热学课后习题答案

合集下载

化工热力学课后习题答案

化工热力学课后习题答案

习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度 的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P =P (T ,V )的自变量中只有一个强度 性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

22. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或(以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P ,则mol,温度为 和水。

热学课后习题答案

热学课后习题答案

第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管内水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。

热力学课后习题02答案

热力学课后习题02答案

第2章 热力学第一定律2-1 定量工质,经历了下表所列的4个过程组成的循环,根据热力学第一定律和状态参数的特性填充表中空缺的数据。

过程 Q/ kJ W/ kJ△U/ kJ1-2 0 100 -1002-3-11080 -1903-4 300 90 210 4-1 20 -60802-2 一闭口系统从状态1沿过程123到状态3,对外放出47.5 kJ 的热量,对外作功为30 kJ ,如图2-11所示。

(1) 若沿途径143变化时,系统对外作功为6 kJ ,求过程中系统与外界交换的热量; (2) 若系统由状态3沿351途径到达状态1,外界对系统作功为15 kJ ,求该过程与外界交换的热量;(3) 若U 2=175 kJ ,U 3=87.5 kJ ,求过程2-3传递的热量,及状态1的热力学能U 1。

图2-11 习题2-2解:(1)根据闭口系能量方程,从状态1沿途径123变化到状态3时,12313123Q U W −=∆+,得1347.5kJ 30kJ 77.5kJ U −∆=−−=−从状态1沿途径143变化到状态3时,热力学能变化量13U −∆保持不变,由闭口系能量方程14313143Q U W −=∆+,得14377.5kJ 6kJ 71.5kJ Q =−+=−,即过程中系统向外界放热71.5kJ(2)从状态3变化到状态1时,()31133113U U U U U U −−∆=−=−−=−∆,由闭口系能量方程35131351Q U W −=∆+,得35177.5kJ 15kJ 62.5kJ Q =−=,即过程中系统从外界吸热92.5kJ(3)从状态2变化到状态3体积不变,323232323232Q U W U pdV U −−−=∆+=∆+=∆∫,因此23233287.5kJ 175kJ 87.5kJ Q U U U −=∆=−=−=−由1331187.577.5kJ U U U U −∆=−=−=−,得1165kJ U =2-3 某电站锅炉省煤器每小时把670t 水从230℃加热到330℃,每小时流过省煤器的烟气的量为710t ,烟气流经省煤器后的温度为310℃,已知水的质量定压热容为 4.1868 kJ/(kg ·K),烟气的质量定压热容为1.034 kJ/(kg ·K),求烟气流经省煤器前的温度。

工程热力学课后习题及答案第六版(完整版)

工程热力学课后习题及答案第六版(完整版)

2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J • (2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO 2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量 2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2)27311+=t T (3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。

《热学》期末复习用 各章习题+参考答案

《热学》期末复习用 各章习题+参考答案

(
29 × 10 3
)
485������
(4) 空气分子的碰撞频率为
√2������ ������
√2
6 02 × 10 × 22 4 × 10
3 3
×
(3
7 × 10−10)
× 485
(5) 空气分子的平均自由程为
7 9 × 109
������
485 7 9 × 109
6 1 × 10 8������
(������ + ������ )������������ ������ ������������ + ������ ������������
(4)
联立方程(1)(2)(3)(4)解得
������ + ������
������
2
������ ������ ������ (������ ������ + ������ ������ ) (������ + ������ )
������ (������ + ∆������) ������
������
������
(������ + ∆������) ������
������
ln
������������ ������
ln ������
������ + ∆������
ln
Hale Waihona Puke 133 101000ln
2
2
+
20 400
269
因此经过 69 × 60 40 后才能使容器内的压强由 0.101MPa 降为 133Pa.
1-7 (秦允豪 1.3.6) 一抽气机转速������ 400������ ∙ ������������������ ,抽气机每分钟能抽出气体20������.设 容器的容积������ 2 0������,问经过多长时间后才能使容器内的压强由 0.101MPa 降为 133Pa.设抽 气过程中温度始终不变.

