双曲线的图象与性质PPT课件

合集下载

双曲线定义PPT课件

双曲线定义PPT课件

x2 a2
by22
1(a,bo)
x2 y2 b2 a2 1(a,bo)
y
y
. .B
A1 o A x
. B.
A1 o A x
B1
B1
关系
c2 = a2 + b 2
例题:
根据下列条件,求双曲线的标准方程:
1、过点 P ( 3 , 15 )、Q ( 16 , 5 ) 且焦点在坐标
4
3
轴上;
2、 c = 6 ,经过点 (-5 , 2 ),焦点在 x 轴上;
的焦点坐标.
3.已知方程
x2
y2
1表示双曲线,求的取值范围.
2m m1
精选

例3,证明椭圆
x2 25
+
y2 =1
9
与双曲线x2-15y2=15的焦点相同.
• 变:椭圆与双曲线的一个交点为P, F1是椭圆的左焦点,求|PF1|.
精选
小结
焦点在 x 轴上
焦点在 y 轴上
定义 方程
图象
| | MF1 | - | MF2 | | = 2a ( 2a <| F1F2 | )
共性: 1、两者都是平面内动点到两定点的距离问题; 2、两者的定点都是焦点; 3、两者定点间的距离都是焦距。
区别: 椭圆是距离之和; 双曲线是距离之差的绝对值。
求双曲线的标准方程
点击观看动画
精选
1、建系设点。
设M(x , y),双曲线的焦距 为2c(c>0),F1(-c,0),F2(c,0)
常数=2a
同的符号。
精选
• 例线1,、求如m果的方范程围mx-21+2-ym2 = 1表示双曲 • 解(m-1)(2-m)<0,∴m>2或m<1

3-2-1双曲线及其标准方程 课件(共67张PPT)

3-2-1双曲线及其标准方程 课件(共67张PPT)
【解析】 距离的差要加绝对值,否则只为双曲线的一支.若 F1,F2 表示双曲线的左、右焦点,且点 P 满足|PF1|-|PF2|=2a,则点 P 在右支上;若点 P 满足|PF2|-|PF1|=2a,则点 P 在左支上.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.

3.2.2双曲线的简单几何性质 课件(共24张PPT)

3.2.2双曲线的简单几何性质 课件(共24张PPT)
2
2
=λ(λ≠0).
(5)渐近线为y=±kx的双曲线方程可设为k2x2-y2=λ(λ≠0).
(6)渐近线为ax±by=0的双曲线方程可设为a2x2-b2y2=λ(λ≠0).
跟踪训练 求适合下列条件的双曲线的标准方程:
5
(1)焦点在x轴上,虚轴长为8,离心率为3 ;ห้องสมุดไป่ตู้
跟踪训练
A.
1
4
双曲线x2-my2=1的实轴长是虚轴长的2倍,则m等于
B.
1
2
C.2
D.4
(D)
二、求双曲线方程
例2
根据下列条件,求双曲线方程:
(1)双曲线 x
2
9

y2
1 有共同渐近线,且过点 ( 3, 2 3) ;
16
(2)与双曲线 x
2
16

y2
1 有公共焦点,且过点 (3 2 , 2) .
第三章
3.2
双曲线
3.2.2 双曲线的简单几何性质
学习目标
1.理解双曲线的简单几何性质(范围、对称性、顶点、渐近线、离心率).
2.能用双曲线的简单性质解决一些简单的问题
核心素养:数学运算、数学建模
新知学习
复习引入
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
(2)焦点在 y 轴上的双曲线的标准方程可设为
2
(3)与双曲线
2
2 +
2

