人教版数学八年级下册数据分析.doc

合集下载

人教版八年级下册第二十章数据的分析(教案)

人教版八年级下册第二十章数据的分析(教案)
7.解决实际问题,运用数据分析方法。
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,增强数据意识,提高数据分析素养;
2.培养学生掌握数据处理的基本方法,提高解决问题的能力,增强数学应用意识;
3.培养学生通过合作探究,发展逻辑思维和批判性思维,提高数学推理和论证能力;
4.培养学生运用数学知识和方法解决实际问题,增强数学建模和数据分析能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数、中位数、众数的基本概念。平均数是所有数值加总后除以数值的个数,它能够反映数据的集中趋势;中位数是将一组数据从小到大排列后位于中间的数,它对极端值的影响较小;众数是一组数据中出现次数最多的数,它适用于描述分类数据。这些统计量在描述数据时各有优势,是数据分析的重要工具。
-统计图、表的绘制和应用:通过直观的图形和表格展示数据,提高学生的数据分析能力。
举例:在讲解平均数时,强调其受极端值影响较大的特点;在介绍中位数和众数时,通过实例说明它们在描述数据集中趋势时的优势。
2.教学难点
-平均数、中位数、众数在实际问题中的应用:学生需要学会根据数据特点选择合适的描述指标;
-极差、方差的计算及其在数据分析中的应用:理解这些统计量的含义,并能正确应用于实际问题;
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过计算平均数、中位数和众数来分析一组考试成绩,以及这些统计量如何帮助我们更全面地理解数据。
3.重点难点解析:在讲授过程中,我会特别强调平均数受极端值影响较大,而中位数和众数则相对稳健这一特点。对于极差和方差的计算及应用,我会通过具体数据和图表来帮助大家理解它们在描述数据离散程度方面的作用。
人教版八年级下册第二十章数据的分析(教案)

人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)

人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)

第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。

2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。

3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。

4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。

5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。

一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

人教版初中数学八年级下册《数据的分析》教学设计

人教版初中数学八年级下册《数据的分析》教学设计

人教版初中数学八年级下册《数据的分析》教学设计一. 教材分析人教版初中数学八年级下册《数据的分析》是学生在掌握了统计学基础知识后,进一步学习数据分析的章节。

本章主要内容包括数据的收集、整理、描述和分析。

通过对数据的分析,使学生能够了解数据的分布特征,掌握数据的处理方法,提高对数据的敏感度和分析能力。

教材通过实例引入,让学生在实际问题中感受数据分析的重要性,培养学生的实际应用能力。

二. 学情分析学生在八年级上册已经学习了统计学的基础知识,对数据的收集、整理、表示有了初步的了解。

但学生在数据分析方面的能力还有待提高,特别是在实际问题中的应用能力和对数据分析方法的理解。

此外,学生的数学思维能力和逻辑推理能力也需进一步培养。

三. 教学目标1.了解数据的分布特征,掌握数据的处理方法。

2.培养学生的数据分析能力,提高对数据的敏感度和分析能力。

3.培养学生将数学知识应用于实际问题的能力。

4.培养学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.数据的分布特征和处理方法的理解。

2.数据分析方法在实际问题中的应用。

3.数据的收集和整理。

五. 教学方法1.采用问题驱动的教学方法,让学生在解决实际问题中学习数据分析的方法。

2.使用案例教学法,通过具体的实例使学生理解和掌握数据分析的知识。

3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。

4.使用多媒体教学手段,提高学生的学习兴趣和效果。

六. 教学准备1.准备相关的教学案例和实例。

2.准备教学PPT,进行课件的制作。

3.准备练习题和测试题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)通过一个实际问题引出数据分析的重要性,激发学生的学习兴趣。

