七年级数学上册第一章丰富的图形世界检测题
2024年北师大版七年级上册数学第一章综合检测试卷及答案
15.一个几何体从3个方向看到的形状图如图所示,则该几何体的侧面积是_______.(结果保留 )
三、解答题(共55分)
16.(7分)请你画出如图所示的几何体从正面、左面、上面看到的形状图.
解:
17.(7分)如图所示,给出了6个立体图形.找出图中具有相同特征的图形,并说明相同特征.
解:①③都是由六个面组成的,且六个面都是四边形;①③④的面都是平的;②⑤⑥都有一个面是曲的;②⑥至少有一个面是圆.
(1) 和 ;
解: , .
(2) 和 ;
[答案] , .
(3) 和 .
[答案] , .
D
A.从正面看到的形状图不同B.仅从上面看到的形状图相同C.仅从左面看到的形状图不同D.从正面、上面、左面看到的形状图都相同
二、填空题(每小题3分,共15分)
11.国扇文化有深厚的文化底蕴,历来中国有“制扇王国”之称.打开折扇时,随着扇骨的移动形成一个扇面,这种现象可以用数学原理解释为__________.
19.(10分)如图所示的是某几何体的表面展开图.
(1)这个几何体的名称是______;
圆柱
(2)画出从三个方向看这个竖直放置的几何体的形状图;
解:
(3)求这个几何体的体积.
[答案] 这个几何体的体积为 .
20.(12分)如图是一个长为 、宽为 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1,图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.(结果保留 )
线动成面
12.在图中增加1个小正方形,使所得图形经过折叠能够围成一个正方体,在图中适合按要求加上小正方形的位置有___个.
4
13.一个几何体从正面看、从左面看、从上面看到的形状图如图所示,该几何体是________.
北师大版七年级数学上册第一章《丰富的图形世界》单元检测试卷
北师版数学七年级上册第一章《丰富的图形世界》单元检测一.选择题(共13小题)1.将如图所示的几何图形,绕直线l旋转一周得到的立体图形()A.B.C.D.2.(2021•眉山)下列四个图形中是正方体的平面展开图的是()A.B.C.D.3.(2021•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A. B. C. D.4.(2021•吉林)如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.5.(2021•聊城)图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美6.(2021•山东模拟)用一平面去截下列几何体,其截面可能是长方形的有()A. 1个B.2个C.3个D.4个7.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形8.(2021•莱芜)下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.9.(2021•湘潭)下面四个立体图形中,三视图完全相同的是()A.B.C.D.10.(2021•德州)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱11.(2021•娄底)如图,正三棱柱的主视图为()A.B.C.D.12.(2021•天水)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或13.(2021•茂名)如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市二.填空题(共6小题)14.(2021•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).15.(2021•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.16.(2021•青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.17.(2021•随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.18.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有条.19.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为平方分米.三.解答题(共8小题)20.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,请写出x、y、z的值.21.一个几何体的三视图如图,求这个几何体的侧面积?22.将图中的几何体进行分类,并说明理由.23.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?24.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.25.丰富的图形世界里有奇妙的数量关系,让我们通过下面这些几何体开始神奇的探索之旅.观察:下面这些几何体都是简单几何体,请你仔细观察.统计:每个几何体都会有棱(棱数为E)、面(面数为F)、顶点(顶点数为V),现将有关数据统计,完成下表.几何体 a b c d e棱数(E) 6 9 15面数(F) 4 5 5 6顶点数(V) 4 5 8发现:(1)简单几何中,V+F﹣E=;(2)简单几何中,每条棱都是个面的公共边;(3)在正方体中,每个顶点处有条棱,每条棱都有个顶点,所以有2×E=3×V.应用:有一个叫“正十二面体”的简单几何体,它有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.请问它有条棱,个顶点,每个顶点处有条棱.26.设棱锥的顶点数为V,面数为F,棱数为E.(1)观察与发现:三棱锥中,V3=,F3=,E3=;五棱锥中,V5=,F5=,E5=;(2)猜想:①十棱锥中,V10=,F10=,E10=;②n棱锥中,V n=,F n=,E n=;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.参考答案与试题解析一.选择题(共13小题)1. C.2. B.3. D4. B.5. A.6. C.7. D.8. B.9. B.10. B.11. B.12. C.13. C.二.填空题(共6小题)14.①③④.15. 7.16. 19,48.17. 24.18. 4.19. 33.三.解答题(共8小题)20.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴1与z相对,2与x相对,y与3相对,∵相对表面上所填的数互为倒数,∴x=,y=,z=1.21.解:根据三视图可得:这个几何体是圆柱,∵圆柱的直径为2,高为3,∴侧面积为2××2×3π=6π.答:这个几何体的侧面积是6π.22.解:分类首先要确定标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.(1)长方体是由平面组成的,属于柱体.(2)三棱柱是由平面组成的,属于柱体.(3)球体是由曲面组成的,属于球体.(4)圆柱是由平面和曲面组成的,属于柱体.(5)圆锥是由曲面与平面组成的,属于锥体.(6)四棱锥是由平面组成的,属于锥体.(7)六棱柱是由平面组成的,属于柱体.若按组成几何体的面的平或曲来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面,若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体.23.解:(1)它有6个面,2个底面,底面是梯形,侧面是长方形;(2)侧面的个数与底面多边形的边数相等都为4;(3)它的侧面积为20×8=160cm2.24.解:连线如下:25.解:(1)简单几何中,V+F﹣E=2;(2)简单几何中,每条棱都是 2个面的公共边;(3)在正方体中,每个顶点处有 3条棱,每条棱都有 2个顶点,所以有2×E=3×V;应用:有一个叫“正十二面体”的简单几何体,它有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.请问它有 30条棱,20个顶点,每个顶点处有 3条棱,故答案为:2;3,2;30,20,3.26.解:(1)观察与发现:三棱锥中,V3=4,F3=4,E3=6;五棱锥中,V5=5,F5=5,E5=8;(2)猜想:①十棱锥中,V10=11,F10=11,E10=20;②n棱锥中,V n=n+1,F n=n+1,E n=2n;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:V=F;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F﹣E=2;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+F﹣E=2.故答案为:4,4,6;5,5,8;11,11,20;n+1,n+1,2n;V=F,V+F﹣E=2.。
第一章 丰富的图形世界 达标测试卷(含答案)北师大版(2024)数学七年级上册
第一章丰富的图形世界达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列几何体为圆柱的是()A B C D2.图1是由5个相同的小立方块搭成的立体图形,从正面看它得到的形状图是()A B C D图1 图2 图33.下列图形绕虚线旋转一周能够得到图2所示的几何体的是()A B C D4. 把图3所示的三棱柱表面展开,得到的展开图可能是()A B C D5. 往图4所示的一个密封的正方体容器持续注入一些水,注水的过程中,可将容器任意放置,水平面形状不可能是()A.三角形B.正方形C.六边形D.七边形图4 图5 图66. 一个正方体的每个面上都有一个汉字,其展开图如图5所示,那么在该正方体中与“绿”字所在面的相对面上的汉字是()A.低B.碳C.发D.展7. 图6是由一些大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示该位置小立方块的个数,则该几何体从左面看到的形状图是()A B C D8.下列说法错误的是()A.若直棱柱的底面边长相等,则它的各个侧面的面积相等B.正九棱柱有9条侧棱,9个侧面,侧面为长方形C.长方体、正方体都是棱柱D.若一个棱柱有12个顶点,则这个棱柱的底面是八边形9. 已知一个不透明的正方体的六个面上分别写着1~6六个数字,如图7是我们能看到的三种情况,请你判断数字4对面上的数字是()A.6 B.3 C.2 D.1图7图810. 将图8所示的无盖正方体沿①、②、③、④边剪开后展开,则下列展开图的示意图正确的是()A B C D二、填空题(本大题共6小题,每小题3分,共18分)11. 用一个平面去截一个球,无论怎样切截,截面形状都是_______.12. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,这个现象用数学知识解释为______________.13. 如图9所示的几何体是由________个面围成,面与面相交成________条线,其中直的线有________条,曲线有________条.图9 图1014. 图10是由4个相同的棱长为1的小正方体组成的几何体,则从上面看它的平面图形的面积是______.15. 如图11是一些几何体的展开图,它们的几何体的名称从左到右依次是______________.