2
2
2

=1(a>0,b>0).
2
2
=1 共焦点的双曲线方程可设为

双曲线及其标准方程PPT课件(公开课)ppt文档

双曲线及其标准方程PPT课件(公开课)ppt文档

M
2、|MF2| - | MF 1| =2a (2a< |F1F2| )
F1
F2
3、若常数2a=0
F1
F2
4、若常数2a = | F1F2 |
F1
F2
5、若常数2a>| F1F2 |
轨迹不存在
变式1 已知两定点F1(-5,0),F2(5,0),平面上一动 点P,|PF1|-|PF2|= 6,求点P的轨迹方程.
解: 由题知点P的轨迹是双曲线的右支,
根据双曲线的焦点在 x 轴上,设它的标准方程为:
x2 y2 a2b2 1 (a0,b0)
∵ 2a = 6, c=5 ∴ a = 3, c = 5
双曲线及其标准方程PPT课件(公开课)
1、复习
平面内与两定点F1、F2的距离的 和 等于常数
2a ( 2a>|F1F2|>0) 的点的轨迹是 椭圆 .


Y Mx,y
2. 引入问题:
O
F 1c,0
F 2 c,0 X
平面内与两定点F1、F2的距离的 差 等于常数 的点的轨迹是什么呢?
平面上动点M到两定点距离的差为常数的轨迹是什么 ?
∴ a = 3, c = 5
∴ b2 = 52-32 =16
所以所求双曲线的标准方程为: x2 y2 1 9 16
走进高考
x2 y2
1.若双曲线 16 9 1 上的点P 到点
(5,0) 的距离是15,则点P 到点(5,0) 的
距离是( D ) A.7 B. 23 C. 5或25 D. 7或23
所以所求双曲线的标准方程为:
x2 y2 1 或
y2 x2 1
9 16
9 16
课堂练习

双曲线的简单几何性质课件

双曲线的简单几何性质课件
A1(- a,0),A2(a,0)
e c (e 1) a
y b x a
例3:
x2 y2 1 16 9
1、双曲线 9x2-16y2=144的实半轴长
等于 4 虚半轴长等于 3 顶点坐
标是 4,0 渐近线方是y
3 4
x (或 x
4
y
.3
0)
5
离心率e= 4 。
2、离充心要率e=条件2 是。双(曲用线“为充等分轴条双件曲”线“的必要 条件”“充要条件”填空。)
双曲线定义的简单几何性质
定义
图象
方程 范围 对称性 顶点 离心率 渐近线
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
F1
o
F2
x
x
F1
x2 a2
y2 b2
1
x≤-a或x≥a
y2 a2
x2 b2
1
y≤-a或y≥a
关于坐标轴、原点对称(实轴、虚轴、中心)
(-a, 0) (a, 0)
法二 由双曲线的渐近线方程为 y=±12x, 可设双曲线方程为x222-y2=λ(λ≠0), ∵A(2,-3)在双曲线上, ∴2222-(-3)2=λ,即 λ=-8. ∴所求双曲线的标准方程为y82-3x22 =1.
5 离心率
与椭圆类似,双曲线的焦距与实轴长的比 c , a
叫做双曲线的离心率.因为c a 0,所以双
2 2
y2 b2
1
渐进线方程
k
b a
B2
b
k
y
(a,b)
b a
yb x a
可由双曲线

2.双曲线的简单几何性质PPt

2.双曲线的简单几何性质PPt
双曲线的 简单几何性质(2)
5、离心率 c 双曲线的焦距与实轴长 的比e ,叫做 (1)定义: a 双曲线的 离心率。
(2)e的范围:
c>a>0
e >1
(3) e是反映双曲线开口大小的一个量,e越大开口越大!
b c2 a2 c 2 ( ) 1 e2 1 a a a b b 当e越大, 越大, 且e增大, 即渐近线y 的绝对值越大, a a 这时,双曲线的形状从扁狭逐渐开阔,即开口越大,
结论:
x2 y 2 x2 y 2 双曲线 2 2 ( 0) 渐近线方程 2 2 0. a b a b 等轴双曲线x2 y 2 λ (λ ≠0) 渐近线方程y x
想一想:有相同渐近线的双曲线方程相同吗?试举例说明。
例1、求下列双曲线的实半轴和虚半轴长、焦点坐标、 离心率、渐近线方程。
y x 1 (a 0,b 0 ) a b
x a 或 x a,y R
y a 或 y a,x R
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
关于x轴、y轴、原点对称
A1(0,-a),A2(0,a)
c e a
b y x a
(e 1)
c e a
3 4

