴++=+++=+=+=+=,4PA PB ∴==,故答案为:4.15.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线1x =.给出下列结论:①0abc >;②20a b +=;③0a b c -+<;④方程21ax bx c ++=有两个不相等的实数根;⑤若点(,)A m n 在抛物线上,则2am bm a b ++…其中正确的有 ②④⑤ .(只需填写序号即可)【解答】解:由图可知0a <, ∴对称轴12bx a==-, 20b a ∴=->,函数与y 轴的交点0c >, ①0abc <;①错误; ②2b a =-,20b a ∴+=;②正确;③由函数的对称性,与x 轴的一个交点坐标为(4,0), ∴另一个交点为(2,0)-,∴当1x =-时,0y >,即0a b c -+>;③错误;④函数与y 轴交点3c >, 1x ∴=时,3y >∴直线1y =与抛物线有两个交点,∴方程21ax bx c ++=有两个不相等的实数根;④正确;⑤当1x =时,该函数取得最大值,此时y a b c =++,∴点(,)A m n 在该抛物线上,则2am bm c a b c ++++…,即2am bm a b ++…;故⑤正确;故答案为②④⑤.16.如图所示,在平面直角坐标系中,在x 轴正半轴上选取点1A ,2A ,3A ,⋯,n A ;以12A A ,23A A ,34A A ,⋯,1n n A A +为边作等边△121A A B ,△232A A B ,⋯,△1n n n A A B +;顶点1B ,2B ,3B ,⋯,n B 在直线l 上,且1130B OA ∠=︒,分别作△121A A B ,△232A A B ,⋯,△1n n n A A B +的内切圆1O ,2O ,3O ,⋯,n O ,若1O 的半径为1,则n O 的半径为 12n - .(用含正整数n 的式子表示)【解答】解:△121A A B 是等边三角形,内切圆半径为1,∴△121A A B1130A OB ∠=︒,112111160B A A A OB A B O ∠=∠+∠=︒, 1111A OB OB A ∴∠=∠11112OA A B A A ∴===,同法可证22223OA A B A A ===,33334OA A B A A ===,2O ∴的半径2==,3O 22=,⋯, 由此可知n O 的半径为12n -, 故答案为12n -三、解答题(每小题8分,共16分) 17.用适当方法解方程:22(1)160x --=【解答】解:22(1)160x --=,2(1)8x ∴-=,1x ∴=±;18.如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C . (1)将ABC ∆向下平移5个单位后得到△111A B C ,请画出△111A B C ; (2)将ABC ∆绕原点O 逆时针旋转90︒后得到△222A B C ,请画出△222A B C ; (3)判断以O ,1A ,B 为顶点的三角形的形状.(无须说明理由)【解答】解:(1)如图所示,△111A B C 即为所求:(2)如图所示,△222A B C 即为所求:(3)三角形的形状为等腰直角三角形,1OB OA ===1A B ==即22211OB OA A B +=,所以三角形的形状为等腰直角三角形. 四、解答题(每小题10分,共20分) 19.已知关于x 的方程220x ax a ++-=(1)若该方程的一个根是32-,求a 的值及该方程的另一个根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根. 【解答】解:(1)将32x =-代入方程,得932042a a -+-=,12a ∴=, 设另外一个根为x ,由根与系数的关系可知:32x a -+=-,1x ∴=,(2)由题意可知:△224(2)(2)40a a a =--=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根20.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2014年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2016年底三年共累计投资9.5亿元人民币建设廉租房.若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2016年底共建设了多少万平方米的廉租房? 【解答】解:(1)设每年市政府投资的增长率为x , 根据题意,得:222(1)2(1)9.5x x ++++=, 解得: 3.5x =-(舍去)或0.550%x ==. 答:每年市政府投资的增长率为50%;(2)依题意,得3年的建筑面积共为:9.5(28)38÷÷=(万平方米), 答:到2016年底共建设了38万平方米的廉租房. 五、解答题(每小题10分,共20分)21.如图,BC 为O 的直径,AD BC ⊥于D ,P 是AC 上一动点,连接PB 分别交AD 、AC于点E,F.(1)当PA AB=;=时,求证:AE BE(2)当点P在什么位置时,AF EF=?证明你的结论.