图11 图1216.一个立体图形由若干个完全相同的小立方块搭成,如图12是分别从正面、左面、上面看这个立体图形得到的形状图.这个立体图形由 _____________个小立方块搭成.三、解答题(本大题共6小题,共52分)17.(6分)如图13所示是一个正六棱柱.(1)填写下表:(2)若该正六棱柱所有侧棱长的和为72 cm,底面的边长为5 cm,求该正六棱柱的所有侧面的面积和.图1318.(8分)如图14,小明同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中的阴影部分),但是由于疏忽少画了一个,请你给他补画一个,使之可以折叠成正方体,请你把所有的画法都补上,在图上用阴影注明.图14 备用图19.(8分)小明用一个平面去截图15所示的几何体.(1)写出几何体截面形状的名称,①__________,②___________,③___________.(2)除了上述三个截面形状外,还有其他互不相同的截面形状吗? 请分别再写出一个.图1520.(8分)如图16是一张长方形纸片,AB长为4 cm,BC长为6 cm.若将此长方形纸片绕它的一边所在直线旋转一周,(1)得到的几何体是__________;这个现象用数学知识解释为 ______________;(2)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的体积.(结果保留π)图16②①③21. (10分)图17是由棱长都为2 cm的6个小立方块搭成的简单几何体.图17(1)请在下面的方格中画出该几何体从三个方向看到的形状图;从正面看从左面看从上面看(2)根据形状图求简单几何体的表面积;(3)如果在这个几何体上再添加一些小立方块,并保持从正面和左面看到的形状图不变,那么最多可以再添加_________个小立方块.22.(12分)现有如图18所示的长方体,长、宽、高分别为4,3,6.图18(1)若将它的表面沿某些棱剪开,展开成一个平面图形,则下列图形中,可能是该长方体的展开图的是 _______.(填序号)(2)图A,B分别是图18所示的长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B的外围周长.(3)图18所示的长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个展开图,并求出它的外围周长.附加题(20分,不计入总分)一个几何体是由若干个棱长为3 cm的小立方块搭成的,从左面、上面看到的几何体的形状图如图所示.(1)该几何体最少由________个小立方块搭成,最多由________个小立方块搭成.(2)当该几何体用最多的小立方块搭成时,将该几何体的形状固定好.①求该几何体的体积;①若将该几何体表面涂上油漆,求所涂的油漆面积.(山西左丁政)第一章丰富的图形世界达标测试卷参考答案答案速览一、1. B 2. C 3. B 4. B 5. D 6. C 7. B 8. D 9. B 10. A二、11. 圆12. 线动成面13. 4 6 4 214. 3 15. 圆锥圆柱16. 9三、解答题见“答案详解”答案详解三、17. 解:(1)填表如下:(2)该正六棱柱的所有侧面的面积的和为(72÷6)×5×6=360(cm2).18. 解:如图1所示.图119.解:(1)圆长方形梯形(2)有,不唯一,如:还有三角形,椭圆,拱形门,如图2所示.图2几何体顶点数棱数面数正六棱柱___12_____18_______8____三角形拱形门椭圆20. 解:(1)圆柱面动成体(2)分两种情况:①绕AB所在直线旋转一周:V=π×62×4=144π(cm3);②绕BC所在直线旋转一周:V=π×42×6=96π(cm3).所以形成的几何体的体积是144π cm3或96π cm3.21. 解:(1)如图3所示.从正面看从左面看从上面看图3(2)简单几何体的表面积为2×(5+3+4)×2×2=96(cm2).(3)222. 解:(1)①②③(2)图B的外围周长为4×6+4×4+6×3=58.(3)外围周长最大的表面展开图如图4所示,外围周长为8×6+4×4+3×2=70.图4附加题:解:(1)观察图形可知,最少的情形有2+3+1+1+1+1=9(个)小立方块,最多的情形有2+3+3+3+3+1=14(个)小立方块(如图所示).(2)①该几何体的体积为33×14=378(cm3).①露在外面的面有2×[6+6+(9+2)]=46(个),所涂的油漆面积为36×9=414(cm2).。
(北师大版)成都市七年级数学上册第一单元《丰富的图形世界》检测题(含答案解析)
一、选择题1.一个表面标有汉字的正方体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边2.下列各图形是正方体展开图的是()A.B.C.D.3.如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,则这个几何体的左视图是()A.B. C.D.4.如图所示的正方体的展开图是()A.B.C.D.5.2020年,两安市为创建全国文明城市,在街头制作了正方体宣传板进行宣传,它的展开图如图示,请你来找一找“创”字所在面的对面是哪个字()A.明B.文C.北D.城6.如图,由 5 个相同的小正方体组成的立体图形,分别从正面、左面、上面三个不用方向观察这个立体图形,你看不到哪个平面图形?()A.B.C.D.7.将如图所示的图形剪去两个小正方形,使余下的部分图形恰好能折成一个正方体,应剪去的两个小正方形可以是()A.②③B.①⑥C.①⑦D.②⑥8.一个正方体的平面展开图如图所示,将它折成正方体后,“保”字对面的字是()A.低B.碳C.环D.色9.如图是正方体的表面展开图,则“乐”字相对面上的字为()A.南B.开C.生D.快10.把图中的硬纸片沿虚线折起来,便可成为一个正方体,这个正方体的2号平面的对面是()A.3号面B.4号面C.5号面D.6号面11.棱长为acm的正方体表面积是( )cm2.A.42a B.63a C.3a D.62a12.几何体的下列性质:①侧面是平行四边形;②底面形状相同;③底面平行;④棱长相等.其中棱柱具有的性质有()A.1个B.2个C.3个D.4个二、填空题13.一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各yz的值为___.相对面上所填的数字互为倒数,则()x14.两个同样大小的正方体积木,每个正方体相对两个面上写的数字之和都等于0.现将两个正方体并排放置,看得见的5个面上的数如图所示,则看不见的7个面上所写的数字之和等于______.15.用一个平面去截下列几何体,截面可能是圆的是________(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体16.如图所示,水平放置的长方体的底面是边长为2和4的长方形,从左面看它得到的图形的面积为6,则长方体的体积等于__________.17.一个几何体的三种视图如图所示,这个几何体的表面积是__.(结果保留π)18.一个立体图形的三视图如图所示,则该立体图形的名称为________.19.五棱柱有______ 条棱.20.如图,已知BC是圆柱的底面直径,AB是圆柱的高,在圆柱的侧面上,过点A、C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,若展开图中,金属丝与底面周长围成的图形的面积是5πcm2,该圆柱的侧面积是______cm2.三、解答题21.如图,将一个饮料包装盒剪开,铺平,纸样如图所示,包装盒的高为15cm;设包装盒底面的长为xcm.(1)用x表示包装盒底面的宽;(2)用x表示包装盒的表面积,并化简;(3)若包装盒底面的长为10cm,求包装盒的表面积.22.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置上的小正方块的个数,请你画出从正面与左面看到的这个几何体的形状图.23.一个几何体是由一些相同的小正方体构成,该几何体从正面看(主视图)和从上面看(俯视图)如图所示.那么构成这个几何体的小正方体至少有______块,至多有______块.24.作图题:(1)如图1,已知点A,点B,点C,直线l及l上一点M,请你按照下列要求画出图形.①画射线BM;②画线段AC,并取线段AC的中点N;③请在直线l上确定一点O,使点O到点A与点B的距离之和(OA+OB)最小;(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,(只需添加一个符合要求的正方形即可,并用阴影表示).25.如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的整式的值相等,求整式(x+y)a的值.26.如图,是由大小相同的小立方块搭成的几何体,请在方格里画出从左面、上面观察这个图形所看到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【详解】根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在左边,“快”在右边.故不正确的是D.故选D.【点睛】此题考查专题:正方体相对两个面上的文字,解题关键在于掌握平面展开图的特点.2.D解析:D【解析】【分析】根据正方体展开图的11种形式对各选项分析判断即可得解.【详解】A、不是正方体展开图,故选项错误;B、有田字格,不是正方体展开图,故选项错误;C、是凹字形,不是正方体展开图,故选项错误;D、1﹣4﹣1型,是正方体展开图,故选项正确.故选D.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.C解析:C【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为2,1.据此可作出判断.【详解】从左面看可得到从左到右分别是2,1个正方形.故选C.【点睛】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.C解析:C【分析】根据题干,三个图案交于一点,五角星和正方形的顶点正对,依此即可求解.【详解】解:根据正方体展开图的特点分析,选项C是它的展开图.故选C.【点睛】此题考查了几何体的展开图,关键是熟练掌握正方体展开图的特征(正方体的侧面展开图是长方形).5.D解析:D【分析】根据正方体相对的面的特点作答.【详解】解:相对的面的中间要相隔一个面,所以“创”字的对面是“城”.故选:D.【点睛】本题考查了正方体相对面上的文字,属于基础题,注意培养自己的空间想象能力.6.B解析:B【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.【详解】从正面看到的平面图形是A;从左面看到的平面图形是C;从上面看到的平面图形是D.故选:B.【点睛】本题考查了从不同方向看几何体;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.7.A解析:A【分析】利用正方体及其表面展开图的特点解题.【详解】A. 剪去②③后,恰好能折成一个正方体,符合题意;B. 剪去①⑥后,不能折成一个正方体,不符合题意;C. 剪去①⑦后,不能折成一个正方体,不符合题意;D. 剪去②⑥后,不能折成一个正方体,不符合题意.故选:A【点睛】本题考查了正方体的展开图及学生的空间想象能力,正方体展开图规律:十一种类看仔细,中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃.8.B解析:B【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“保”字相对的面上的汉字是“碳”.