经典:第三代基因测序原理及应用
三代基因组测序技术原理简介
三代基因组测序技术原理简介摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。
虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。
测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。
在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。
图1:测序技术的发展历程生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。
以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。
第一代测序技术第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。
自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。
研究人员在Sanger法的多年实践之中不断对其进行改进。
在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP (分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。
这个网址为sanger测序法制作了一个小短片,形象而生动。
值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。
三代基因组测序技术简介及其原理整理
三代基因组测序技术简介及其原理整理第一代测序技术第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。
1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。
自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。
研究人员在Sanger法的多年实践之中不断对其进行改进。
在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。
Sanger法原理:1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。
在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。
2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。
化学裂解法原理:与Sanger法类似,将DNA模板分成4个反应。
在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。
反应进行时,平均一个DNA分子只在随机位点产生一次裂解。
接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。
第二代测序技术第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。
因而第一代测序技术并不是最理想的测序方法。
经过不断的技术开发和改进,以Roche公司的454技术、illumina公司的Solexa,Hiseq技术和ABI公司的Solid技术为标记的第二代测序技术诞生了。
一二三四代测序技术原理详解
一二三四代测序技术原理详解一、第一代测序技术原理第一代测序技术最早出现于1977年,是由Sanger等人发明的,并被称为“链终止法”。
其原理是通过DNA聚合酶将输入的DNA序列再生产出一条互补链,同时在每个位点上加入一种特殊的荧光标记的二进制核苷酸,然后将这些被标记的DNA片段分开进行电泳,根据电泳结果可以得到DNA的序列。
第一代测序技术的核心原理是首先将待测序列分成多个片段,然后利用DNA聚合酶在每个片段的3'末端加入一种荧光标记的二进制核苷酸。
这种核苷酸的特殊之处在于,它们只能和待测序列的碱基互补配对,并且在加入过程中会停止DNA链的生长。
随后,将加入了荧光标记的DNA片段进行分离和电泳。
由于不同长度的DNA片段在电场下移动的速度不同,所以通过观察不同片段的移动位置,可以推断出每个片段的碱基序列。