大学物理化学1-热力学第一定律课后习题及答案

大学物理化学1-热力学第一定律课后习题及答案

热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。

1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。

( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。

( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。

( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。

( )5. 稳定态单质的∆f H(800 K) = 0。

( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。

(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。

2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。

( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。

3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。

4. 在隔离系统内:( )。

( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。

5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。

( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。

6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。

( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。

7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。

传热学第五版课后习题答案(1)

传热学第五版课后习题答案(1)

传热学习题_建工版V0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =︒及w1t 285C =︒ ,试求热流密度计热流量。

解:根据付立叶定律热流密度为:2w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ⎛⎫--⎛⎫=-=-=- ⎪ ⎪-⎝⎭⎝⎭ 负号表示传热方向与x 轴的方向相反。

通过整个导热面的热流量为:q A 30375(32)182250(W)Φ=⋅=-⋅⨯=0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m ².k),热流密度q=5110w/ m ², 是确定管壁温度及热流量Ø。

解:热流量qA=q(dl)=5110(3.140.05 2.5) =2005.675(W)πΦ=⨯⨯ 又根据牛顿冷却公式wf hA t=h A(tt )qA Φ=∆⨯-=管内壁温度为:w f q 5110t t 85155(C)h 73=+=+=︒1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。

解:(1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m ·K),λ碳钢=36W/(m ·K), λ铝=237W/(m ·K),λ黄铜=109W/(m ·K).所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢(2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为:膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K)=0.0424+0.000137×20=0.04514 W/(m ·K);矿渣棉: λ=0.0674+0.000215t W/(m ·K)=0.0674+0.000215×20=0.0717 W/(m ·K);由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m ·K)。

热力学课外习题(含答案)

热力学课外习题(含答案)

判断题:√1.自然界发生的过程一定是不可逆过程。

×2.不可逆过程一定是自发过程。

(做了非体积功发生的过程不是自发过程)×3.熵增加的过程一定是自发过程。

(如自由膨胀过程)×4.绝热可逆过程的∆S = 0,绝热不可逆膨胀过程的∆S > 0,绝热不可逆压缩过程的∆S < 0。

×5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。

(设计一条可逆非绝热可逆过程来计算熵变)×6.由于系统经循环过程后回到始态,∆S = 0,所以一定是一个可逆循环过程。

(环境可能提供负熵流)×7.平衡态熵最大。

(在隔离体系中是对的)×8.在任意一可逆过程中∆S = 0,不可逆过程中∆S > 0。

9.理想气体经等温膨胀后,由于∆U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗?(不矛盾,因为在热全部转化为功的同时,引起了气体的状态的变化)×10.当系统向环境传热时(Q < 0),系统的熵一定减少。

(熵变是可以过程的热温熵)√11.一切物质蒸发时,摩尔熵都增大。

(混乱度增大)×12.吉布斯函数减小的过程一定是自发过程。

(条件:等温等压,非体积功等于0)×13.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。

(当有非体积功如电功时可以发生)×14.系统由V 1膨胀到V 2,其中经过可逆途径时做的功最多。

(等温条件下如对的)×15.因Q p =ΔH ,Q v =ΔU ,所以Q p 和Q v 都是状态函数。

(热是过程量,不是状态函数)×16.水溶液的蒸气压一定小于同温度下纯水的饱和蒸汽压。

(非挥发性溶质的稀溶液)×17.在等温等压不做非体积功的条件下,反应Δr G m <0时,若值越小,自发进行反应的趋势就越强,反应进行得越快。

热学习题解2

热学习题解2

⨯ 热学习题讲解1.3.1 要使一根钢棒在任何温度下都要比另一根铜棒长5 cm ,试问它们在0℃时的长度01l 及02l 分别是多少?已知钢棒及铜棒的线膨胀系数分别为:1α=1.2×10-5K -1,2α=1.6×10-5K -1。