故选:B.【点睛】本题考查了正方体的展开图形,熟练掌握是解题的关键.9.B解析:B【分析】根据正方体的表面展开图的性质,即可求得答案.【详解】由题意得“乐”字相对面上的字为“开”故答案为:B.【点睛】本题考查了正方体的表面展开图,掌握正方体表面展开图的性质是解题的关键.10.C解析:C【分析】折成正方体,分析相对面,再作答.【详解】解:折成正方体后1和3相对,4和6相对,2和5相对.故选:C.【点睛】本题考查了正方体的空间图形,熟练掌握是解题的关键.11.D解析:D【分析】直接利用正方体的表面积为:6×棱长的平方进而得出答案.【详解】解:棱长为acm的正方体的表面积为:6a2cm2.故选:D.【点睛】此题主要考查了几何体的表面积,正确掌握立方体的性质是解题关键.12.C解析:C【分析】根据棱柱的概念即可得到结论.【详解】棱柱具有下列性质:①侧面是平行四边形;②底面形状相同;③底面平行.故选C.【点睛】本题考查了认识立体图形,棱柱的性质,熟练掌握棱柱的性质是解题的关键.二、填空题13.1 8 -14.-315.②③⑤16.2417.100π解析:100π.18.圆锥19.1520.10π三、解答题21.(1)宽=15-x;(2)2s=230450x x-++;(3)550.【分析】(1)利用长方形的周长及长求宽即可;(2)利用长方体的表面积公式求解即可;(3)利用长方体的表面积公式求解即可.【详解】解:(1)包装盒底面的宽为:302152xx-=-(cm),(2)包装盒的表面积为:S=2×[(15-x)×15+15x+(15-x)×x]=2230450x x-++(cm2),(3)包装盒底面的长为10cm,包装盒的表面积为:S=2×[(15-10)×15+15×10+(15-10)×10]=550(cm2).【点睛】本题主要考查了长方体的表面积及整式的混合运算,解题的关键是熟记长方体的表面积公式.22.详见解析【分析】从正面看到的是三列,第一列是两层,第二列是三层,第三列是2层;从左面看到也是三列,每一列上分别是1层、三层、两层.【详解】解:从正面看、左面看的图形如图所示:【点睛】本题考查简单几何体的三视图,关键是看到的是几列几层,同时还需注意“长对正,宽相等、高平齐”.23., 7【解析】【分析】根据俯视图能够判断出这个几何体的最底层是有5个小正方体,根据主视图可以判断出这个几何体有两层,并且第二层的左边至少有一个小正方体,至多有三个小正方体。
北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)
北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分)1.如图,是小云同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“动”字相对的面上的字是()A.造B.劳C.幸D.福2.一个棱柱有8个面,这是一个()A.四棱柱B.六棱柱C.七棱柱D.八棱柱3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是()A.45厘米B.30厘米C.90厘米D.60厘米4.一个几何体由若干大小相同的小正方体搭成,从左面和上面看到的这个几何体的形状图如图所示,则搭这个几何体需用小正方体的个数不可能是()A.5 B.6 C.7 D.85.如图所示,以直线为轴旋转一周,可以形成圆柱的是()A.B.C.D.6.用一个平面将一个正方体截去一部分,其面数将()A.增加B.减少C.不变D.不能确定7.用平面去截一个几何体,如果截面的形状是长方形,那么该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥8.如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.9.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的个数是()A.2个B.3个C.4个D.5个10.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A.4种B.5种C.6种D.7种二、填空题(每小题2分,共20分)1.一个正n棱柱有18条棱,一条侧棱为10cm,一条底边为3cm,则它的侧面积是_____2cm.2.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n,则n的最少值为______.3.用一个平面去截三棱柱不可能截出以下图形中的_____(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形.4.若用一个平面去截一个五棱柱,截面的边数最少是_____________;最多是____________.5.如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90︒算一次,请问滚动2022次后,正方体贴在桌面一面的数字是___________.6.如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之积为20,则+__________.x y7.如图,将长方形纸片ABCD沿EF折叠后,若1110∠的度数为______.∠=︒,则28.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.9.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______. 10.用若干大小相同的小立方块搭一个几何体,使得从左面和从上面看到的这个几何请从A,B两题中任选一题作答.我选择___________题.A.搭成该几何体的小立方块最少有___________个.B.根据所给的两个形状图,要画出从正面看到的形状图,最多能画出___________种不同的图形.三、解答题(每小题6分,共60分)1.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.2.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.3.已知一个直棱柱,它有21条棱,其中一条侧棱长为10cm,底面各条边长均为4cm.(1)这个直棱柱是几棱柱?(3)求这个棱柱的所有侧面的面积之和.4.用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.5.如图所示,在长方形ABCD中,BC=6cm,CD=8cm.现绕这个长方形的一边所在直线旋转一周得到一个几何体。
第1章丰富的图形世界 综合测评 北师大版七年级数学上册
2021-2022学年北师大版七年级数学上册《第1章丰富的图形世界》综合测评一、选择题(共9小题,满分27分)1.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()2.用平面去截一个几何体,如果所得截面是长方形,那么该几何体不可能是()A.圆柱;B.三棱柱;C.四面体;D.四棱锥.3.如图所示,用一个平面沿与棱平行的方向去截一个棱柱,则截面的形状应为()A.梯形B.正方形C.平行四边形D.长方形4.如图所示的各图中,不是正方体表面展开图的是()A B C D5.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是( )6.一张桌子上摆放有若干个大小.形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.B.C.D.A.11 B.12 C.13 D.147.如图是由5个大小相同的正方体搭成的几何体,从上面看得到的平面图形是( )8.将如图所示的直角△ABC绕直角边AC所在直线旋转一周,所得几何体从正面看得到的形状图是()9.用一个平面截圆柱,截面形状不可能是A.圆B.正方形C.长方形D.梯形二、填空题(共4小题,满分20分)10.写出一个你所熟悉的.不能展开成平面图形的几何体的名称:_______.11.如图所示,将多边形分割成三角形.图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出_________个三角形。
12.要把一个正方体剪开展成平面图形,需要剪开________条棱;13.图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②中几何体的体积为__________(结果保留π).三、解答题(共6小题,满分53分)14.如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数.请你画出它的主视图与左视图.15.如图所示的正方形网络中,我们知道,在1×1的正方形网络中只有一个边长为1的正方形;在2×2的正方形中有1个边长为2的正方形和4个边长为1的正方形,共有5个正方形;在3×3的的正方形网络中,有边长为3的正方形___个,边长为2的正方形___个,边长为1的正方形___个,共有正方形___个;在6×6的正方形网络中共有正方形___个;你能推出在n×n的正方形网络中共有正方形的个数的计算公式吗?试试看.16.小芳准备制作一个正方体盒子,她先用5个大小一样的正方形制成如图13所示的图形(实线部分),经折叠后发现还少一个面,请你在图10中的图形上再接上一个正方形,使接上后的图形经过折叠后能成为一个封闭的正方体盒子.(画出添加所有符合要求的正方形的图形)17.如图所示的几何体是由若干个相同的小正方体搭建而成的(第一层1个;第二层3个;第3层6个),小正方体的一个侧面的面积为1cm。
2020年北师大版七年级数学上册第一章《丰富的图形世界》单元检测题(附答案)
第一章《丰富的图形世界》检测卷时间:60分钟满分:100分一、选择题(本大题共8小题,每题3分,共24分)1.下列图形中,柱体的个数是()A.1B.2C.3D.42.下列说法正确的是()A.棱柱的每条棱长都相等B.棱柱侧面的形状可能是一个三角形C.长方体的截面形状一定是长方形D.若三棱柱的底面边长相等,则各个侧面的面积相等3.将三角形绕虚线旋转一周,可以得到如图所示的立体图形的是()A B C D4.如图所示的几何体是由7个小立方块堆积而成,某同学画出了从三个方向看到的形状图,在这三个形状图中正确的是()A.①②B.②③C.①③D.①②③5.用一个平面去截棱柱、圆锥、棱锥,相同的截面形状是()A.三角形B.圆C.长方形D.无法确定6.要制作一个正方体模型,且六个面上写着六个数,若相对的两个面上的数的乘积都等于24,则下列展开图中,可行的是()A BC D7.由若干个完全相同的小立方块搭成的一个几何体,这个几何体从左面和上面看到的形状图如图所示,则小立方块的个数不可能是()A.5B.6C.7D.88.如图是由12个棱长为1的小立方块组合而成的几何体,则其从正面、左面和上面所看到的形状图中面积最大的是()A.从正面看到的形状图B.从左面看到的形状图C.从上面看到的形状图D.无法判断二、填空题(本大题共6小题,每题3分,共18分)9.在朱自清的《春》中有描写春雨“像牛毛,像花针,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明. 10.如图是正方体的表面展开图,“我”字的相对面上的字是.11.用一个平面分别截六棱柱、长方体、圆柱、圆锥,得到的截面不可能为四边形的几何体是.12.若要把一个正方体的表面剪开并展成如图所示的平面图形,则需要剪开条棱.第12题图第13题图13.如图是由一些小立方块搭成的几何体从正面和左面看到的形状图,则搭建该几何体最多需要个小立方块.14.