二、第二代测序技术原理第二代测序技术的原理是通过对待测DNA片段进行多轮的扩增和测序,最后将所有结果进行比对和组装,得到完整的DNA序列。
第二代测序技术的核心原理是将待测DNA样本分成许多小片段,然后将每个片段进行扩增,所得到的扩增产物再次进行扩增,并且在扩增过程中引入一种荧光标记的二进制核苷酸。
在每个扩增步骤之后,需要将扩增产物进行分离,例如利用固相法将扩增产物固定在芯片上。
然后,对每个扩增产物进行毛细管电泳或基于光信号的测量,以确定每个扩增产物对应的碱基序列。
最后,通过将所有碱基序列进行比对和组装,可以得到待测DNA的完整序列。
第二代测序技术相较于第一代测序技术具有更高的通量和更低的成本,可以同时进行大规模的测序,因此被广泛应用于基因组学和生物医学研究。
三、第三代测序技术原理第三代测序技术是在第二代测序技术的基础上发展而来的,其主要原理是通过直接测量DNA或RNA单分子的序列来进行测序,无需进行扩增和分离过程。
第三代测序技术的核心原理是通过探测DNA或RNA单分子在固定的平面上的位置变化,来确定每个单分子的碱基序列。
简述基因一代、二代和三代测序技术原理及其应用范围
一、基因测序技术的发展1. 基因测序技术的概念及意义2. 基因测序技术的发展历程3. 基因测序技术的分类及特点4. 基因测序技术的应用范围二、基因测序技术原理及方法1. 基因一代测序技术原理及方法2. 基因二代测序技术原理及方法3. 基因三代测序技术原理及方法三、基因测序技术在生物研究中的应用1. 基因一代测序技术在生物研究中的应用2. 基因二代测序技术在生物研究中的应用3. 基因三代测序技术在生物研究中的应用四、基因测序技术在医学诊断与治疗中的应用1. 基因一代测序技术在医学诊断与治疗中的应用2. 基因二代测序技术在医学诊断与治疗中的应用3. 基因三代测序技术在医学诊断与治疗中的应用五、基因测序技术的发展趋势和展望1. 基因测序技术的发展趋势2. 基因测序技术的未来展望六、结语在人类基因组项目完成后,基因测序技术得到了长足的发展。
基因测序技术已经成为现代生物医学研究的重要工具,其在生物学研究、医学诊断与治疗等领域发挥着重要作用。
基因测序技术主要分为一代、二代和三代测序技术。
本文将对这三种基因测序技术的原理、应用范围等进行详细阐述,旨在全面了解基因测序技术的发展和应用。
一、基因测序技术的发展1. 基因测序技术的概念及意义基因测序技术是指通过化学或物理方法对DNA序列进行测定,进而推导出蛋白质的氨基酸序列的技术。
基因测序技术的发展对于了解生命活动、疾病的发生机制、药物研发等方面具有重要意义。
2. 基因测序技术的发展历程基因测序技术的发展经历了多个阶段,自20世纪末以来,随着技术的不断进步和成本的降低,基因测序技术得到了迅速发展和广泛应用。
3. 基因测序技术的分类及特点基因测序技术可以分为一代、二代和三代测序技术。
一代测序技术具有测序长度长、费用高、速度慢等特点;二代测序技术具有高通量、快速、低成本等特点;三代测序技术具有单分子测序、实时测序等特点。
4. 基因测序技术的应用范围基因测序技术在领域广泛,如生物学研究、医学诊断与治疗、个性化医疗、药物研发等领域都有重要应用。
第三代测序技术的主要特点及其在病毒基因组研究中的应用
关键 词 : 第三代测序技术 ; P a c i f i c B i o s c i e n c e s ; 单分子实 时测序 ; 病毒基 因组
Ch a r a c t e r i s t i c s o f t h e t hi r d g e n e r a t i o n s e q u e n c i n g t e c h n o l o g y a n d i t s a p pl i c a t i o n i n r e s e a r c h i n g o f v i r a l g e n o me s
方面 。本文 主要对 T G S技术 的原 理 、 特点 和应 用 , 特 别是 在 病毒 研究 中 的应 用进 行介 绍 , 并 与第二 代测 序 ( n e x t g e n e r a t i o n s e q u e n c i n g , N GS ) 技术进行 比较 , 为基因组测序技术的选择及其临床应用提供一定参考 。
S an h g h a i 2 0 0 0 2 5,Ch i n a