答案:已知:1α=1.2×10-5K -1,2α=1.6×10-5K -1设1l 和2l 分别为钢棒和铜棒在温度为t ℃时的长度 求:01l 和02l 的长度 解:根据线膨胀公式得:1011(1)l l t α=+2022(1)l l t α=+两式相减得:120102011022()()l l l l l l t αα-=-+- 要使上面的式子与温度t 无关,则有:0110220l l αα-= 同时,01025l l -=联立上述二式并代入数据求得:0120l cm =,0215l cm =1.3.9:把521.010N m -⨯、30.5m 的氮气压入容积为30.2m 的容器中,容器中原已充满同温、同压下的氧气,试求混合气体的压强和两种气体的分压,设容器中气体温度保持不变。

已知:氮气 521 1.010P N m -=⨯,310.5V m =,1?T =2?P =, 320.2V m =,21T T =氧气 521 1.010P N m -'=⨯,12V V '= ,11T T'= 2?P '=, 22V V '=, 21T T '= 求: 2P ,2P ',22P P P '=+ 解:由PV RT ν=知5212122.510V P P N m V -==⨯∙ 521212110V P P N m V -'''==⨯∙'5222 3.510P P P N m -'=+=⨯∙1.6.3一容积为11.2L 的真空系统已被抽到1.3×103-Pa 的真空。

传热学课后习题答案(第四版)

传热学课后习题答案(第四版)

第1章1-3 解:电热器的加热功率: kW W tcm QP 95.16.195060)1543(101000101018.4633==-⨯⨯⨯⨯⨯=∆==-ττ15分钟可节省的能量:kJ J t cm Q 4.752752400)1527(15101000101018.4633==-⨯⨯⨯⨯⨯⨯=∆=-1-33 解:W h h t t A w f 7.45601044.02.061)]10(2[6311)(2121=++--⨯=++-=Φλδ如果取K m W h ./3022=,则W h h t t A w f 52.45301044.02.061)]10(2[6311)(2121=++--⨯=++-=Φλδ即随室外风力减弱,散热量减小。

但因墙的热阻主要在绝热层上,室外风力变化对散热量的影响不大。

第2章2-4 解:按热平衡关系有:)(1222121f w BBA A w f t t h h t t -=++-λδλδ,得:)2550(5.906.01.0250150400-=++-B Bδδ,由此得:,0794.0,0397.0m m A B ==δδ 2-9 解:由0)(2121=+=w w m t t t ℃从附录5查得空气层的导热系数为K m W ⋅/0244.0空气λ 双层时:W t t A w w s 95.410244.0008.078.0006.02)]20(20[6.06.02)(21=+⨯--⨯⨯=+-=Φ空气空气玻璃玻璃λδλδ单层时:W t t A w w d 187278.0/006.0)]20(20[6.06.0/)(21=--⨯⨯=-=Φ玻璃玻璃λδ两种情况下的热损失之比:)(6.4495.411872倍==ΦΦs d题2-15解:这是一个通过双层圆筒壁的稳态导热问题。

由附录4可查得煤灰泡沫砖的最高允许温度为300℃。

设矿渣棉与媒灰泡沫砖交界面处的温度为t w ,则有 23212121ln 21ln 21)(d d l d d l t t πλπλ+-=Φ (a ) 23221211ln )(2ln )(2d d t t l d d t t l w w -=-=Φπλπλ (b ) 65110ln )50(12.02565ln )400(11.0:-⨯=-⨯w w t t 即由此可解得:4.167=w t ℃<300℃又由式(a )可知,在其他条件均不变的情况下,增加煤灰泡沫砖的厚度δ2对将使3d 增大,从而损失将减小;又由式(b )左边可知t w 将会升高。