【解答】(1)证明:连接AB,BC为O的直径,∴⊥.AB AC又AD BC⊥,BAD DAC C DAC∴∠+∠=∠+∠=︒90∴∠=∠.BAD C=,PA AB∴∠=∠.ABE CABE BAD∴∠=∠.∴=.AE BE(2)当弧PC=弧AB时,AF EF=.证明:弧PC=弧AB,∴∠=∠.PBC C∴︒-∠=︒-∠.9090PBC C即BED DAC∠=∠,∠=∠,BED AEF∴∠=∠.DAC AEF∴=.AF EF22.如图,已知抛物线2(0)y ax bx a =+≠经过(3,0)A ,(4,4)B 两点. (1)求抛物线的解析式;(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标.【解答】解:(1)抛物线2(0)y ax bx a =+≠经过(3,0)A 、(4,4)B ∴将A 与B 两点坐标代入得:9301644a b a b +=⎧⎨+=⎩, 解得:13a b =⎧⎨=-⎩,∴抛物线的解析式是23y x x =-.(2)设直线OB 的解析式为1y k x =,由点(4,4)B , 得:144k =,解得:11k = ∴直线OB 的解析式为y x =,∴直线OB 向下平移m 个单位长度后的解析式为:y x m =-,点D 在抛物线23y x x =-上, ∴可设2(,3)D x x x -,又点D 在直线y x m =-上, 23x x x m ∴-=-,即240x x m -+=,抛物线与直线只有一个公共点, ∴△1640m =-=,解得:4m =,此时122x x ==,232y x x =-=-, D ∴点的坐标为(2,2)-.六、解答题(每小题10分,共20分)23.如图,AB 是O 的直径,点C 、D 在圆上,且四边形AOCD 是平行四边形,过点D 作O 的切线,分别交OA 延长线与OC 延长线于点E 、F ,连接BF .(1)求证:BF 是O 的切线; (2)已知圆的半径为1,求EF 的长.【解答】(1)证明:连结OD ,如图,四边形AOCD 是平行四边形, 而OA OC =,∴四边形AOCD 是菱形,OAD ∴∆和OCD ∆都是等边三角形, 60AOD COD ∴∠=∠=︒, 60FOB ∴∠=︒,EF 为切线, OD EF ∴⊥, 90FDO ∴∠=︒,在FDO ∆和FBO ∆中OD OB FOD FOB FO FO =⎧⎪∠=∠⎨⎪=⎩,FDO FBO ∴∆≅∆,90ODF OBF ∴∠=∠=︒,OB BF ∴⊥,BF ∴是O 的切线;(2)解:在Rt OBF ∆中,60FOB ∠=︒, 而tan BF FOB OB∠=,1tan 60BF ∴=⨯︒=30E ∠=︒,2EF BF ∴==.24.在汛期到来之际,某水泵厂接到生产一批小型抽水泵的紧急任务.要求必须在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了水泵20台,以后每天生产的水泵都比前一天多2台.由于机器损耗等原因,当日生产的水泵数量达到28台后,每多生产一台,当天生产的所有水泵,平均每台成本就增加20元(1)设第x 天生产水泵y 台,直接写出y 与x 之间的函数解析式,并写出自变量x 的取值范围.(2)若每台水泵的成本价(日生产量不超过28台时)为1000元,销售价格为每台1400元,设第x 天的利润为W 元,试求W 与x 之间的函数解析式,并求该厂哪一天获得的利润最大,最大利润是多少?【解答】解:(1)根据题意,得y 与x 的解析式为:182(110)y x x =+剟.(2)根据题意,得当28y =时,18228x +=,解得5x =,当15x 剟时, (14001000)(182)8007200w x x =-+=+,8000>,w ∴随x 的增大而增大,∴当5x =时,8005720011200w =⨯+=最大值.当510x <…时,[1400100020(18228)](182)w x x =--+-⨯+22804801080080(3)11520x x x =-++=--+.此时图象开口向下,在对称轴右侧,w 随x 的增大而减小,天数x 为整数, ∴当6x =时,w 有最大值,为10800元,1120010800>,∴当5x =时,w 最大,且11200w =最大值元,答:该厂第5天获得的利润最大,最大利润是11200元.七、解答题25.如图,ABC ∆是等腰直角三角形,90ACB ∠=︒,D 为AC 延长线上一点,连接DB ,将DB 绕点D 逆时针旋转90︒,得到线段DE ,连接AE .(1)如图①,当CD AC =时,线段AB 、AE 、AD 三者之间的数量关系式是AB AE +=AD .(2)如图②,当CD AC ≠时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)当点D 在射线CA 上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB 、AE 、AD 三者之间的数量关系式.