Ab s t r a c t : Wi t h t h e c o n s e c u t i v e i n n o v a t i o n a n d a p p l i c a t i o n o f g e n e s e q u e n c i n g t e c h n o l o g y , t h e t h i r d
司的单 分 子 实 时 测 序 ( s i n g l e mo l e c u l e r e a l t i me s e q u e n c i n g ) 为 代 表 的第 三代 测 序 ( t h i r d g e n e r a t i o n
三代测序原理
三代测序原理三代测序技术(Third Generation Sequencing,TGS)现在主要有美国的 Pacific Biosciences(PacBio)的 SMRT 和英国的Oxford Nanopore Technology的nanopore 技术。
首先对测序来说,最好是对原模板进行直接测序,并且不受读长的限制,但是显然二代测序无法达到这两点,而三代测序弥补了这两点不足。
可以对单分子进行测序,nanopore 还能避免在扩增的过程中造成的偏好性,对单分子进行测序读长超过了 2 Mb,还能检测碱基修饰等信息。
1、 SMRT 技术这个技术关键的是有一个称为零级波导(zero-mode waveguides, ZMW)的纳米结构。
ZMW是一个孔状的光电结构,底部有一个激发光,并且固定着 DNA 聚合酶。
这个激发光在进入 ZMW 后会呈指数级衰减。
当进行合成反应的时候模板和引物与酶结合,互补配对的 dNTP 因为在底部停留的时间较长,所以能够被激发光激发荧光信号,而其他的游离 dNTP 则信号弱,这样子就有力区分了背景噪音和荧光信号。
在进行一次反应后,由于荧光基团是被固定在 dNTP 的 5’磷酸位上,脱水缩合时能够将荧光基团去除,便于进行下一次的反应。
SMRT 测序最大限度地保持了聚合酶的活性,是最接近天然状态的聚合酶反应体系,它的损伤主要是由于激光造成的。
另外通过检测间隔碱基之间的时长可以判断是否存在修饰,因为修饰碱基会影响聚合酶反应的速度,光谱也会发生变化。
这个方法的缺点也很显而易见,因为在进入 ZMW 之前并没有形成DNA 簇,检测的是单分子的荧光信号,因此错误率比较高。
但是由于这种错误是随机误差产生的,可以通过多重测序进行纠正。
为了提高测序的准确性,PacBio 公司在 2019 年推出了高精度的 HiFi 测序。
通过 CCS(Circular Consensus Sequencing)技术,能够将测序准确度达到 99% 以上。
第三代测序技术的原理和应用
第三代测序技术的原理和应用第一部分:引言随着基因组学研究的快速发展,测序技术也在不断进步。
第一代测序技术(Sanger测序)和第二代测序技术(高通量测序)已经取得了重大突破,但仍存在一些限制。
为了克服这些限制,第三代测序技术应运而生。
本文将介绍第三代测序技术的原理和应用。
第二部分:第三代测序技术的原理第三代测序技术是一种新型的高通量测序技术,其原理与传统的测序技术有所不同。
第三代测序技术的原理主要包括以下几个方面:1.基于单分子扩增:第三代测序技术采用单分子扩增的方法,不需要PCR过程和文库构建步骤,从而避免了样本损失和引入偏差。
2.实时测序:第三代测序技术实时监测DNA合成过程,可以直接检测每个碱基的加入,无需后续的显著化和检测步骤。
这大大提高了测序速度,并降低了成本。
3.长读长读长读:相比第二代测序技术生成的短读长度,第三代测序技术可以产生更长的读长,一次读取几千个碱基。
这种特点对于重复序列的分析、基因组结构建模和个体基因组描绘等研究非常有用。
第三部分:第三代测序技术的应用第三代测序技术广泛应用于不同领域的基因组学研究。
以下是第三代测序技术的几个重要应用方面:1.药物研发:第三代测序技术可以快速高效地获得个体基因组序列信息,帮助科学家识别药物靶点,推动个体化药物研发。
2.疾病研究:通过第三代测序技术,我们可以快速识别临床样本中的致病基因,深入研究疾病的遗传基础,并帮助制定个性化治疗方案。
3.农业研究:第三代测序技术可以高通量地鉴定和分析作物、家畜和其它农业生物的基因组信息,有助于优化农业生产和提高农作物品质。
4.环境研究:第三代测序技术可以帮助科学家研究环境中的微生物群落,揭示微生物对环境变化的响应,从而提供更好的环境保护策略。
5.进化研究:第三代测序技术可以提供大量的遗传信息,促进生物的进化研究,深入了解物种的起源、演化和适应性变化等问题。