用八个大小相同的小立方块粘成一个大立方体如图1所示,得到的几何体从三个方向看到的形状图如图2所示.若小明从八个小立方块中取走若干个,剩余的小立方块保持原位置不动,并使得到的新几何体从三个方向看到的形状图仍是图2,则他取走的小立方块最多可以是个.图1图2三、解答题(本大题共6小题,共58分)15.(6分)如图所示是一个几何体,画出从正面、左面、上面看到的该几何体的形状图.16.(10分)如图是一个长为4 cm,宽为3 cm的长方形纸片.图1图2(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是,这能说明的事实是;(2)求当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积;(3)求当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.17.(10分)有一种牛奶包装盒及其尺寸如图1所示.为了生产这种包装盒,需要先画出展开图纸样.图1图2(1)如图2所示,给出3种纸样甲、乙、丙,在甲、乙、丙中,正确的是;(2)从已知正确的纸样中选出一种,在图上标注上尺寸;(3)利用你所选的一种纸样,求出包装盒的表面积.18.(10分)设棱锥的顶点数为V,面数为F,棱数为E.(1)观察与发现:如图,三棱锥中,V3= ,F3= ,E3= ;五棱锥中,V5= ,F5= ,E5= .(2)猜想:①十棱锥中,V10= ,F10= ,E10= ;②N棱锥中,V n= ,F n= ,E n= .(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:.(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.19.(10分)用小立方块搭一个几何体,使得它从正面和上面看到的形状图如图所示,则搭这个几何体最少要多少个小立方块?并画出此时该几何体从左面看到的形状图(只需画出一种情况即可).20.(12分)在平整的地面上,由若干个完全相同的棱长为10 cm的小立方块堆成一个几何体,如图所示.(1)这个几何体由多少个小立方块组成?请画出从正面、左面、上面看到的这个几何体的形状图.(2)如果在这个几何体的表面(不包括底面)喷上黄色的漆,则在所有的小立方块中,有多少个只有一个面是黄色?有多少个只有两个面是黄色?有多少个只有三个面是黄色?(3)假设现在你手里还有一些相同的小立方块,保持从左面、上面看到的形状图不变,最多可以再添加几个小立方块?这时如果要重新给这个几何体表面(不包括底面)喷上红色的漆,需要喷漆的面积比原几何体增加了还是减少了?增加或减少的面积是多少?第一章综合能力检测卷题号 1 2 3 4 5 6 7 8答案 C D C B A B A A 9.点动成线10.丽11.圆锥12.7 13.16 14.417. (1)甲、丙(2)如图所示,任选其一即可.(3) 288.18. (1)4 4 6 6 6 10(2)①1111 20 ②n+1n+12n(3)①V=F②V+F-E=2(4)存在,相应的等式为V+F-E=2.19.最少需要12个小立方块.此时该几何体从左面看到的形状图如图所示.20. (1) 10个从正面、左面、上面看到的这个几何体的形状图如图所示.(2)略(3)最多可以再添加4个小立方块.400cm21、天下兴亡,匹夫有责。
七年级上第一章丰富的图形单元检测试卷(有答案)-(数学)
第一章丰富的图形世界单元测试一、单选题(共10题;共30分)1、如图所示的几何体,从上面看得到的平面图形是()A、 B、C、D、2、下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A、B、C、D、3、如图,直角三角形绕直线l旋转一周,得到的立体图形是()A、B、C、 D 、4、下列说法正确的是()A、棱柱的各条棱都相等B、有9条棱的棱柱的底面一定是三角形C、长方体和正方体不是棱柱D、柱体的上、下两底面可以大小不一样5、如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法错误的是()A、主视图的面积为4B、左视图的面积为3C、俯视图的面积为4D、搭成的几何体的表面积是206、如图所示的立方体,如果把它展开,可以是下列图形中的()A、B、C、D、7、如图是正方体的平面展开图,每个面上标有一个汉字, 与“油”字相对的面上的字是( )A、北B、京C、奥D、运8、下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A、③⑤⑥B、①②③C、③⑥D、④⑤9、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A、6,11B、7,11C、7,12D、6,1210、用一个平面去截一个正方体,截面的形状不可能是()A、梯形B、长方形C、六边形D、七边形二、填空题(共8题;共27分)11、如图中几何体的截面分别是________.12、假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了________ .13、六棱柱有________ 面.14、用6根火柴最多组成________ 个一样大的三角形,所得几何体的名称是________15、如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是________cm316、如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是 ________.17、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是 ________.18、圆柱的侧面展开图是________形.三、解答题(共6题;共43分)19、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.20、如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC为轴旋转一周.求所形成的立体图形的体积.21、如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?22、一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,请写出x、y、z的值.23、小明和小彬观察同一个物体,从俯视图看都是一个等腰梯形,但小明所看到的主视图如图(1)所示,小彬看到的主视图如图(2)所示.你知道这是一个什么样的物体?小明和小彬分别是从哪个方向观察它的?24、请你在下面画一个正四棱锥的三视图.答案解析一、单选题1、【答案】 A【考点】几何体的展开图【解析】正方体的平面展开图中,相对的面之间一定相隔一个正方形,所以与“油”字相对的面上的字是“北”.故选A.2、【答案】C【考点】点、线、面、体【解析】【解答】将如图所示的直角三角形绕直线l旋转一周,可得到圆锥.【分析】考查了点,线,面,体,面动成体.3、【答案】D【考点】截一个几何体【解析】【解答】无论如何去截,截面也不可能有弧度,因此截面不可能是圆.【分析】正方体有六个面,正方体的截面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.无论如何去截,截面也不可能有弧度,因此截面不可能是圆.4、【答案】 B【考点】认识立体图形【解析】【解答】解:A、棱柱的侧棱与底面棱长不一定相等,故A错误;B、一个n棱柱有,n+2个面,3n条棱,2n个顶点,9÷3=3,故底面一定是三角形,故B正确;C、长方体和正方体是棱柱,故C错误;D、柱体的上、下两底面必须完全相同,故D错误.故选:B.【分析】根据棱柱的特征以及棱柱的有关概念回答.5、【答案】 D【考点】简单组合体的三视图【解析】【解答】解:,A、主视图面积为4,故A正确;B、左视图面积为3,故B正确;C、俯视图面积为4,故C正确;D、搭成的几何体的表面积是21,故D错误;故选:D.【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.6、【答案】B【考点】几何体的展开图【解析】【解答】解:选项A、C、D中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后与原立方体符合,所以正确的是B.故选:B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.同时注意图示中的阴影的位置关系.7、【答案】 B【考点】简单组合体的三视图【解析】【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【分析】根据所看位置,找出此几何体的三视图即可.8、【答案】A【考点】认识立体图形【解析】【解答】解:根据以上分析:属于立体图形的是③正方体;⑤圆锥;⑥圆柱.故选A.【分析】根据立体图形的概念和定义,立体图形是空间图形.9、【答案】C【考点】截一个几何体【解析】【解答】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12.故选:C.【分析】如图正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.得到面增加一个,棱增加3.10、【答案】D【考点】截一个几何体【解析】【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选D.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.二、填空题11、【答案】长方形,等腰三角形【考点】截一个几何体【解析】【解答】①中几何体的截面是矩形,②中几何体的截面是等腰三角形【分析】①根据正方体的边相等,可得截面对边的关系,根据矩形的判定;②根据圆锥的母线相等,可得三角形边的关系,根据等腰三角形的定义,可解.12、【答案】点动成线【考点】点、线、面、体【解析】【解答】解:笔尖在纸上移动时,就能画出线,说明了点动成线.故答案为:点动成线.【分析】根据点动成线解答.13、【答案】 8【考点】认识立体图形【解析】【解答】解:六棱柱上下两个底面,侧面是6个长方形,所以共有8个面.故答案为:8.【分析】根据六棱柱的概念和定义即解.14、【答案】 4;三棱锥或四面体【考点】认识立体图形【解析】【解答】解:要使搭的个数最多,就要搭成三棱锥,【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.15、【答案】 12【考点】几何体的展开图【解析】【解答】解:∵四边形ABCD是正方形,∴AB=AE=4cm,∴立方体的高为:(6﹣4)÷2=1(cm),∴EF=4﹣1=3(cm),∴原长方体的体积是:3×4×1=12(cm3).故答案为:12cm3.【分析】利用正方形的性质以及图形中标注的长度得出AB=AE=4cm,进而得出长方体的长、宽、高,进而得出答案.16、【答案】 7【考点】简单组合体的三视图【解析】【解答】解:该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为:7.【分析】根据从左面看得到的图形是左视图,从前面看的到的视图是主视图,再根据面积求出面积的和即可.17、【答案】4【考点】由三视图判断几何体【解析】【解答】解:由主视图可得有2列,根据左视图和俯视图可得每列的方块数如图,则搭成这个几何体的小正方体的个数是2+1+1=4个.故答案为:4.