工程热力学 课后习题答案 可打印 第三版 第二章

工程热力学 课后习题答案  可打印 第三版 第二章

9.73×10−3 kg
h = V1 = 0.008m3 = 0.1m A 0.08m2
终态时 p2 = 0.3MPa
( p2 − pb ) × A − m活 × g = xK
x = (0.15 − 0.1)×106 Pa × 0.08m2 −10.61kg × 9.81m/s2 = 0.0974m 40000N/m
并推动活塞上升而压缩弹簧。已知活塞面积为 0.08m2 ,弹簧刚度为 K = 40000N/m ,空气
热力学能变化关系式为 ∆{u} = 0.718∆{T} 。试求,使气缸内空
kJ/kg
K
气压力达到 0.15MPa 所需的热量。
解:先求活塞质量,初始时弹簧呈自由状态,
m活 × g + pb × A = p1 × A
2
2
∫ ∫ W =
1
pdV =
A2
(
p b
A
+
m活
×
g
+
Kx)AdV
∫2
= 1 ( pbV + m活 × g + Kx)dx
=
(
pb
A
+
m活 g)(x2

x1 )
+
K 2
( x22

x12 )
= (0.1×106 Pa × 0.08m2 +10.61kg × 9.81m/s2 ) × 0.0974m + 40000N/m × (0.0974m)2 2
代入(a),解得 b= –0.05 k=0.166 所以 ∆p = 0.1667V − 0.05
8
第二章 热力学第二定律
m = p1V1 = 0.1×106 Pa × 0.3m3 = 0.360kg RgT1 287J/(kg ⋅ K) × 290.15K

热力学第二版习题答案(全)

热力学第二版习题答案(全)
PD
PD
F-
XC
h a n g e Vi e
w
F-
XC
h a n g e Vi e
w
er
er
!
O W
N
y
bu
to
m
w
.d o
c u -tr
. ack
c
w
o
.d o
c u -tr a c k
.c
习题: 2-1.为什么要研究流体的 pVT 关系? 答:在化工过程的分析、研究与设计中,流体的压力 p、体积 V 和温度 T 是流体最基本的性 质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能 U、熵 S、Gibbs 自由能 G 等都不方便直接测量, 它们需要利用流体的 p –V –T 数据和热力学基本关系式进行 推算;此外,还有一些概念如逸度等也通过 p –V –T 数据和热力学基本关系式进行计算。因 此,流体的 p –V –T 关系的研究是一项重要的基础工作。 2-2.理想气体的特征是什么? 答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体 叫做理想气体。严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理 想气体的,可以当作理想气体处理,以便简化问题。 理想气体状态方程是最简单的状态方程:
pV RT
2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 答:纯物质的偏心因子 是根据物质的蒸气压来定义的。实验发现,纯态流体对比饱和蒸 气压的对数与对比温度的倒数呈近似直线关系,即符合:
1 log p 1 T r
s r

ps 其中, p pc
迭代结果为: V 3.39m 3 kmol 1 (2) 压缩功 W pdV

第01章--热力学基本定律--习题及答案

第01章--热力学基本定律--习题及答案

第一章 热力学基本定律习题及答案§ 1. 1 (P10)1.“任何系统无体积变化的过程就一定不做功。

”这句话对吗?为什么?解:不对。

体系和环境之间以功的形式交换的能量有多种,除体积功之外还有非体积功,如电功、表面功等。

2. “凡是系统的温度下降就一定放热给环境,而温度不变时则系统既不吸热也不放热。

”这结论正确吗?举例说明。

答:“凡是系统的温度下降就一定放热给环境”不对:体系温度下降可使内能降低而不放热,但能量可以多种方式和环境交换,除传热以外,还可对外做功,例如,绝热容器中理想气体的膨胀过程,温度下降释放的能量,没有传给环境,而是转换为对外做的体积功。

“温度不变时则系统既不吸热也不放热”也不对:等温等压相变过程,温度不变,但需要吸热(或放热), 如P Ө、373.15K 下,水变成同温同压的水蒸气的汽化过程,温度不变,但需要吸热。

3. 在一绝热容器中,其中浸有电热丝,通电加热。

将不同对象看作系统,则上述加热过程的Q 或W 大于、小于还是等于零?(讲解时配以图示) 解:(1)以电热丝为系统:Q<0,W>0(2)以水为系统:Q>0,W=0(忽略水的体积变化) (3)以容器内所有物质为系统:Q=0,W>0(4)以容器内物质及一切有影响部分为系统:Q=0,W=0(视为孤立系统)4. 在等压的条件下,将1mol 理想气体加热使其温度升高1K ,试证明所做功的数值为R 。