第四部分:结论第三代测序技术以其独特的原理和广泛的应用前景吸引了基因组学研究领域的关注。
第三代DNA测序技术的原理及应用
第三代DNA测序技术是近年来生物学领域的一项重大突破,它的原理和应用在基因研究和生物科学中具有重要意义。
本文将深入探讨第三代DNA测序技术的原理,并分析其在不同领域的应用。
1. 引言DNA测序技术是生物学研究中最基础、最重要的工具之一。
传统的第一代和第二代DNA测序技术虽然有着高效和准确的特点,但在测序速度、数据质量和测序长度方面存在一定的局限性。
而第三代DNA测序技术的出现,为我们提供了更高的测序速度、更长的测序读长和更低的测序成本。
2. 原理第三代DNA测序技术的原理与传统技术有所不同。
它不再依赖于离散的信号和化学反应,而是通过直接读取单个DNA分子中的碱基序列来实现测序。
下面将介绍几种常见的第三代DNA测序技术原理及其特点。
2.1 单分子实时测序技术单分子实时测序技术是第三代DNA测序技术中的一种重要方法。
它利用了DNA链的线性自我扩增特性,通过监测单个DNA分子的合成过程来实现测序。
这种方法具有实时性好、测序速度快、数据产量高的优点,适用于高通量测序和长读长要求的研究。
2.2 纳米孔测序技术纳米孔测序技术是一种基于离子传导原理的第三代DNA测序方法。
它使得DNA分子能够通过纳米孔的通道,并且依据碱基的化学特性在电流传导上产生差异,从而实现测序。
这种方法具有高速度、低成本和无需扩增的特点,适用于快速测序和实时监测。
2.3 光学测序技术光学测序技术是第三代DNA测序技术中的又一种重要方法。
它利用了荧光染料的性质和光信号的检测来实现测序。
通过将DNA分子与特定的荧光染料标记,然后在测序仪器中激发并检测荧光信号,从而获取对应的碱基信息。
这种方法具有高灵敏度和高分辨率的特点,适用于复杂样品和高标准的测序要求。
3. 应用第三代DNA测序技术在生物学研究和医学领域的应用十分广泛,下面将介绍几个典型的应用案例。
3.1 基因组测序第三代DNA测序技术在基因组测序中具有重要意义。
其高通量、长读长和低成本的特点使得科学家们能够更快地完成全基因组的测序工作,并且能够检测到一些传统方法难以观察到的基因变异。
第三代测序技术介绍
第三代测序技术介绍目前,主要的第三代测序技术包括单分子测序技术和纳米孔测序技术。
单分子测序技术是指将DNA样本直接读取成单个分子的测序技术。
这种技术的一个典型代表是PacBio Single Molecule Real-Time(SMRT)测序技术。
这种技术基于真核生物DNA聚合酶的特点,通过监测单个DNA分子的合成过程来实现测序。
在PacBio SMRT测序技术中,DNA分子被固定在悬浮在荧光物质中的微小光子学平台上,随着DNA合成的进行,DNA聚合酶会释放出光子,从而可以实时监测到DNA的合成过程。
这种技术能够实现长读取长度和高保真度,具有快速、高效、高通量的特点,被广泛应用于基因组学、转录组学等研究领域。
纳米孔测序技术是指通过将DNA样本引导通过一个纳米孔,并通过监测DNA分子在纳米孔中电信号的变化来实现测序的技术。
这种技术的一个代表是Oxford Nanopore Technologies(ONT)的MinION测序技术。
在MinION测序技术中,DNA样本通过纳米孔时,会引起电信号的变化,这种变化可以被转化成测序信息进行读取。
这种技术具有实时、长读取长度、低成本的特点,可以在实验室和户外等多种场合进行测序,被广泛应用于移动基因组学、环境监测等领域。
第三代测序技术的出现极大地推动了基因组学、转录组学等研究领域的发展。
它们不仅提高了测序的速度和准确性,还降低了测序的成本,使得大规模基因组和转录组的测序成为可能。
在人类基因组计划中,第三代测序技术被广泛应用于完成全基因组的测序任务,为研究人类基因组提供了重要的数据资源。
同时,第三代测序技术也被广泛应用于微生物学、农业科学、生物多样性研究等领域,为相关研究提供了有力的支持。
然而,尽管第三代测序技术在测序速度和准确性上有了巨大的进步,但其仍然存在一些挑战和限制。
比如,第三代测序技术在读取长度和错误率等方面仍有改进的空间,同时对于复杂的基因结构和重复序列的测序仍然存在困难。
第三代测序技术
甲基化研究
SMRT技术采用的是对DNA聚合酶的工作状态进行实时监测的方法,聚合酶合成每一个碱基,都有一个时间段,
而当模板碱基带有修饰时,聚合酶会慢下来,使带有修饰的碱基两个相邻的脉冲峰之间的距离和参考序列的距离