【分析】根据主视图以及左视图可得出该小正方形共有两行搭成,俯视图可确定几何体中小正方形的列数,从而得出答案.18、【答案】长方【考点】几何体的展开图【解析】【解答】解:圆柱的侧面展开图为长方形.故答案为:长方.【分析】由圆柱的侧面展开图的特征知它的侧面展开图为长方形.三、解答题19、【答案】如图所示【考点】点、线、面、体【解析】【解答】解:如图所示:【分析】这些也都是“面动成体”的体现.20、【答案】 9.6π立方厘米【考点】点、线、面、体【解析】【解答】过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC==5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积: 2.42 5 =9.6π(立方厘米).【分析】先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.21、【答案】解:这个五棱柱共7个面,沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是矩形,面积为5×12×5=300cm2.答:这个五棱柱共7个面,侧面的面积之和是300cm2.【考点】认识立体图形【解析】【分析】根据五棱柱的特征,由矩形的面积公式求解即可.22、【答案】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴1与z相对,2与x相对,y与3相对,∵相对表面上所填的数互为倒数,∴x=,y=,z=1.【考点】几何体的展开图【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.23、【答案】解:底面为等腰梯形的四棱柱(如图所示).小明是从前面观察的,而小彬则是从后面观察的(答案不惟一).【考点】简单组合体的三视图【解析】【分析】根据题意,俯视图是一个等腰梯形,而(1)与(2)的形状的相同的,故可知道小明和小彬是从不同方向观察它的,(1)由虚线表示是等腰梯形的上底.故可知道该几何体是等腰梯形的四棱柱.24、【答案】解:如图:【考点】简单几何体的三视图【解析】【分析】正四棱锥的主视图和左视图为等腰三角形,俯视图为正方形.。
第一章 丰富的图形世界 单元检测卷 2024--2025学年北师大版七年级数学上册
2024--2025学年北师大版数学七年级上册第一章丰富的图形世界单元检测试卷2(含答案)一、选择题(本大题共10小题,每小题3分,共30分)1、下列四个几何体中,是三棱柱的为( )2、用平面去截一个正方体,截面的形状不可能是()A、三角形B、五边形C、六边形D、七边形3、下列四个图形中,不能作为正方体的展开图的是( )4、如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是 ( )A、从正面看到的图形的面积为5B、从左面看到的图形的面积为3C、从上面看到的图形的面积为3D、从正面、左面和上面看到的图形的面积都是45、如图是一个几何体从上面看到的形状图,则这个几何体的形状可能是( )6、一个三棱柱的侧面数,顶点数分别在()A、4,10B、3,6C、5,15D、6,157、如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字6相对面上 的数字是( )A 、1B 、4C 、5D 、28、用一些大小相同的小正方体搭成一个几何体,从上面看这个几何体时看到的图形如图,其中正方 形中的数字表示该位置上的小正方体的个数,那么从左面看这个几何体时,看到的图形是( )9、如图,三个大小不等的正方体拼成的几何体,其中两个小正方体的棱长之和等于大正方体的棱长, 分别从正面、左面、上面看该几何体所得到的平面图形面积分别为S 1、S 2、S 3,则S 1、S 2、S 3的大 小关系是( )A 、321S S S ==B 、321S S S <<C 、123S S S <<D 、213S S S <<10、一个积木由若干个大小相同且棱长为1的正方体搭成,如图分别是从三个方向看到的形状图,则该积木中棱长为1的正方体的个数是( )A 、6个B 、7个C 、8个D 、9个二、填空题(本大题共10小题,每小题3分,共30分)11、如图,属于柱体的是__________,属于锥体的是________,属于球体的是________.(填序号)12、小明拿着一个有10个面的棱柱,小明拿着的是________棱柱。
2024七年级数学上册第一章丰富的图形世界检测新版北师大版
检测内容:第一章丰富的图形世界得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.视察下列实物模型,其形态是圆锥的是( C )2.左图是由哪个图形绕虚线旋转一周形成的( D )3.如图,立体图形从左面看到的形态图是( B )4.(中牟县期末)如图是某几何体的表面绽开图,则这个几何体的顶点有( B )A.4个 B.6个 C.8个 D.10个第4题图第5题图第6题图5.某正方体的表面绽开图如图,则原正方体上“中”字所在面的对面汉字是( B ) A.国 B.的 C.我 D.梦6.如图,把正方体的八个角切去一个角后,余下的图形有几条棱( D )A.12或15 B.12或13C.13或14 D.12或13或14或157.一个六棱柱模型如图所示,底面边长都是5 cm,侧棱长为4 cm,这个六棱柱的全部侧面的面积之和是( C )A.20 cm2 B.60 cm2 C.120 cm2 D.240 cm2第7题图第8题图第9题图8.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面绽开(外表面朝上),绽开图可能是( D )A B C D9.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形态图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形态图是( D )10.骰子是6个面上分别写有数字1,2,3,4,5,6的小正方体,它随意两对面上所写的两个数字之和为7.将这样相同的几个骰子依据相接触的两个面上的数字的积为6摆成一个几何体,从这个几何体三个方向看到的形态图如图所示,已知图中所标注的是部分面上的数字,则“*”所代表的数是( B )A.2 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.用一个平面去截下列几何体:①正方体;②圆柱;③圆锥;④直三棱柱,其中,截面形态可以是三角形的有__①③④__.(写出全部正确结果的序号)12.假如按图中虚线对折可以做成一个上底面无盖的盒子,那么该盒子的下底面的字母是__B__.第12题图第13题图13.如图,正方形ABCD的边长为3 cm,以边AB所在直线为轴,将正方形旋转一周,所得几何体从正面看到的图形的面积是__18_cm2__.14.从图中的正方形中选两个涂色,使这两个正方形与4个写有汉字的正方形一起,折叠后能围成一个正方体,则所涂的正方形是__2和9(答案不唯一)__.(只填数字即可)第14题图第15题图15.一个正方体木块的六个面分别标有数字1,2,3,4,5,6.如图是从不同方向视察这个正方体木块看到的数字状况,则数字1对面的数字是__3__.三、解答题(共75分)16.(8分)将下列几何体分类,并说明分类的依据.解:按几何体自身特征分:柱体:(1)(2)(5)(6)(8),其中(1)(2)(5)(8)是棱柱,(6)是圆柱;锥体:(4)(7),其中(4)是圆锥,(7)是棱锥;球体:(3)17.(8分)如图是一个由若干个相同的小立方块所搭成的几何体从上面看得到的图形,小正方形中的数字表示在该位置上小立方块的个数,请画出这个几何体从正面和从左面看得到的图形.解:略18.(10分)如图是一长方体的绽开图,每一面内都标注了字母(标字母的面是外表面),依据要求回答问题:(1)假如D面在多面体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)假如C面在前面,从上面看到的是D面,那么从左面看是哪一面?(4)假如B面在后面,从左面看是D面,那么前面是哪个面?(5)假如A面在右面,从下面看是F面,那么B面在哪里?解:(1)右面(2)E面(3)B面(4)E面(5)后面19.(8分)把直角三角形ABC(如图)(单位:cm)沿着边AB和BC所在直线分别旋转一周,可以得到两个不同的圆锥,沿着哪条边所在的直线旋转得到的圆锥体积比较大?体积为多少?(V 圆锥=13πr 2h )解:当以AB 所在直线为轴旋转时,得到的圆锥底面半径是3 cm ,高是6 cm ,其体积=13×π×32×6=18π(cm 3);当以BC 所在直线为轴旋转时,得到的圆锥的底面半径是6 cm ,高是3 cm ,其体积=13 ×π×62×3=36π(cm 3).所以沿着边BC 所在直线旋转得到的圆锥的体积比较大,体积为36π cm 320.(8分)在平整的地面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.(1)请画出这个几何体从三个方向看到的图形;(2)若现在你手头上还有一些相同的小正方体,假如保持从上面看到的图形和从左面看到的图形不变,最多可以再添加几个小正方体?解:(1)如图所示:(2)最多可以再添加4个小正方体21.(9分)如图①所示的正方体,它的表面绽开图为图②,四边形APQC 是切正方体的一个截面.问截面的四条线段AC ,CQ ,QP ,PA 分别在绽开图的什么位置上?解:截面的四条线段AC,CQ,QP,PA在绽开图中的位置如图所示:22.(12分)(1)如图①四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有__5__个面,__9__条棱,__6__个顶点,视察图形,并解答:四棱柱有__6__个面,__12__条棱,__8__个顶点;五棱柱有__7__个面,__15__条棱,__10__个顶点;由此猜想n棱柱有__(n+2)__个面,__3n__条棱,__2n__个顶点.(2)如图②,小华用若干个正方形和长方形拼成一个长方体的绽开图,但他总觉得所拼图形存在问题.请你帮小华分析一下拼图是否存在问题:若有多余部分,则把图中多余部分涂黑;若还缺少,则干脆在原图中补全;若图中的正方形边长为2.1 cm,长方形的长为3 cm,宽为2.1 cm,恳求出修正后所折叠而成的长方体的体积.解:(2)拼图存在问题,如图,多了一个正方形.体积:2.1×2.1×3=13.23(cm3)23.(12分)一个几何体是由若干个棱长为3 cm的小正方体搭成的,从左面、上面看到的几何体的形态图如图所示:(1)该几何体最少由__9__个小立方体组成,最多由__14__个小立方体组成;(2)将该几何体的形态固定好,①求该几何体体积的最大值;②若要给体积最小时的几何体表面涂上油漆,求所涂油漆的面积.解:(2)①该几何体体积的最大值为(3×3×3)×14=378 (cm3)②有两种情形:露在外面的面=2×(前+上+侧)=2×[5+6+(6+1)]=36(个)面,涂漆面积S=36×9=324(cm2),露在外面的面=2×(前+上+侧)=2×[6+6+(6+1)]=38(个)面.涂漆面积S=38×9=342(cm2)。
初一数学上册第一章丰富的图形世界检测题
初一数学上册第一章丰富的图形世界检测题以下是查字典数学网为您举荐的七年级数学上册第一章丰富的图形世界检测题,期望本篇文章对您学习有所关心。