【解答】解:(1)ABC ∆是等腰直角三角形,90ACB ∠=︒, CA BC ∴=,AC BC ⊥,45BAC ∠=︒AC CD =,BC AC ⊥,AB BD ∴=,45BAC BDC ∴∠=∠=︒,90ABD ∴∠=︒,将DB 绕点D 逆时针旋转90︒,得到线段DE , BD DE ∴=,90BDE ∠=︒,DE AB BD ∴==,//AB DE ,∴四边形ABDE 是平行四边形,且90ABD ∠=︒, ∴四边形ABDE 是矩形,且AB BD =,∴四边形ABDE 是正方形,AB AE ∴=,AD =,AB AE ∴+=,(2)结论仍然成立;如图②过点D 作//DF BC 交AB 的延长线于点F ,//BC DF ,90ADF ACB ∴∠=∠=︒,45F ABC ∠=∠=︒, 45F DAF ∴∠=∠=︒,AD DF ∴=,AF ∴,∠=∠=︒,ADF EDB90=,=,AD DF∴∠=∠,且DE DBADE BDF∴∆≅∆,ADE FDB SAS()∴=,AE BF∴+=+==;AB AE AB BF AF(3)不成立,当点D在线段AC上时,如图③,过点D作//DF BC,∠=∠=︒,ACB ADF∴∠=∠=︒,9045AFD ABC∴∠=∠=︒,45DAF AFD∴=,AF=,AD DF∠=︒=∠,EDB ADF90==,DE BD∴∠=∠,且AD DFADE BDF∴∆≅∆()ADE FDB SAS∴=,AE BF-=,AB BF AF∴-=;AB AE当点D在CA的延长线上时,如图④,过点D作//DF BC,交BA延长线于点F,45AFD ABC ∴∠=∠=︒,90ACB ADF ∠=∠=︒, 45DAF AFD ∴∠=∠=︒,AD DF ∴=,AF =,90EDB ADF ∠=︒=∠,FDB EDA ∴∠=∠,且AD DF =,DE BD = ()ADE FDB SAS ∴∆≅∆AE BF ∴=,AB AF BF +=,AB AE ∴=.八、解答题26.如图,已知抛物线23(0)y ax bx a =++≠经过点(1,0)A 和点(3,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m . ①用含m 的代数式表示线段PD 的长.②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标.(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【解答】解:(1)抛物线23(0)y ax bx a =++≠经过点(1,0)A 和点(3,0)B ,与y 轴交于点C , ∴309330a b a b ++=⎧⎨++=⎩,解得14a b =⎧⎨=-⎩, ∴抛物线解析式为243y x x =-+;(2)如图:①设2(,43)P m m m -+,将点(3,0)B 、(0,3)C 代入得直线BC 解析式为3BC y x =-+. 过点P 作y 轴的平行线交直线BC 于点D , (,3)D m m ∴-+,22(3)(43)3PD m m m m m ∴=-+--+=-+. 答:用含m 的代数式表示线段PD 的长为23m m -+. ②PBC CPD BPD S S S ∆∆∆=+2139222OB PD m m ==-+ 23327()228m =--+.∴当32m =时,S 有最大值. 当32m =时,23434m m -+=-. 3(2P ∴,3)4-. 答:PBC ∆的面积最大时点P 的坐标为3(2,3)4-. (3)存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形. 根据题意,点(2,1)E , 2EF CF ∴==,EC ∴=,根据菱形的四条边相等,ME EC ∴==(2,1M ∴-或(2,1+ 当2EM EF ==时,(2,3)M答:点M 的坐标为1(2,3)M ,2(2,1M -,3(2,1M +.。
2019-2020学年河北省唐山市丰南区九年级(上)期中数学试卷试题及答案(解析版)
2019-2020学年河北省唐山市丰南区九年级(上)期中数学试卷一、精心选一选(本大题共16小题.1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1.一元二次方程2(1)1x -=的解是( ) A .10x =,21x =B .0x =C .2x =D .10x =,22x =2.已知二次函数23(2)ay a x -=-,在其图象对称轴的左侧,y 随x 的增大而减小,则a 的值为( )AB .C .D .03.下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .4.用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为2(1)100x -= B .2890x x ++=化为2(4)25x += C .22740t t --=化为2781()416t -=D .23420x x --=化为2210()39x -=5.将抛物线2(1)2y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴有一个交点,则a 的值为( ) A .1-B .1C .2-D .26.若一元二次方程2(1)0x a x a -++=的两个实数根分别是b 、2,则(b a -= ) A .1-B .1C .3D .4-7.