之间的比值结果大于1,由此就可以推断这个位置有修饰。甲基化研究中关于5 mC和5 hmC(5 mC的羟基化形
技术的应用
甲基化研究
基因组测序
突变鉴定
基因组测序
由于具有读长长的特点,SMRT测序平台在基因组测序中能降低测序后的Contig数量,明显减少后续的基因 组拼接和注释的工作量,节省大量的时间。Christophern等仅仅用0.5的Pacbio RS系统长度的数据与38的二代 测序(NGS)的测序数据,对马达加斯加的一种指猴基因组进行拼装,大幅度提高了数据的质量和完整度,同时借 助Pacbio RS的帮助将原有的Contig数量减少了10倍。DavidA.等利用Pachio RS平台C2试剂通过全球合作几天 内就完成了从德国大肠杆菌疫情中获得的大肠杆菌样品以及近似菌株的测序和数据分析,最终获得了2900bp的平 均读长以及99.998%的一致性准确度。在对霍乱病菌的研究中,第三代测序技术已初现锋芒。研究人员对5株霍乱 菌株的基因组进行了测序研究,并与其他23株霍乱弧菌的基因组进行对比。结果发现海地霍乱菌株与2002年和 2008年在孟加拉国分离得到的变异霍乱弧菌ElTorO1菌株之间关系密切,而与1991年拉丁美洲霍乱分离株的关系 较远。相对NGS的优势就是能更快获得结果,因此该系统在鉴定新的病原体和细菌的基因组测序方面得到很广泛 的应用 。
第二:共聚焦显微镜实时地快速地对集成在板上的无数的纳米小孔同时进行记录。
技术特点
技术特点
第三代基因测序原理及应用
发展前景展望
提高准确性
随着技术的不断发展和优化,未来第三代测序技术的准确性将得到 进一步提高,有望接近甚至超过传统测序技术。
降低成本
随着技术的普及和规模化应用,第三代测序技术的成本有望进一步 降低,使得更多人能够享受到高精度基因组测序服务。
拓展应用领域
随着第三代测序技术的不断发展和完善,其应用领域也将不断拓展 ,包括复杂疾病研究、精准医疗、生物多样性保护等。
缺点
测序准确度相对较低,且对DNA样 品的质量要求较高。
链接测序技术
原理
通过连接反应将DNA片段连接成 更长的序列,然后对连接产物进 行测序。连接反应具有高度的特 异性,可以准确识别碱基序列。
优点
测序准确度高、读长较长、适用 于复杂样本的测序。
缺点
测序速度相对较慢,且连接反应 可能受到多种因素的影响,如温 度、pH值等。
挑战与问题
高错误率
第三代测序技术的错误率相 对较高,尤其是在连续测序 过程中,错误率可能会逐渐 累积,影响测序结果的准确
性。
数据处理难度
由于第三代测序技术产生的 数据量巨大,对数据处理和 分析的要求也相应提高,需 要更强大的计算能力和更高
效的算法支持。
成本问题
目前第三代测序技术的成本 仍然较高,限制了其在大规 模基因组测序等领域的应用 。
多维度数据挖掘
利用多组学数据,挖掘基因、环境、生活方式等多因素对人体健康和疾病的影响,为个性化医疗和精准预防提供 科学依据。
智能化和自动化发展方向
自动化样本处理
通和准确性。
智能数据分析
利用人工智能和机器学习技术,对测序数据进行自动分析和 解读,提取有价值的信息和模式,为科研和临床应用提供智 能决策支持。
第三代测序技术原理及应用
Pacific Bioscience SMRT 技术
• 优势:长读长,耗时短。可以进行DNA甲基化,高GC含量区域、 RNA等测序。
• 缺陷:会出现插入和缺失错误。 缺失错误源于有时候碱基掺入速度过快, 超过了相机的拍摄帧数; 插
入错误源于有时候酶随机的选择一些碱基,但并未真的将这些碱基掺入 合成链中。但这些错误是随机的,并不会随着读长的增加而提高, 随着 测序覆盖深度的增加会逐渐被消除。
Oxford Nanopore Technologies 纳米孔单分子测序技术
• 优势:仪器构造简单使用成本低廉,因为它不需要对核苷酸进行标记, 也不需要复杂的光学探测系统 。能直接对 RNA 分子进行测序。同时 由于它是直接检测每一个碱基的特征性电流, 因而能对修饰过的碱基 进行测序, 这一点对于表观遗传学研究具有极高的价值。
Pacific Bioscience SMRT 技术
第一代、二代、三代测序仪比较
Rhoads A, Au KF. PacBio Sequencing and Its Applications. Genomics, Proteomics & Bioinformatics. 2015;13(5):278-289. doi:10.1016/j.gpb.2015.08.002.