解:理想气体等压过程:W = p(V -V ) = pV -PV = RT -RT = R(T -T ) = R5. 1mol 理想气体,初态体积为25dm , 温度为373.2K ,试计算分别通过下列四个不同过程,等温膨胀到终态体积100dm 时,系统对环境作的体积功。

(1)向真空膨胀。

(2)可逆膨胀。

(3)先在外压等于体积50 dm 时气体的平衡压力下,使气体膨胀到50 dm ,然后再在外压等于体积为100dm 时气体的平衡压力下,使气体膨胀到终态。

热学习题附答案

热学习题附答案

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v(C)mkT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A)m kTπ8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0[ ] 3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等(D) ε和w 都不相等[ ]4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 [ ]5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 0 [ ]6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同[ ]7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强 [ ]8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。

第三章习题答案

第三章习题答案

第三章热力学第二定律1、在T1=750K的高温热源与T2=300K的低温热源间工作一卡诺可逆热机,当其从高温热源Q1=250kJ时,该热机对环境所做的功W= -150 Kj,放至低温热的热Q2= -100 kJ。

2、以汞为工作物质时,可逆卡诺热机效率为以理想气体为工作物质时的100% 。

(可逆热机效率与工质无关)3、液体苯在其沸点下恒温蒸发,则此过程的△U 大于零;△H 大于零;△S 大于零;△G 等于零。

4、将1mol 温度为100℃、压力为101.325kPa的液体水投入一密封真空容器中,并刚好完全蒸发为同温同压的水蒸气,则此过程的△H 大于零;△S 大于零;△G 等于零。

5、H2与O2均为理想气体,当经历如下所示的过程后,则系统的△U 等于零; △H 等于零; △S 等于零; △G 等于零。

6、732 K时,反应NH4Cl(s)==NH3(g)+HCl(g)的∆r G=-20.8 kJ·mol-1,∆r H=154 kJ·mol-1,则该反应的∆r S = 239 J·K-1·mol-1 。

7、某双原子理想气体3 mol从始态300 K,200 KPa下经过恒温可逆膨胀到150KPa ,则其过程的功W是-2152.6 J。

8、某双原子理想气体3 mol从始态350K,200 KPa下经过绝热可逆膨胀到235.5 K平衡,则其过程的功W是-7139.6 J。

9、在真空密封的容器中,1mol温度为100℃、压力为101.325 kPa的液体水完全蒸发为100℃、101.325 kPa的水蒸气, 测得此过程系统从环境吸热37.53kJ,则此过程的△H= 40.63 kJ, △S= 108.88 J·K-1, △G= 0 kJ。

判断题1、绝热过程都是等熵过程。

×2、理想气体的熵变公式∆S nC V V nC p p p V =⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪,,ln ln m m 2121只适用于可逆过程。

传热学第五版课后习题答案

传热学第五版课后习题答案

传热学习题_建工版V0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =︒及w1t 285C =︒ ,试求热流密度计热流量。

解:根据付立叶定律热流密度为:2w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ⎛⎫--⎛⎫=-=-=- ⎪ ⎪-⎝⎭⎝⎭ 负号表示传热方向与x 轴的方向相反。

通过整个导热面的热流量为:q A 30375(32)182250(W)Φ=⋅=-⋅⨯=0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m ².k),热流密度q=5110w/ m ², 是确定管壁温度及热流量Ø。

解:热流量qA=q(dl)=5110(3.140.05 2.5) =2005.675(W)πΦ=⨯⨯ 又根据牛顿冷却公式wf hA t=h A(tt )qA Φ=∆⨯-=管内壁温度为:w f q 5110t t 85155(C)h 73=+=+=︒1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。

解:(1)由附录7可知,在温度为20℃的情况下,λ铜=398 W/(m ·K),λ碳钢=36W/(m ·K), λ铝=237W/(m ·K),λ黄铜=109W/(m ·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢(2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K) =0.0424+0.000137×20=0.04514 W/(m ·K); 矿渣棉: λ=0.0674+0.000215t W/(m ·K) =0.0674+0.000215×20=0.0717 W/(m ·K);由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m ·K)。