例4.求满足下列条件的双曲线标准方程.
3 ,且过(-1,2) 的双曲线。 e 2呢? x2 y 2 (2)与双曲线 1有相同焦点,且过 点(3 2,2) 16 4 x2 y 2 1 共渐近线 ,并且过点 M (2 3, 3) (3)已知双曲线 16 9
(1)离心率为
x2 y 2 (2)与双曲线 1 有相同焦点,且过 点(3 2,2) 16 4

《双曲线的简单几何性质(1)》示范公开课教学课件【高中数学北师大】

《双曲线的简单几何性质(1)》示范公开课教学课件【高中数学北师大】
解:双曲线一个顶点的坐标为(0,2),可得双曲线的焦点在y轴上,且a=2, 又2a+2b=2c,所以a+b=c,①
又c2=a2+b2=4+b2,②联立①②,解得c=2,b=2,
所以双曲线的标准方程为.故选B.
B
知识点 双曲线的范围、对称性、顶点等几何性质.
题型归纳 数形结合法.
双曲线的简单几何性质(1)
第二章 圆锥曲线
我们已经学习了双曲线的概念与双曲线的标准方程,
类比对椭圆的研究,接下来我们应该研究双曲线的哪些内容?
平面内到两个定点距离之差的绝对值等于常数(大于零且小于的点的集合(或轨迹)叫做双曲线.
双曲线的标准方程:
观察平面直角坐标系中的双曲线,它有怎样的范围?
观察双曲线的图象,我们发现双曲线上点的横坐标的范围是,或,纵坐标的范围是.
中心在原点,焦点在x轴上,且一个焦点在直线3x-4y+12=0上的实轴与虚轴长相等的双曲线的方程是( )A.x2-y2=8 B.x2-y2=4 C.y2-x2=8 D.y2-x2=4
∴c=4,a2=b2=c2= ×16=8,∴双曲线方程为x2-y2=8.故选A.
中心、顶点坐标、实轴和虚轴的长,并画出该双曲线.
解:将x2 4y2=1化为标准方程为=1,
由此可得实半轴长a=1,虚半轴长b=,半焦距.
所以双曲线的焦点坐标为(0),(0),中心坐标为(0),顶点坐标为(0),(0) ,实轴长为2,虚轴长为1.
先将双曲线方程化为标准方程形式,再进行求解.
设双曲线的标准方程为,
解: 图(2)是冷却塔的轴截面,为了得到双曲线的标准 方程,以最小直径处所在直线为x轴,最小直径的垂 直平分线为y轴,建立平面直角坐标系,则点A的坐 标为(33.5,0).

3.2.2双曲线的简单几何性质课件(人教版)

3.2.2双曲线的简单几何性质课件(人教版)

A1 A2
O
B1

F2
x
5.离心率 双曲线的离心率刻画了双曲线的“张口”大小
c
(1)定义: 双曲线的焦距与实轴长的比 e , 叫做双曲线的离心率.
a
∴e >1
(2)e的范围: ∵c>a>0
y
B2
(3)e的含义:e越接近1,双曲线开口越小;
e越大,双曲线开口越大.
(4)等轴双曲线的离心率e= ?
解:依题意可设双曲线的方程为 2 2 1
a
b
2a 16,
a 8
c 5
又 e , c 10
a 4
b2 c 2 a 2 102 82 36
x2 y2
双曲线的方程为

1
64 36
3
渐近线方程为y x ,且焦点F1 (10, 0), F2 (10, 0)
-a
a
F1 A1 O
A2
B2 -b
F2
4.双曲线的渐近线:
2
2
一般地,双曲线 2 − 2 = 1 ( > 0, > 0)的两支向外延伸时,与两条直




线 ± = 0逐渐接近,但永不相交.我们把这两条直线叫做双曲线的渐


近线.
y
x y
b
x2 y2
双曲线 2 2 1的渐近线方程为 0,即y x .
A1 (0,-a ), A2(0, a )
线段A1A2叫实轴 , 长度为2a
线段B1B2叫虚轴 , 长度为2b
c
e (e 1)
a
x y
b
0,即y x