• 缺点:测序的平均读长相对较短, 只有 35 bp, 准确率较低, 约为 ≤97% 。
Oxford Nanopore Technologies 纳米孔单分子测序技术
α-溶血素纳米孔 外:核酸外切酶 内:环糊精传感器
核酸外切酶 消化单链DNA
单碱基与环糊 精作用影响电 流
依据电信号大小和 停留时间识别碱基
测序准确度较高,测序碱基错误率 为1%
三代测序原理技术比较
三代测序原理技术比较三代测序是指第三代高通量测序技术,相对于第一代和第二代测序技术,它具有更高的速度、更低的成本以及更高的准确性。
目前,主要的三代测序技术包括单分子测序、单分子实时测序和纳米孔测序。
下面将分别介绍这三种技术的原理和特点。
单分子测序是三代测序技术的一种,它的原理是将DNA分子直接放在一个测序装置中,通过对DNA的碱基进行逐个测序以获得DNA序列。
单分子测序技术的一大特点是能够直接对DNA进行测序,不需要进行PCR扩增和片段化等传统测序方法中的预处理步骤,因此可以减少实验时间和所需样本量。
目前,常见的单分子测序技术有SMRT(Single-Molecule Real-Time)和Nanopore(纳米孔)测序。
SMRT技术是一种可以实现单分子实时测序的技术,它利用专门设计的测序装置以及特殊的引物和酶来进行测序。
测序装置中有一个高密度排列的微小孔,每个孔中有一个DNA聚合酶复合物和一个荧光基团,当DNA碱基与引物配对时,聚合酶会添加一个荧光基团,同时释放出荧光信号,这个过程可以被装置中的摄像机捕捉到。
通过观察荧光信号的强度和持续时间,就可以推断一些位置的DNA碱基是什么。
SMRT技术的优点是测序速度快、准确性高,但缺点是数据处理复杂,读长相对较短。
纳米孔测序是一种利用纳米孔测序装置对DNA分子进行测序的技术。
纳米孔是一种非常细微的孔道,通常直径在1-2纳米之间,只能通过单个DNA分子的一条链。
当DNA分子通过纳米孔时,其碱基会对应产生电信号,通过测量电信号的特性,可以推断DNA序列。
与其他测序技术相比,纳米孔测序的优势主要在于测序速度快、设备小巧、易于存储和传输,并且具有较长的读长和较低的测序成本。
然而,纳米孔测序技术也存在一定的误读和错配率等问题需要改进。
综上所述,三代测序技术相对于传统的测序技术具有更高的速度、更低的成本和更高的准确性。
单分子测序、单分子实时测序和纳米孔测序是目前主要的三代测序技术,它们各具特点,适用于不同的测序需求。
第三代测序技术及其应用
第三代测序技术及其应用一、本文概述随着科技的飞速发展,测序技术已成为生物学、医学等领域的重要工具。
自第一代和第二代测序技术问世以来,它们在基因组学、转录组学、表观组学等领域发挥了巨大作用。
然而,随着研究的深入和技术的需求,第三代测序技术应运而生,以其独特的优势在多个领域展现出广阔的应用前景。
本文旨在全面介绍第三代测序技术的基本概念、原理、特点及其在各领域的应用。
我们将从技术的起源和发展入手,详细阐述第三代测序技术的核心原理和技术优势,包括长读长、高准确性、低成本等特点。
我们还将深入探讨第三代测序技术在基因组测序、转录组分析、疾病研究、农业生物技术等方面的实际应用案例,展望其未来的发展方向和潜力。
通过阅读本文,读者将对第三代测序技术有一个全面的了解,能够掌握其基本原理和应用领域,为相关领域的研究和实践提供有益的参考和借鉴。
二、第三代测序技术概述随着生物科技的飞速发展,测序技术作为生命科学领域的一项革命性技术,已经经历了两代重要的变革。
第一代测序技术,即Sanger 测序,以其高精度和准确性在基因组测序中发挥了重要作用,但其通量低、成本高的缺点限制了其在大规模基因组测序中的应用。
第二代测序技术,即高通量测序(Next-Generation Sequencing,NGS),以其高通量、低成本的优势,极大地推动了基因组学、转录组学等领域的研究。
然而,第二代测序技术仍然存在读长较短、数据解读复杂等问题。
在此背景下,第三代测序技术应运而生,以其超长读长、高准确性和实时测序的特点,为基因组学研究带来了新的突破。
第三代测序技术,也被称为单分子测序技术,主要包括单分子实时测序(Single-Molecule Real-Time Sequencing,SMRT)和纳米孔测序(Nanopore Sequencing)两种主要类型。
SMRT技术利用荧光标记的单分子DNA为模板,通过实时检测荧光信号的变化来读取DNA序列,具有读长可达数万碱基的特点,使得研究者能够直接获取到完整的基因序列信息。
三代基因组测序技术原理简介
三代基因组测序技术原理简介Document number:NOCG-YUNOO-BUYTT-UU986-1986UT三代基因组测序技术原理简介摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。
虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。