点11(1,)P y -,22(3,)P y ,33(5,)P y 均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>8.如图,在Rt ABC ∆中,90BAC ∠=︒.将Rt ABC ∆绕点C 按逆时针方向旋转47︒得到Rt △A B C '',点A 在边B C '上,则B ∠'的大小为( )A .43︒B .47︒C .53︒D .57︒9.下列是抛物线2231y x x =--+的图象大致是( )A .B .C .D .10.关于x 的一元二次方程2(1)410m x x ---=总有实数根,则m 的取值范围( ) A .5m …且1m ≠B .3m -…且1m ≠C .3m -…D .3m >-且1m ≠11.有2人患了流感,经过两轮传染后共有98人患了流感,设每轮传染中平均一个人传染了x 人,则x 的值为( ) A .5B .6C .7D .812.二次函数2y ax bx c =++的图象如图所示,则下列判断中错误的是( )A .图象的对称轴是直线1x =-B .当1x >-时,y 随x 的增大而减小C .当31x -<<时,0y <D .一元二次方程20ax bx c ++=的两个根是3-,113.如图,在ABC ∆中,90C ∠=︒,4AC =,3BC =,将ABC ∆绕点A 逆时针旋转,使点C 落在线段BA 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( )A .3B .CD .14.如图,在ABC ∆中,50AC m =,40BC m =,90C ∠=︒,点P 从点A 开始沿AC 边向点C 以2/m s 的速度匀速移动,同时另一点Q 由C 点开始以3/m s 的速度沿着射线CB 匀速移动,当PCQ ∆的面积等于2300m 运动时间为( )A .5秒B .20秒C .5秒或20秒D .不确定15.已知学校航模组设计制作的火箭的升空高度()h m 与飞行时间()t s 满足函数表达式2241h t t =-++.则下列说法中正确的是( )A .点火后9s 和点火后13s 的升空高度相同B .点火后24s 火箭落于地面C .点火后10s 的升空高度为139mD .火箭升空的最大高度为145m16.如图,抛物线224y x x =-+与x 轴交于点O 、A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 铀为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是( )A .908m <<B .92588m <<C .2508m <<D .98m <或258m < 二、细心填一填(本大题共4小题,17-19每小题3分,20题每空2分,共13分) 17.方程2(2)(2)1x x ---=化为一般式为 .18.二次函数2y ax bx c =++的图象如图所示,以下结论:①0abc >;②24ac b <;③20a b +>;④其顶点坐标为1(2,2)-;⑤当0x <时,y 随x 的增大而减小;⑥0a b c ++>中,正确的有 .(只填序号)19.如图,在长为32米,宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上小草.要使草坪的面积为540平方米,则道路的宽为 米.20.如图所示,点阵M 的层数用n 表示,点数总和用S 表示,当66S =时,则n = .n 层点阵的点数S = .三、专心解一解(本题满分65分)请认真读题,冷静思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学期中试卷及答案
注意: 本试卷共三大题25小题,共4页,满分150分.考试时间120分钟.
1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名;再用2B 铅笔把对应考号的标号涂黑.
2.选择题和判断题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.
3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.
4.考生可以..
使用计算器.必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷(100分)
一、细心选一选 (本题有10个小题, 每小题3分, 满分30分,下面每小题给出的四个选项中, 只有一
个是正确的.)
1、要使2-x 有意义,则字母x 应满足的条件是( ).
A. x =2
B. x <2
C. x ≤2
D. x ≥2
2.下列二次根式中与2是同类二次根式的是( ).
A.
B. C.
D. 3.方程x x =2
的解是( ).
A. 0
B. 1
C. 无解
D. 0和1
4. 某型号的手机连续两次降阶,每个售价由原来的1185元降到580元,设平均每次降价的百分率为x ,
则列出方程正确的是( ).
A. 2
580(1+)=1185x B. 2
1185(1-)=580x
C. 2580(1-)=1185x
D. 2
1185(1+)=580x 5. 已知012=-++b a ,那么()2007
b a +的值为( ).