第十三章课后习题答案

第十三章课后习题答案

第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v 13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V ,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V ,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V ,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500D A BD A CB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W 利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V BA (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A == (2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()B C AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122lnV V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=. 解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。

热学课后习题答案

热学课后习题答案

第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管内水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n 转后,压强设当压强降到时,所需时间为 分,转数1-27 把 的氮气压入一容积为 的容器,容器中原来已充满同温同压的氧气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章温度1- 1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg 。

(1)用温度计测量300K 的温度时,气体的压强是多少(2)当气体的压强为68mmHg 时,待测温度是多少解:对于定容气体温度计可知:(1)(2)1- 3 用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg 时,重新测得,当再抽出一些气体使减为100mmHg 时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P 图看趋势得出时,T 约为亦即沸点为题1-4 图1- 6 水银温度计浸在冰水中时,水银柱的长度为;温度计浸在沸水中时,水银柱的长度为。

1) 在室温时,水银柱的长度为多少2) 温度计浸在某种沸腾的化学溶液中时,水银柱的长度为,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,1)(2)1- 14 水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管内水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15 图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而403.3 10 106.023 1023 4.97 1015(个)1-25 一抽气机转速 转 /分,抽气机每分钟能够抽出气体 ,设容器的容积 ,问经过多少时间后才能使容器的压强由 降到。

当抽气机转过一转后, 容器内的压强由 降到 ,忽略抽气过程中压强的变化而 近似认为抽出压强为 的气体 ,因而有 , 当抽气机转过两转后,压强为当抽气机转过 n 转后,压强 设当压强降到 时,所需时间为 分,转数1-27 把 的氮气压入一容积为 的容器,容器中原来已充 满同温同压的氧气。

试求混合气体的压强和各种气体的分压强,假定容器中的温 度保持不变。

M 不变。

第二章 气体分子运动论的基本概念2-4 容积为2500cm 3的烧瓶内有× 1015个氧分子 ,有× 1015个氮分子和× 10-7g 的氩气。

设混合气体的温度为 150℃, 求混合气体的压强。

解:根据混合气体的压强公式有PV=(N 氧+N 氮+N 氩)KT其中的氩的分子个数:解:设抽气机每转一转时能抽出的气体体积为解:根据道尔顿分压定律可知 又由状态方程且温度、质量N 0氩1.75 10 4 mmHg2- 5 一容器内有氧气,其压强 P=,温度为 t=27 ℃,求(1) 单位体积内的分子数: (2) 氧气的密度; (3) 氧分子的质量; (4) 分子间的平均距离;(5) 分子的平均平动能。

解: (1) ∵P=nKT∴n= P 1.0 1.01233 1052.45 1025 m -3KT 1.38 10 23 300P 1 321.30g/l RT 0.082 300(4) 设分子间的平均距离为 d ,并将分子看成是半径为 d/2 的球, 每个分 子的体积为 v 0。

V 0=4 (d )3d 33 2 6∴ d 3 6 6 19 4.28 10 7 cmn 2.44 1019(5) 分子的平均平动能 为:3 31614KT 1.38 10 16 (273 27 ) 6.21 10 14(尔格) 222- 12 气体的温度为 T = 273K, 压强为 P= × 10-2atm,密度为ρ =×10-5g(1) 求气体分子的方均根速率。

P= ( ++)10151.38 1023423250022.33 10 2 Pa(2)(3) m 氧 =n31.3 1032.45 10 25235.3 10 23g(2) 求气体的分子量,并确定它是什么气体。