测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。
在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。
图1:测序技术的发展历程生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。
以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。
第一代测序技术第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。
自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。
研究人员在Sanger法的多年实践之中不断对其进行改进。
在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP 的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。
第三代测序技术原理及应用
SMRT cell
Sequel (2015年)
1,000,000 ZMWs /SMRT cell SMRT cell 的通量提高 7 倍 1/3体积
Oxford Nanopore Technologies 纳米孔单分子测序技术
• 优势:仪器构造简单使用成本低廉,因为它不需要对核苷酸进行标记, 也不需要复杂的光学探测系统 。能直接对 RNA 分子进行测序。同时 由于它是直接检测每一个碱基的特征性电流, 因而能对修饰过的碱基 进行测序, 这一点对于表观遗传学研究具有极高的价值。
第三代测序技术的基本原理及应用
baby诺安
目录
1. 简介 2. 基本原理 3. 应用
简介
第三代测序技术是指单分子测序技术。不同于二代测序依赖片段化 DNA的克隆性扩增,三代测序技术不需要经过PCR扩增,直接对模板中 的每条DNA分子单独测序,避免了潜在的PCR扩增错误和偏好性。同时 超长读长使得一条read可以横跨基因组上的复杂区段或者重复序列,为 基因组组装及准确挖掘与疾病、进化相关的重复原件、拷贝数变异、结 构性变异提供了技术支持。
成像定位 模板位置
洗涤
合成 检测
全内反射显微镜(TIRM)单色成像
Helico BioScience SMS技术
• 测序仪:HeliScope(2008年上市,$1,350,000)
• 优势:样本通量非常高,2 个流动槽可同时运行,每个流动槽有 25 个独立通道,每个通道又可以运行最多 96 个标记分子条形码的样本, 这样每次运行的样本数可高达 4 800 个。把 DNA 聚合酶用逆转录酶 代替还可以进行 RNA 直接测序。
三代测序的原理
三代测序的原理三代测序是一种新型的高通量测序技术,它可以在较短时间内获得大量的 DNA 测序数据,为基因组研究、单细胞基因组学等领域提供了更为高效的方法和手段。
三代测序技术相比于传统的二代测序技术,在测序长度、测序速度等方面都具有明显的优势,因此备受关注。
那么,什么是三代测序?它的原理是什么?三代测序技术包括单分子测序技术、纳米孔测序技术等,这些技术都是基于不同的原理而发展的。
下面我们就一些常见的三代测序技术原理进行详细介绍。
一、单分子测序技术单分子测序技术,顾名思义,就是在一个分子的层面上进行 DNA 测序,这种技术可以突破传统二代测序技术中 DNA 放大和分离纯化等阶段的限制,避免了因 PCR 反应带来的测序误差,并可以直接测序双链 DNA 分子。
单分子测序技术主要有实时荧光测序技术和化学测序技术两种。
1. 实时荧光测序技术实时荧光测序技术是通过 DNA 上特异序列受体,与荧光信号的转导机制相结合来实现的测序技术。
这种技术可以检测位于 DNA 测序反应过程中的碱基,并通过光学探测来连续监测测序结果。
实时荧光测序技术的基本原理是在每一轮的 DNA 合成中加入荧光标记基团,然后通过不断检测从而读出 DNA 序列信息。
2. 化学测序技术化学测序技术是将 DNA 去除荧光标记基团后,采用荧光探针进行信号监测,从而得出碱基序列信息的一种测序技术。
先在反应过程中加入一个被称为“保护基覆盖”的基团,然后进行荧光信号检测,得出结果后再将前面添加的保护基覆盖去掉,继续进行下一轮检测,直到完成整个 DNA 序列的测定。
单分子测序技术擅长于检测低复杂度序列(如 GC/AT 重复序列)、基因组结构变异等重要问题,可以应用在很多领域,如生物医学、生物环境以及生物信息学等领域。
二、纳米孔测序技术纳米孔测序技术是利用纳米孔对单个 DNA 分子进行测序的技术,它是一种界面控制技术,主要包括固体纳米孔、液态纳米孔和气态纳米孔等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
什么是DNA?