选择必修 第三章 3.2.1 双曲线及其标准方程 课件(共23张PPT)

选择必修 第三章   3.2.1  双曲线及其标准方程  课件(共23张PPT)
0),焦点F1,F2的坐标分别为(-c , 0) ,(c , 0).
又设||MF1|-|MF2||= 2a( a为大于0的常数, a<c).
由双曲线的定义,双曲线就是下列点的集合:
P={M|||MF1|-|MF2||=2a,0<a<|F1F2|}.
y
M
F1
O
F2 x
知新探究
y
设 M(x, y) 是双曲线上任意一点,双曲线的焦距为 2c( c >
拓展2:根据两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点在某
条曲线上,但不能确定爆炸点的准确位置. 而现实生活中为了安全,我们最关心的是
炮弹爆炸点的准确位置,怎样才能确定爆炸点的准确位置呢?
利用两个不同的观测点A, B测得同一点P发出信号的时间差, 可以确定点P所在
双曲线方程. 如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时
因为|PA|-|PB|=340×2=680>0,
所以点P的轨迹是双曲线的右支,因此x>340.
所以,炮弹爆炸点的轨迹方程为
2
115600
2

=1(x>340).
44400
P
A o
B x
知新探究
拓展1:若在A,B两地同时听到炮弹爆炸声,则炮弹爆炸点的轨迹是什么?
提示: 爆炸点的轨迹是线段AB的垂直平分线.
思考:
1.与两定点的距离的差的绝对值等于常数(当2a=|F1F2|时)的轨迹是什么?
在直线F1F2上且 以F1、F2为端点向外的两条射线.
2.与两定点的距离的差的绝对值等于常数(当2a>|F1F2| )时的轨迹是什么?
不存在
3.当||MF1|-|MF2||=2a=0时的轨迹是什么?

双曲线及其标准方程ppt课件

双曲线及其标准方程ppt课件

课后提升
1.必做题:P127页课本习题3.2第1,2,5题
2. 思考题(选做):定位问题
某中心接到其正东、正西、正北方向三个观测点的报告,正西、
正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其
它两个观测点晚4秒。已知各观测点到该中心的距离都是1020m,试
确定该巨响发生的位置。
(假定声音传播的速度为340m/s,相关各点均在同一平面内。)



= 令 = −




你能在y轴上找一点B,使得|OB|=b吗?
1
验证
设点
2
坐标法
4
化简
列式
3
绝对值
教学过程分析
3
通过图象,生成定义
绘制图象,合作探究
2
1
类比启发,方程推导


4
5
类比推理,举一反三
列表对比,加深理解
教学过程分析
方程推导
在学生脑海里留下更加深刻的印象。
通过学生的自主学习、小组合作、师生互
动,让学生学会交流、表达、质疑、反思。
04
01
02
03




5.及时练习,巩固所学
6.回顾小结,思维提升
7.课后延伸,探究发现
教学过程分析
复习回顾,课题导入
复习回顾:
椭圆及其标准方程
创设情境
导入课题:双曲线及其标准方程
教学过程分析
3
通过图象,生成定义
绘制图象,合作探究
2
1
类比启发,方程推导
4
类比推理,举一反三
5