m=该气体为空气2-19 把标准状态下 224 升的氮气不断压缩, 它的体积将趋于多少升设此时的氮分 子是一个挨着一个紧密排列的,试计算氮分子的直径。

此时由分子间引力所 产生的内压强约为多大已知对于氮气, 范德瓦耳斯方程中的常数 a=﹒l 2mol -2, b=。

解:在标准状态西 224l 的氮气是 10mol 的气体,所以不断压缩气体时,则其 体积将趋于10b ,即,分子直径为:内压强 P 内= a21.392 907 .8 atmV 2 0.03913 2注:一摩尔实际气体当不断压缩时(即压强趋于无限大)时,气体分子不可 能一个挨一个的紧密排列,因而气体体积不能趋于分子本身所有体积之和而只能 趋于 b第三章 气体分子热运动速率和能量的统计分布律2 1.00 4 2.00 6 3.00 8 4.00 2 5.0024682(2) 方均根速率粒子数 N i24682速率 V i ( m/s )3-1 设有一群粒子按速率分布如下:试求 (1) 平均速率 V ;(2)方均根速率 V 2 ( 3)最可几速率 Vp解:(1)平均速率:28 .9g / mol3.18 (m/s)解:485 m / s 10 3 kg / molNV 2 N iVi3.37 (m/s)N i3- 2 计算 300K 时,氧分子的最可几速率、平均速率和方均根速率。

2V 0)(2) 速率在到之间的分子数3- 21 收音机的起飞前机舱中的压力计批示为, 温度为 270C ;起飞后压力计指示为,温度仍为 27 0C ,试计算飞机距地面的高度。

解:根据等温气压公式: P=P0e -有 In = - ∴ H = - In其中 In =In = ,空气的平均分子量 u=29. ∴H= × =× 103(m )3-27 在室温 300K 下,一摩托车尔氢和一摩尔氮的内能各是多少一克氢和一克氮 的内能各是多少解:V P2RT 2 8.31 3003 32 10 3395 m / s3- 13 N 个假想的气体分子,其速率分布如图 由 N 和 V 0 求 a(2)求速率在到之间的分子数。

( 1) 求分子的平均速率。

解:由图得分子的速率分布函数:3- 13 所示(当 v >v 0 时,粒子数为零)。

(1)Va V 0NV 0)V2V 0 ) f(v)=(1) ∵ dN(V ) dv(V ) dVVV V a0 dV2VadvV2VaV 02aV 032 V 0a解:U 氢= RT = × 103(J)U 氮= RT = ×103(J)可见,一摩气体内能只与其自由度(这里t=3,r=2,s=0 )和温度有关。

一克氧和一克氮的内能:∴U 氢= = = × 103(J)U 氮= = = × 103(J)3-30 某种气体的分子由四个原子组成,它们分别处在正四面体的四个顶点:(1)求这种分子的平动、转动和振动自由度数。

(2)根据能均分定理求这种气体的定容摩尔热容量。

解:(1)因n 个原子组成的分子最多有3n个自由度。

其中3个平动自由度,3 个转动自由度,3n-1 个是振动自由度。

这里n=4,故有12 个自由度。

其中3 个平动、个转动自由度,6 个振动自由度。

(2)定容摩尔热容量:Cv= (t+r+2s)R = × 18× 2= 18(Cal/molK )第四章气体内的输运过程4-2. 氮分子的有效直径为,求其在标准状态下的平均自由程和连续两次碰撞间的平均时间。

解:=代入数据得:-(m)=(s)4-4. 某种气体分子在时的平均自由程为。

(1)已知分子的有效直径为,求气体的压强。

(2)求分子在的路程上与其它分子的碰撞次数。

解:(1)由得:代入数据得:(2)分子走路程碰撞次数(次)4-6.电子管的真空度约为HG ,设气体分子的有效直径为,求时单位体积内的分子数,平均自由程和碰撞频率。

解:(2)(3)若电子管中是空气,则4-14.今测得氮气在时的沾次滞系数为试计算氮分子的有效直径,已知氮的分子量为28。

解:由《热学》()式知:4-16.氧气在标准状态下的扩散系数:4-17.已知氦气和氩气的原子量分别为 4 和40,它们在标准状态嗲的沾滞系数分别为和,求:(1)氩分子与氦分子的碰撞截面之比;(2)氩气与氦气的导热系数之比;(3)氩气与氦气的扩散系数之比。