A. -1
B. 1
C. 20073
D. 2007
3-
6. 两个相似三角形的面积比为1:2,则它们周长的比为( )
A. 1:4
B. 1:2
C.
2 D. 4
7.如图1,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,AB=6,则DE ∶BC 的值为( ).
A. 32
B. 2
1
C. 43
D. 5
3
8. 如图2,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为()b a ,,那么
大“鱼”上对应“顶点”的坐标为( ).
A. ()b a 2,--
B. ()b a --,2
C. ()b a 2,2--
D. ()a b 2,2--
9.如图3,在大小为4×4的正方形网格中,是相似三角形的是( ).
① ② ③ ④ A. ①和②
B. ②和③
C. ①和③
D. ②和④
10. 如果关于x 的一元二次方程0962
=+-x kx 有两个不相等的实数根,那么k 的取值范围是( ).
A. k <1
B. k ≠0
C. k >1
D. k <1且k ≠0
二、耐心填一填 (本题有6个小题, 每小题3分, 共18分) 11. 方程()03=-x x 的解为 . 12. 已知:若
3
2y
x =,则y x y x -+2= .
13.方程2
230x ax -+=有一个根是1,则a 的值是 .
14. 如图4,将线段AB 平移,使B 点到C 点,则平移后A 点的坐标为 . 15. 如图5,当_________=∠AED 时,ADE ∆与ABC ∆相似.
图4
图2
图3
A
B
C
D
E
图1
图5
16. 如图6,c b a ,,在数轴上的位置如图所示,则()()=+-
-2
2
c b b a
三、用心答一答(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤) 17. (本题满分共10分,每小题5分)
(1)化简:4
69325x x x +-
(2)解方程:1)3)(1(=+-x x
18.(本题满分10分)
某工程队在我市旧城改造过程中承包了一项拆迁工程,原计划每天拆迁12502
m ,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了14402
m 。
(1)求该工程队第一天拆迁的面积;
(2)若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数.
19. (本题满分12分)
在图中的网格中每个单位长度为1,将△ABC 作下列变化,请画出相应 的图形,并写出相应三个顶点的坐标。
(1)向右平移4个单位,得到△A 1B 1C 1;
(2)以C 点为位似中心,作为△A 2B 2C 2,使之与原三角形的相似比为2.
20.(本题满分8分)
已知x 满足方程062
=--x x ,试求式子4(1)(1)x x x -+- 的值.
21.(本题满分12分)
在ABC △中,AD 平分∠CAB ,∠BAC=2∠B , (1)求证AD BC AC AB ⋅=⋅ (2) 若 AC=6,CD=4,求BC 的长.
第19题图
图6
第21题图
第Ⅱ卷(50分)
22.(本题满分10分)
已知:关于x 的方程2
30x x m +-=。
(1)若-1是此方程的一个根,求m 和另一根的值; (2)当m 满足什么条件时,方程总有实数根.
23.(本题满分12分)在正方形ABCD 中, AB = 2, P 是BC 边上与 B 、C 不重合的任意点,DQ ⊥AP 于Q. (1)求证:ΔDQA ∽ΔABP.
(2)当P 点在BC 上变化时,线段 DQ 也随之变化.,设PA= x , DQ= y ,求 y 与 x 之间的函数关系式.
24、(本题满分14分)已知,如图,Rt △ABC 中,∠ACB=90º,AB=5,两直角边AC 、BC 的长是关于x 的
方程()0652
=++-m x m x 的两个实数根。
①求m 的值及AC 、BC 的长(BC>AC );
②在线段BC 的延长线上是否存在点D ,使得以D 、A 、C 为顶点的三角形与△ABC 相似?若存在,写出CD 的长;若不存在,请说明理由.
25、(本题满分14分)如图,已知直线l 的函数表达式为4
83
y x =-
+,且l 与x 轴、y 轴分别交于A 、B 两点,动点Q 从B 点开始在线段BA 上以每秒2个单位的速度向点A 移动,同时动点P 从A 点开始在线段AO 上以每秒1个单位的速度向O 点移动,设点Q 、P 移动时间为t 秒。
(1)求点A 、B 的坐标.
第23题图
第24题图
B
O
P
A
x
l
Q
y 第25题图
第24题图
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)求出(2)中当以点A、P、Q为顶点的三角形与△AOB相似时,线段PQ的长度.。