七年级数学上册第一章丰富的图形世界检测题(含答案)一、选择题(每题3分,共30分)1. 图中为棱柱的是()2.生活中我们见到的自行车的辐条运动形成的几何图形可说明为( )A.点动成线B.线动成面C .面动成体D.以上答案都不对3. 圆锥侧面展开图可能是下列图中的( )几何体的展开图★4.下列立体图形中,有五个面的是( )几何体的构成★A、四棱锥B、五棱锥C、四棱柱D、五棱柱5.如图,六棱柱的正确截面是( )截面★A B C D6.用一个平面去截一个正方体,截面不可能是( )截面★A、梯形B、五边形C、六边形D、七边形7.如图,一个正方形,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为( )对应面★★A.51B. 52C. 57D. 588.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成那个几何体的小正方块最多有( ) 三视图★★A.7个B.6个C.5个D.4个9. 如图所示,是一个由小立方体搭成的几何体的俯视图,小正方形中数字表示该位置的小立方块的个数,则它的主视图为( ) 三视图★★10.如图中是正方体的展开图的有( )个几何体的展开图★★A、2个B、3个C、4个D、5个二、填空题(每题3分,共30分)11.薄薄的硬币在桌面上转动时,看上去象球,这说明了____ _______ ______.点线面体的关系★12.把一块学生使用的三角板以一条直角边为轴旋转成的形状是体。
几何体的形成★13.假如一个几何体的视图之一是三角形,那个几何体可能是________ ___(写出两个即可).三视图★14.假如一个几何体的主视图、左视图、俯视图都完全相同的是.三视图★15. 假如长方体从一顶点动身的三条棱长分别为2,3,4,则该长方体的表面积为______。
北师大 七年级数学上册 第一章 丰富的图形世界 测试
第一章《丰富的图形世界》测试一、选择题(每小题3分,共30分)1.下列几何体没有曲面的是()A.圆锥B.圆柱C.球D.棱柱2.下列几何体的截面不可能是圆的是()A.圆柱B.圆台C.棱柱D.圆锥3.把一个正方体截去一个角,剩下的几何体最多有几个面()A.5个面B.6个面C.7个面D.8个面4.六棱柱的侧面是()A.长方形B.六边形C.三角形D.正方形5.下列说法不正确的是()A.球的截面一定是圆B. 组成长方体的各个面中不能有正方形C. 正方体的三视图都是正方形D.圆锥的截面可能是圆6.如图1所示,能折成棱柱的有()A.1个B.2个C.3个D.4个图17.图2所示的图形中,不能..经过折叠围成正方形的是()DCBA图2 8. 如图3所示,图中几何体的左视图是()正面图3 ACBD9. 如图4所示,将下面的直角梯形绕直线l 旋转一周,可以得到右边立体图形的是( ).图410.如图5所示是某正方体的展开图,在顶点出标有数字,当把它折成正方体时,与13重合的数字是( )A.1和9B.1和10C.1和12D.1和81413121110987654321图5二、填空题(每小题3分,共30分)1.飞机表演的“飞机拉线”用数学知识解释为: .2.一个圆锥形的冰淇淋有 个面,其中有 个平面,有 个曲面.3.圆柱的侧面展开图是 ,圆锥的侧面展开图是 .4.一个棱柱有十个顶点,且所有侧棱的和为30cm ,则每条侧棱长为 cm.5.围成八棱柱的面的个数是 .6.从一个多边形得一个顶点出发,连结其余各顶点,把该多边形分割成10个三角形,则这个多边形是 边形.7.某个几何体的三视图相同,这种几何体可以是 .(写出一种即可) 8.如图6所示,图中有 个含有“★”的正方形 .★图69. 如图7所示,图中共有个三角形.A图7cm,10.如图8所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了802cm.那么这根木料本来的体积是31.6米图8三、解答题(共60分)1、请画出如图10所示的几何体的三视图. (6分)图102.如图11所示,是由几个小立方体木块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,根据这个条件,你能画出这个几何体的主视图和左视图吗?试试看!(9分)24223112图113. 根据图12所给出的几何体的三视图,试确定几何体中小正方体的数目的范围.( 5分)俯视图左视图主视图图124、已知下图为一几何体的三视图(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm ,俯视图中三角形的边长为4cm ,求这个几何体的侧面积。
(北师大版)哈尔滨市七年级数学上册第一单元《丰富的图形世界》检测(有答案解析)
一、选择题1.若干个相同的立方体摆在一起,前、后、左、右视图都如图,这堆立方体至少有()A.4个B.5个C.8个D.10个2.一张桌子摆放着若干盘子,从三个方向上看,三种视图如下所示,则这张桌子上共有( )个盘子A.10 B.11 C.12 D.133.如图,是由四个完全相同的小正方体组合而成的几何体,从正面看它得到的平面图形是()A.B.C.D.4.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是()A.B.C.D.5.如图所示的正方体的展开图是()A.B.C.D.6.如图,从上向下看几何体,得到的图形是()A.B.C.D.7.下列图是由一些相同的小正方体搭成的几何体的三视图,则组成该几何体的小正方体的个数为( )A.7 B.8 C.9 D.108.如图是平面图形绕虚线l旋转一周得到的,则该旋转图形的是…()A.B.C.D.9.下列图形中,不是正方体平面展开图的是()A.B.C.D.10.如图,经过折叠后不能围成正方体的是( )A.B.C.D.11.制作无盖正方体盒子,下底面要有标记,如图所示,按照下列所示图案裁剪纸板能折叠成如图所示的无盖盒子的是()A.B.C.D.12.用平面去截一几何体,不可能出现三角形截面的是()A.长方体B.棱柱C.圆柱D.圆锥二、填空题13.观察下列由长为1,的小正方体摆成的图形,如图①所示共有1.个小立方体,其中1个看得见,0个看不见:如图②所示:共有8.个小立方体,其中7个看得见,1个看不见:如图③所示:共有27个小立方体,其中19个看得见,8个看不见…按照此规律继续摆放:(1)第④个图中,看不见的小立方体有_________个:(2)第n个图中,看不见的小立方体有____________个.14.如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等,那么x y+=__________.15.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高________cm.16.如下图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的侧面积为___________c2m.(注意:计算结果保留π)++ 17.若要使图中的平面展开图折叠成正方体后,相对面上的两个数之和为6,则x y z 的值为_____.18.如图,已知BC是圆柱的底面直径,AB是圆柱的高,在圆柱的侧面上,过点A、C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,若展开图中,金属丝与底面周长围成的图形的面积是5πcm2,该圆柱的侧面积是______cm2.19.如图是一个正方体的展开图,请问1号面的对面是_____号面.20.小倩将“细心、规范、勤思”写在一个正方体的六个面上,其表面展开图如图所示,那么在该正方体中,和“细”相对的字是________.三、解答题21.图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.图1(1)这个三棱柱有________条棱,有________个面.(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全.图222.如图①是一个正方体,图②的阴影部分是这个正方体展开图的一部分,请你在图②中再涂黑两个正方形后成图①的表面展开图,请涂3种不同的情况.23.如图是由一些棱长为单位1的相同的小正方体组合成的简单几何体,请在图中的方格子中分别画出从几何体正面看、左面看、上面看得到的图形。
七年级上册第一章丰富的图形世界检测题含答案解析
港云连的丽美第一章丰富的图形世界检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.下列平面图形不能够围成正方体的是()3. (2016·浙江丽水中考) 下列图形中,属于立体图形的是()A.B.C.D.4. (2016·江苏连云港中考)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( )A.丽B.连C.云D.港5.(2015·湖北宜昌中考)下列图形中可以作为一个三棱柱的展开图的是()A B第4题图C D6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的()7.如图是一个立体图形从三个不同方向看到的形状图,这个立体图形是由一些相同的小正方体构成,这些相同的小正方体的个数是()A B DCA.4B.5C.6D.78.如图所示的几何体中,从上面看到的图形相同的是()第8题图A.①②B.①③C.②③D.②④9. (2016·安徽中考改编)如图,一个放置在水平桌面上的圆柱,从正面看到的图形是( )第9题图10.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色二、填空题(每小题3分,共24分)11.下列表面展开图的立体图形的名称分别是:______、______、______、______.第11题图12.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号).13.如果一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可).14.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是 .15.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.第15题图16.如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是_____________.(填A或B或C或D)第16题图17.(2015·山东青岛中考)如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为___.第17题图18.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应填空.①:_____________;②:_____________;③:_____________;④:_____________;⑤:_____________.第18题图三、解答题(共46分)19.(6分)如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?第19题图第20题图20.(6分)画出如图所示的正三棱锥从正面、上面看到的形状图.21.(6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.第21题图第22题图22.(7分)画出下列几何体从正面、左面看到的形状图.23.(7分)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你有几种画法,在图上用阴影注明.第23题图24.(7分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.第24题图25.(7分)一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?