• DNA是英文Deoxyribonucleic acid的缩写,中文含义为脱 氧核糖核酸。
• 脱氧核糖核苷酸的类型: 腺嘌呤(A)= 胸腺嘧啶(T)
胞嘧啶(C)= 鸟嘌呤(G)
DNA分子的排列顺序是可以检测 的,从而可以解读遗传信息,即测序。
DNA结构(视频)
2
什么是基因?
第二代测序原理-高通量测序
NextSeq 500 – 灵活通量
化学试剂
缓冲液
废液槽
Flow Cell
12
测序基3础’ 5原’ 理:边合成边测序(SBS)
A
C T
A
G
C T
G A
T
G
C
T G C T A C G A
T A C C C G A T C G A
T
5’
如何理解边合成边测序?
用不同颜色的荧光标记四种dNTP,在聚合酶 作用下,按照碱基互补配对原则(A与T配对, C与G配对)进行链的延伸,每延伸一个碱基, 碱基释放荧光。通过光学系统捕获荧光,从 而获得碱基信息。
DNA连接酶(DNA ligase)
• 功能:连接DNA链3‘-OH末端和另一DNA链的5’-P末端,使二者生成磷 酸二酯键,从而把两段相邻的DNA链连成完整的链。
DNA复制
Sanger测序法
9
第一代测序成果:人类基因组
2001年2月份同时发表,从此有了人类基因组模板。
参考序列: 测序所得序列:
1977年,英国人Fred Sanger 发现,如果在DNA复制过 程中掺入ddNTP,就会产生一系列末端终止的DNA链,并能通 过电泳按长度分辨。不同末端终止DNA链的长度是由掺入到 新合成链上随机位置的ddNTP决定的。
复制叉(Replication fork)
DNA ligase:DNA连接酶; DNA gyrase:DNA旋转酶; DnaB helicase:解旋酶 SSB:单链结合蛋白;
18
Helico BioScience 单分子测序技术
19
Pacific Bioscience SMRT 技术
20
Oxford Nanopore Technologies 的纳米孔单分子测序技术
21
第三代测序原理-单分子测序
第三代测序方法与现在的测序技术相比之下的优 点: 1)更高的通量; 2)更短的测序时间; 3)更长的读取长度; 4)更高的精确性,可以检测出极少的变异; 5)需要很少的起始量; 6)低成本。
22
个人观点供参考,欢迎讨论
个人观点供参考,欢迎讨论
14
一体化进行:上样后,测序仪 自动化完成扩增和测序
Cluster
测序
14
HOURS
HOURS
信息分析
0.5
HOURS
二代测序法
16
17
第三代测序原理-单分子测序
第三代测序方法与现在的测序技术相比之下的优 点: 1)更高的通量; 2)更短的测序时间; 3)更长的读取长度; 4)更高的精确性,可以检测出极少的变异; 5)需要很少的起始量; 6)低成本。
• 基因是具有遗传效应的DNA分子片段,由许多脱氧核苷酸按照一定的 碱基顺序构成的长链聚合物。
身高
基 因
胖瘦
肤色
智商 3
什么是基因组?
基因组:一个细胞内的全套染色体为一个基因组,或是一个细胞中 的全部DNA为一个基因组
基因组>染色体>基因 4
测序技术发展史
第一代测序原理-Sanger测序法
双脱氧链终止法(Sanger法):
ATCGAACTTCCATTGCACCAATATAGGTACGTAA ATCGAACTTCC TTGCACCTATATAGGTGTACGTAA
碱基缺失
碱基重复
碱基突变
• 特点:测序长度700-1000bp;通量小,一次96个样本,每个样本1 条序列
• 临床应用:单基因病检测 ,如血友病、白化病、地中海贫血等