解:已知求氧分子的平均自由程由于隔板导热, A 、B 两部气体温度始终相等,因而2) 绝热隔板可自由滑动 B 部在 1 大气压下整体向上滑动,体积保持不变且绝热,所以温度始终不变A 部气体在此大气压下吸热膨胀5-25.图 5-25,用绝热壁作成一圆柱形的容器。

在容器中间置放一无摩擦的、绝热的可动活 塞。

活塞两侧各有 n 摩尔的理想气体,开始状态均为 p 0、V 0、T 0。

设气体定容摩尔热容量 C v 为常数, =将一通电线圈放到活塞左侧气体中,对气体缓慢地加热,左侧气体膨胀同时通过活塞压缩右方气体,最后使右方气体压强增为 p 0。

问:( 1)对活塞右侧气体作了多少功 (2)右侧气体的终温是多少 ( 3)左侧气体的终温是多少4)左侧气体吸收了多少热量2) 由于氮氩都是单原子分子,因而摩尔热容量 C 相同3) 现 P 、 T 都相同,第五章 热力学第一定律5-21. 图 5-21 有一除底部外都是绝热的气筒,被一位置固定的导热板隔成相等的两部分 理想气体氮。

今将 80cal 的热量缓慢地同底部供给气体,设活塞上的压强始 A 和 B ,其中各盛有一摩尔的 ,求 A 部和 B 部温度的改变各吸收的热量 ( 导热板的热容量可以忽略 ).若将位置固定的导热板换成可以自由滑动的绝热隔板 ,重复上述讨论解:(1)导热板位置固定经底部向气体缓慢传热时, A 部气体进行的是准静态等容过程, B 部进行的是准表态等压过程。

解:( 1)设终态,左右两侧气体和体积、温度分别为V 左、V 右、T 左、T 右,两侧气体的压强均为p0对右侧气体,由p0 =p 右得则外界(即左侧气体)对活塞右侧气体作的功为2)3)4)由热一左侧气体吸热为5-27 图5-27 所示为一摩尔单原子理想气体所经历的循环过程, 其中AB 为等温线.已知, 求效率.设气体的解:AB,CA 为吸引过程,BC 为放热过程.5-28 图5-28(T-V 图)所示为一理想气体( 已知)的循环过程.其中CA 为绝热过程.A点的状态参量(T, )和B 点的状态参量(T, )均为已知.(1) 气体在A B,B C 两过程中各和外界交换热量吗是放热还是吸热(2) 求C 点的状态参量(3) 这个循环是不是卡诺循环(4) 求这个循环的效率.解:(1)A B 是等温膨胀过程,气体从外界吸热,B C是等容降温过程,气体向外界放热.从又得(3)不是卡诺循环(4)由等比定理又可写为5-31 图5-31 中ABCD 为一摩尔理想气体氦的循环过程,整个过程由两条等压线和两条等容线组成为, 体积为,B 点的体积为,C 点的压强为,求循环效率.设解:DA 和AB 两过程吸热,5-29 设燃气涡轮机内工质进行如图5-29的循环过程,其中1-2,3-4 为绝热过程;2-3,4-1 为等压过程为.试证明这循环的效率又可写为其中是绝热压缩过程的升压比.设工作物质为理想气体, 为常数. 证:循环中,工质仅在2-3 过程中吸热,循环中,工质仅在4-1 过程中放热循环效率为从两个绝热过程,有.设已知 A 点的压强BC 和 CD 两过程放热5-33 一制冷机工质进行如图 5-33 所示的循环过程 ,其中 ab,cd 分别是温度为, 的等温过程 ;cb,da 为等压过程 .设工质为理想气体 ,证明这制冷机的制冷系数为 证:ab,cd 两过程放热则循环中外界对系统作的功为从低温热源 1,(被致冷物体 ) 吸收的热量为制冷系数为证明过程中可见 ,由于 ,在计算 时可不考虑 bc 及da 两过程 .第六章 热力学第二定律6-24 在一绝热容器中,质量为 m ,温度为 T1 的液体和相同质量的但温度为 T2 的液体,在一定压强下混合后达到新的 平衡态,求系统从初态到终态熵的变化,并说明熵增加,设已知液体定压比热为常数 CP 。

相关文档
最新文档