双曲线课件.ppt

双曲线课件.ppt

距为2c(c>0),F1(-c,0),F2(c,0)
F1
3.列式.|MF1| - |MF2|= 2a
y
M
o F2 x
即 (x+c)2 + y2 - (x-c)2 + y2 = +_ 2a
4.化简.
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
|MN接近于0 ,|MQ|也接近于0
就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于 射线ON.在其他象限内,也可类似证明。
我们把两条直线
y 叫做b双曲x线的渐近线。 a
特殊地,
在方程 x2 a2
y2 b2
1中,如果a=b,那么双曲线的方程为
x2 y2 a2 它的实轴和虚轴都是2a,
② |F1F2|=2c ——焦距.
M
注意 (1)距离之差的绝对值
| |MF1| - |MF2| | = 2a
F1 o F2
(2)常数要小于|F1F2|大于0
0<2a<2c
3.双曲线的标准方程
1.段建F系1F.2的以如中F何1点,F求2为所这原在优点的美建直的立线曲直为线角X的轴坐方,标程线? 系
2.设点.设M(x , y),双曲线的焦
北京摩天大楼
巴西利亚大教堂
法拉利主题公园
花瓶
反比例函数的图像
冷却塔
罗兰导航系统原理
画双曲线
演示实验:用拉链画双曲线
画双曲线
演示实验:用拉链画双曲线
①如图(A), |MF1|-|MF2|=|F2F|=2a
②如图(B), |MF2|-|MF1|=|F1F|=2a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a2 b2
双曲线性质:
1、 范围: y≥a或y≤-a
2、对称性:关于x轴,y轴,原点对称。
3、顶点 B1(0,-a),B2(0,a)
A1
4、轴:实轴 B1B2 ; 虚轴 A1A2
5、渐近线方程: x y 0 ab
6、离心率: e=c/a
Y
F2 B2
o
B1
F2
A2 X
2020年10月2日
5
例题1:求双曲线 9x2 16y2 144的实半轴长,虚半轴长, 焦点坐标,离心率.渐近线方程。
c
1
焦点在x轴上的双曲线图像
Y
x2 a2
y2 b2
1
B2
F1
A1
2020年10月2日
A2 F2 X B1
2
焦点在x轴上的双曲线的几何性质
双曲线标准方程: x 2 y 2 1 a2 b2
双曲线性质:
1、 范围: x≥a或x≤-a
2、对称性:关于x轴,y轴,原点对称。
3、顶点 A1(-a,0),A2(a,0)
xy
|y|≥5 (0,±5)
0, 74
e 74 5
x7 y 57
例2:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原 双曲线的共轭双曲线,求证:
(1)双曲线和它的共轭双曲线有共同的渐近线; (2)双曲线和它的共轭双曲线的四个焦点在同一个圆上.
Y
F1
B2
F’1 A1 o
B1
X
A2 F’2
F2
2020年10月2日
标准 方程
x2 y2 1
a2 b2
范 围 |x|a,|y|≤b
对称性
顶点
关于X,Y轴, 原点对称
(±a,0),(0,±b)
焦点
(±c,0)
对 称 轴 A1A2 ; B1B2
离心率 准线
e c a
x a2 c
2020年10月2日
椭圆的图像与性质
Y
B2
A1
F1
o
A2
F2
X
x a2 c
B1
x a2
2b
4
范围
|x|≥
顶点
4 2,
焦点
6,0
离心率
e 3 2 2
渐进线
y 2x
2020年10月2日
4
42 82
9 x 2 y 2 81 x 2 y 2 4
6
4
18
4
x2 y 2 1 49 25
10
14
|x|≥3
|y|≥2
(±3,0)
(0,±2)
31,00 0,2 2
e 10
e 2
y=±3x
8
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
A1
4、轴:实轴 A1A2 虚轴 B1B2
5、渐近线方程:
6、离心率: e= c
a
x y 0 ab
Y
B2
X
A2
B1
2020年10月2日
3
焦点在y轴上的双曲线图像
Y
y2 x2 1
a2 b2
F2
A2
B1
2020年10月2日
O
B2
A1
F1
X
4
焦点在y轴上的双曲线的几何性质
双曲线标准方程:
y2
x2
1
解:把方程化为标准方程: y 2
42
x2 32
1
可得:实半轴长a=4
虚半轴长b=3
半焦距c= 42 32 5 焦点坐标是(0,-5),(0,5)
离心率:
e c a
5 4
渐近线方程:
x 3 y, 即
4
y 4x 3
2020年10月2日
6
练习题:填表
标 准 方 x 2 8 y 2 32

2a
汇报人:XXX 汇报日期:20XX年10月10日
9
相关文档
最新文档