第25题图第一章丰富的图形世界检测题参考答案一、选择题1.D 解析:对于A,如果是长方体,不止有两个面平行,故错误;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错误;对于C,如果是底面为梯形的棱柱,不是所有的面都是平行四边形,故错误;对于D,根据棱柱的定义知其正确,故选D.2.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.3.C 解析:A中,角是平面图形,故A错误;B中,圆是平面图形,故B错误;C中,圆锥是立体图形,故C正确;D中,三角形是平面图形,故D错误.4. D 解析:根据正方体的表面展开图可知,丽与连相对;美与港相对;的与云相对.5.A 解析:依据平面展开图想象围成的多面体的形状,借助想象力,通过比较与综合可知只有选项A中的展开图才能围成三棱柱.6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,故答案选C.9.C 解析:对于放置在水平桌面上的圆柱体,从它的正面看到的图形是长方形,所以选C.10.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.二、填空题11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16.C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C.17.19,48 解析:两人所搭成的几何体拼成一个大长方体,该长方体的长、宽、高至少为3,3,4,所以它的体积为36,故它是由36个棱长为1的小正方体搭成的,那么王亮至少还需要36-17=19(个)小正方体.王亮所搭几何体上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.18.D,E,A,B,C三、解答题19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.第20题图21.解:从正面和从左面看到的形状图如图所示:第21题图22.解:从正面、左面看到的形状图如图所示:第22题图23.解:画图如图所示,共有四种画法.第23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图(1)所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A 到点B的虚线走,路程最短,然后把展开图折叠起来.第25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.第25题图(2)。
2020年北师大版七年级数学上册第一章《丰富的图形世界》检测题(含答案)
港云连的丽美2020年七年级数学上册第一章《丰富的图形世界》检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.在棱柱中( )A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行 2.下列平面图形不能够围成正方体的是( )3. 下列图形中,属于立体图形的是( ) A .B .C .D .4. 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( ) A .丽 B .连 C .云 D .港5.下列图形中可以作为一个三棱柱的展开图的是( )A B 第4题图C D6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的( )7.如图是一个立体图形从三个不同方向看到的形状图,这个立体图形是由一些相同的小正方体构成,这些相同的小正方体的个数是( )A.4B.5C.6D.78.如图所示的几何体中,从上面看到的图形相同的是( )第8题图A.①②B.①③C.②③D.②④ 9. 如图,一个放置在水平桌面上的圆柱,从正面看到的图形是( )第9题图10.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么A B DC涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色二、填空题(每小题3分,共24分)11.下列表面展开图的立体图形的名称分别是:______、______、______、______.第11题图12.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号).13.如果一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可).14.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是.15.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.第15题图16.如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是_____________.(填A或B或C或D)第16题图17.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为___.第17题图18.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应填空.①:_____________;②:_____________;③:_____________;④:_____________;⑤:_____________.第18题图三、解答题(共46分)19.(6分)如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?第19题图第20题图20.(6分)画出如图所示的正三棱锥从正面、上面看到的形状图.21.(6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.22.(7分)画出下列几何体从正面、左面看到的形状图.23.(7分)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你有几种画法,在图上用阴影注明.第23题图24.(7分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.第24题图25.(7分)一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最第25题图参考答案一、选择题1.D 解析:对于A,如果是长方体,不止有两个面平行,故错误;对于B,如果是长方体,不可能所有的棱都平行,只是所有的侧棱都平行,故错误;对于C,如果是底面为梯形的棱柱,不是所有的面都是平行四边形,故错误;对于D,根据棱柱的定义知其正确,故选D.2.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.3.C 解析:A中,角是平面图形,故A错误;B中,圆是平面图形,故B错误;C中,圆锥是立体图形,故C正确;D中,三角形是平面图形,故D错误.4. D 解析:根据正方体的表面展开图可知,丽与连相对;美与港相对;的与云相对.5.A 解析:依据平面展开图想象围成的多面体的形状,借助想象力,通过比较与综合可知只有选项A中的展开图才能围成三棱柱.6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,故答案选C.9.C 解析:对于放置在水平桌面上的圆柱体,从它的正面看到的图形是长方形,所以选C.10.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.二、填空题11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16.C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C.17.19,48 解析:两人所搭成的几何体拼成一个大长方体,该长方体的长、宽、高至少为3,3,4,所以它的体积为36,故它是由36个棱长为1的小正方体搭成的,那么王亮至少还需要36-17=19(个)小正方体.王亮所搭几何体上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.18.D,E,A,B,C三、解答题19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.第20题图21.解:从正面和从左面看到的形状图如图所示:第21题图22.解:从正面、左面看到的形状图如图所示:第22题图23.解:画图如图所示,共有四种画法.第23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图(1)所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A到点B的虚线走,路程最短,然后把展开图折叠起来.第25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.第25题图(2)。
初一数学第一章丰富的图形世界测试及答案
初一数学第一章丰富的图形世界测试及答案学习是一个不断积累的过程,也是一个不断创新的过程。
下面小编为大家整理了初一数学第一章丰富的图形世界测试及答案,欢迎大家参考!一、选择题(每小题3分,共30分)1.如图所示的几何体可以由()旋转得到.2.如图所示的立方体,如果把它展开,可以得到()3.下图中几何体截面的形状是()4.下面图形经过折叠不能围成一个三棱柱的是()5.将一个圆形纸片对折后再对折,得到下图,然后再沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()6.在下面的四个几何体中,左视图与主视图不相同的几何体是()7.如图是由六个小正方体组合而成的一个立体图形,它的主视图是()8.如图所示的几何体的左视图是()9.如图所示,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数,则填入正方形A,B,C的三个数依次为()A.1,-2,0B.-2,1,0C.-2,0,1D.0,-2,110.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到的()二、填空题(每小题4分,共36分)11.“齐天大圣”孙悟空有一个宝贝——金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明____________.12.有10个面的是________棱柱.13.若圆柱的底面半径是2,高为3,将该圆柱的侧面展开后,得到长方形,该长方形的面积为________.14.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有________种不同的涂法.15.爸爸给儿子阳阳买了一个生日蛋糕(圆柱形),阳阳想把蛋糕切成至少七块分给七位小朋友,若沿竖直方向切分,则至少需切________刀.16.如图,这个几何体的名称是________;它由________个面组成,有________条棱,它有________个顶点.17.如图所示,截去正方体一角变成一个新的多面体,这个多面体有________个面,有________条棱,有______个顶点;截去的几何体有________个面,图中虚线表示的截面形状是________三角形.第14题图第16题图第17题图18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是________.19.圆锥的侧面展开图是一个半圆(如图所示),它的底面圆的直径为4 cm,母线长为4 cm,则该圆锥的表面积为________cm2.第18题图第19题图第20题图三、解答题(共84分)20.(14分)如图,第一行的图形绕虚线旋转一周便能得到第二行中的某个立体图形,用线连一连.21.(14分)观察下列多面体,并把下表补充完整.名称图形顶点数a 棱数b 面数c三棱柱6 9 5四棱柱12五棱柱10六棱柱12 822.(14分)如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?23.(14分)画出如图所示立体图的三视图.24.(14分)下图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积.25.(14分)如图所示,有一块长方形的硬纸板,它可以分成如图的15个小正方形,现在请你设计一下,将它分成三份,每一份都能做成一个无盖的小正方体盒子,比一比看谁设计的巧.第一章评估测试卷一、选择题1.B 考查几何体的旋转.2.D 考查几何体的展开图.3.C 截面的形状是三角形.4.C 考查三棱柱的展开图.5.C 中间的孔是一个小正方形.6.B 长方体的左视图是与主视图形状不相同.7.B 考查几何体的主视图.8.C 考查几何体的左视图.9.B 考查正方体的展开图.10.C 考查几何体的旋转.二、填空题11.线动成面 12.813.12π 14.4 15.316.六棱柱 8 18 1217.7 12 7 4 等边18.左视图19.12π S=12π×42+π×(42)2=12π(cm2).三、解答题20.解:连线如下:21.8 6 15 7 1822.解:(1)2层高;(2)3个单位长(一块长方体的长为1单位);(3)左边靠近观察者的两块长方体部分位置最高23.解:如图所示24.解:由题意可知,上面长方体长、宽、高分别为4,4,2下面长方体的长宽高分别为6,8,2,则表面积为[6×2+6×8+8×2]×2+[4×2+4×2+4×4]×2-4×2×2=200 (mm2),这个立体图形的表面积200 mm2.25.以上就是为大家整理的初一数学第一章丰富的图形世界测试及答案,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。
第一章 丰富的图形世界 达标测试卷 (2024北师大版数学七年级上册)
第一章丰富的图形世界达标测试卷一、选择题1.将如图所示的图形绕虚线l旋转一周,得到的几何体是( )2.下列现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的轨迹B.天空划过一道流星C. 扔一颗小石子,小石子在空中飞行的路线D.汽车雨刷在挡风玻璃上面扫过的痕迹3.如图,直六棱柱的正确截面是 ( )4.图中,是正方体的表面展开图的是( )5.一个n棱柱是直棱柱且有18条棱,侧棱长为10 cm,底面边长都是5 cm,则这个直棱柱的侧面积为( )A.270 cm2B.280 cm2C.300 cm2D.800 cm26.用一个平面去截正方体,下列是关于截面的形状的说法:①可能是锐角三角形; ②可能是钝角三角形; ③可能是长方形; ④可能是梯形.其中正确的个数是( )A.1B.2C.3D.47.一个几何体是由几个大小相同的小立方块搭成的,从正面、左面、上面看到的这个几何体的形状图如图1-Z-6所示,则搭成这个几何体所需的小立方块的个数为( )A.8B.7C.6D.58.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是( )A.60 cm3B.12 cm3C.18 cm3D.15 cm39.一个正方体锯掉一个角后,剩下的几何体的顶点的个数是( )A.7个或8个B.8个或9个C.7个或8个或9个D.7个或8个或9个或10个10.如图所示的正方体的表面展开图为( )二、填空题11.写出图中的平面展开图折叠后围成的几何体的名称.12.如图,是某几何体从正面、左面、上面看到的形状图,该几何体是 .13.下列几何体中,含有曲的面的是.(填序号)14.如图中的展开图按虚线折叠成正方体后,相对面上的两个数之和均为10,则x+y= .15.用八个同样大小的小立方块搭成一个大正方体,如图,得到的几何体从正面、左面和上面看到的形状图如图所示.若小明从八个小立方块中取走若干个,剩余小立方块保持位置不动,并使得到的新几何体从三个方向看到的形状图仍不变,则他取走的小立方块最多可以是个.16.有一个正方体骰子放在桌面上,若将骰子沿如图1-Z-16所示的方向顺时针滚动,每滚动90°为1次,则滚动第2024次后,骰子底面的点数是.三、解答题17.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)18.如图所示,把下列物体和与其相似的几何体连接起来.19.如图是由5个棱长均为1 cm的小正方体组成的几何体,请在方格纸中分别画出它从正面看、从左面看、从上面看得到的形状图.20.一个几何体由若干个棱长均为2 cm的小立方块搭成,从上面看到的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请画出从正面和左面看到的这个几何体的形状图;(2)请求出该几何体的体积和表面积.21.用大小相同的小立方块搭一个几何体,使它从正面和从上面看到的形状图如图所示,从上面看到的形状图中的小正方形中的数字和字母表示该位置的小立方块的个数,试回答下列问题:(1)x,z各表示多少?(2)y可能是多少?这个几何体最少由几个小立方块搭成?最多呢?22.如图①是一张长为4 cm,宽为3 cm的长方形纸片.(1)若将此长方形纸片绕长边(如图②)或短边(如图③)所在的直线旋转一周,形成的几何体是,这能说明的事实是;(2)如图②,当此长方形纸片绕长边所在的直线旋转一周时,求所形成的几何体的体积;(3)如图③,当此长方形纸片绕短边所在的直线旋转一周时,求所形成的几何体的体积;(4)由(2)(3)知哪种方式得到的几何体的体积大?23.综合与实践(一)提出问题有两个相同的长方体纸盒,它们的长、宽、高分别是16 cm,6 cm,2 cm.现要用这两个纸盒搭成一个大长方体,怎样搭可使大长方体的表面积最小?(二)实践操作我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放方式的不同,它们的表面积会发生变化.经过操作,发现共有3种不同的摆放方式,如图1-Z-24所示.(三)探究结论(1)请通过计算比较图①②③中的大长方体的表面积中哪个最小;(2)现在有4个这样的长方体纸盒,若将这4个纸盒搭成一个大长方体,共有多少种不同的方式?搭成的大长方体的表面积最小为多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册第一章丰富的图形世界检测题
以下是查字典数学网为您推荐的七年级数学上册第一章丰富的图形世界检测题,希望本篇文章对您学习有所帮助。
七年级数学上册第一章丰富的图形世界检测题(含答案)
一、选择题(每题3分,共30分)
1. 图中为棱柱的是()
2.生活中我们见到的自行车的辐条运动形成的几何图形可解释为( )
A.点动成线
B.线动成面C .面动成体D.以上答案都不对
3. 圆锥侧面展开图可能是下列图中的( )几何体的展开图★
4.下列立体图形中,有五个面的是( )几何体的构成★
A、四棱锥
B、五棱锥
C、四棱柱
D、五棱柱
5.如图,六棱柱的正确截面是( )截面★
A B C D
6.用一个平面去截一个正方体,截面不可能是( )截面★
A、梯形
B、五边形
C、六边形
D、七边形
7.如图,一个正方形,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到
的数为7、10、11,则六个整数的和为( )对应面★★
A.51
B. 52
C. 57
D. 58
8.一个几何体是由一些大小相同的小正方块摆成的,其俯视页 1 第
图与主视图如图所示,则组成这个几何体的小正方块最多有( ) 三视图★★
A.7个
B.6个
C.5个
D.4个
9. 如图所示,是一个由小立方体搭成的几何体的俯视图,小正方形中数字表示该位置的小立方块的个数,则它的主视图为( ) 三视图★★
10.如图中是正方体的展开图的有( )个几何体的展开图★★
A、2个
B、3个
C、4个
D、5个
二、填空题(每题3分,共30分)
11.薄薄的硬币在桌面上转动时,看上去象球,这说明了____ _____________.点线面体的关系★
12.把一块学生使用的三角板以一条直角边为轴旋转成的形状是体。
几何体的形成★
13.如果一个几何体的视图之一是三角形,这个几何体可能是___________(写出两个即可).三视图★
14.如果一个几何体的主视图、左视图、俯视图都完全相同的是 .三视图★
15. 如果长方体从一顶点出发的三条棱长分别为2,3,4,
则该长方体的表面积为______。
几何体的展开★★
16.从一个多边形的某个顶点出发,分别连接这个点和其余页 2 第
各顶点,可以把这个多边形分割成十个三角形,则这个多边形的边数为_____。
平面图形★
17.把一个长方(长宽不相同)形卷起来,可卷成种不同圆柱的侧面。
几何体的折叠★★
18.如图中,共有____个三角形的个数,_____个平行四边形,_____个梯形.
平面图形★★
19.如图,这是一个正方开体的展开图,则喜代表的面所相对的面的号码是 .
几何体的展开★★
20.如图,是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是 .(把下图中正确的立体图形的序号都填在横线上)三视图★★
三、解答题
21.(5分)如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.
展开图★
22.(5分)如图是由几个小立方块所搭成几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图。
三视图★
页 3 第
23. (8分)(1)画出下图几何体的三种视图。
三视图★★(2)用小立方块搭成的几何体,主视图和俯视图如上图,问这样的几何体有多少可能?它最多需要多少小立方块,最少需要多少小立方块,请画出最少和最多时的左视图。
24.( 7分)已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10 ,俯视图中三角形的边长为4 ,求这个几何体的侧面积。
(9分)三视图★★
25. (5分)如图所示,这是两盏灯的图例,请你利用其中的构件(两个圆,两个三角形,两条平行线段)构造出新的思路独特而且有意义的图形,并加上合适的解说词,请你构造一个这样的图形。
设计图案★
26. (5分)如图,所示的正方形网络中,我们知道,在11的正方形网络中只有一个边长为1的正方形;在22的正方形中有1个边长为2的正方形和4个边长为1的正方形,共有5个正方形;在33的的正方形网络中,有边长为3的正方形___个,边长为2的正方形___个,边长为1的正方形___个,共
有正方形___个;在66的正方形网络中共有正方形___个;你能推出在nn的正方形网络中共有正方形的个数的计算公式吗?试试看.平面图形的探索★★
27.(5分)考眼力:这八幅图中只有一幅与众不同,你能在半分钟内把它找出来吗?与众不同是________.(填序号)平面页4 第
图形的识别★★
参考答案:
与2z对面的是3,所以z=1.x+y+z=5
22.
23.(1)
24. (1)这个几何体的名称是三棱锥;
( 2)任意一种图形:
(3)
25.(略)
页 5 第。