例如,以一次考试的成绩数据为例,提出如何分析这次考试的成绩分布,找出优秀的学生和需要改进的学生。

2.呈现(10分钟)讲解数据的分布特征和处理方法,通过PPT展示相关的图表和数据,让学生直观地了解数据的分布情况。

人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义

人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义

初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。

求这一天10名工人生产零件的中位数。

知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。

例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。

知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。

✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。

➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。

✧缺点:不能充分地利用各数据的信息。

➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。

✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。

人教版八年级数学下册数据的分析《数据的集中趋势(第3课时)》示范教学设计

人教版八年级数学下册数据的分析《数据的集中趋势(第3课时)》示范教学设计

数据的集中趋势(第3课时)教学目标1.通过实际问题让学生理解怎样用样本平均数估计总体平均数.2.知道用样本平均数估计总体平均数的一般步骤,会用样本平均数估计总体平均数.3.了解常见的需要用样本平均数估计总体平均数的情形.教学重点会用样本平均数估计总体平均数.教学难点用样本平均数估计总体平均数的实际应用.教学过程知识回顾什么是加权平均数?【师生活动】找学生回答.【答案】一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则112212++++++n n n x w x w x w w w w 叫做这n 个数的加权平均数. 【设计意图】通过这个问题,让学生复习加权平均数的概念.新知探究一、探究学习【问题】当所考察的对象很多,或者对考察对象带有破坏性时,我们该如何求取平均数?【师生活动】学生思考,小组讨论,然后找学生代表回答.【答案】在统计中我们常常通过用样本估计总体的方法来获得对总体的认识.因此,我们可以用样本的平均数来估计总体的平均数.【设计意图】通过这个问题,让学生知道在一些实际应用中需要用样本的平均数来估计总体的平均数.二、典例精讲【例1】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用寿命如下表所示.这批灯泡的平均使用寿命是多少?【分析】抽出的50只灯泡的使用寿命组成一个样本.我们可以利用样本的平均使用寿命来估计这批灯泡的平均使用寿命.【答案】由表可以得出每组数据的组中值,于是80051200101600122000172400650x ⨯+⨯+⨯+⨯+⨯==1 672, 即样本平均数为1 672.因此,可以估计这批灯泡的平均使用寿命大约是1 672 h .【思考】用全面调查的方法考察这批灯泡的平均使用寿命合适吗?【师生活动】小组讨论,然后找学生代表回答,教师整理答案.【答案】因为要考察这批灯泡的平均使用寿命,考察本身带有破坏性,所以不能用全面调查的方法,只能通过抽样,利用部分灯泡的平均使用寿命估计这批灯泡的平均使用寿命,即用样本的平均数估计总体的平均数.【归纳】用样本平均数估计总体平均数的一般步骤:(1)确定样本容量(样本中个体的总数);(2)计算样本的数据总和;(3)计算样本平均数(样本的数据总和÷样本容量);(4)估计总体平均数.【设计意图】通过这个例题让学生知道需要用样本估计总体的一个情形,然后总结出用样本平均数估计总体平均数的一般步骤.【例2】为了检查一批零件(5 000件)的质量,从中随机抽取了10件,测得它们的长度(单位:mm )分别为:15.0,15.1,15.4,15.0,15.5,15.2,15.2,15.1,15.5,15.3.根据以上数据,你能估计出这批零件的平均长度吗?【分析】抽出的10件零件的长度组成一个样本.我们可以利用样本的平均长度来估计这批零件的平均长度.【答案】解:由测得的10件零件长度,可知15.0215.1215.415.5215.2215.310x ⨯+⨯++⨯+⨯+==15.23, 即样本平均数为15.23.因此,可以估计这批零件的平均长度大约是15.23 mm .【思考】教师追问:用全面调查的方法考察这批零件的平均长度合适吗?【师生活动】直接找学生回答,教师整理答案.【答案】因为要考察这批零件的平均长度,考察的对象很多,我们不可能对所有零件进行一一测量,所以不能用全面调查的方法,只能通过抽样,利用部分零件的平均长度估计这批零件的平均长度,即用样本的平均数估计总体的平均数.【归纳】在统计中,之所以要用样本的情况估计总体的情况,主要基于以下两点:(1)在很多情况下总体包含的个体数往往很多,不可能一一加以考察;(2)有些考察带有破坏性,因而考察的个体不允许太多.【设计意图】通过这个例题让学生知道需要用样本估计总体的另一个情形,并检验学生对在实际应用中用样本平均数估计总体平均数的掌握情况.【例3】某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用的时间进行了调查,右表是从该校八年级中随机抽取的50名学生某一天做数学课外作业所用时间的情况统计表.(1)第二组数据的组中值是多少?(2)估计该校八年级学生平均每天做数学作业所用的时间.【答案】解:(1)第二组数据的组中值是1020=152+; (2)所抽取的50名学生平均每天做数学作业所用的时间为541562514351345955430.850⨯+⨯+⨯+⨯+⨯+⨯=(min ). 因此,可以估计该校八年级学生平均每天做数学作业所用的时间大约为30.8 min .【设计意图】进一步检验学生对在实际应用中用样本平均数估计总体平均数的掌握情况.课堂小结板书设计一、用样本平均数估计总体平均数的一般步骤二、需要用样本平均数估计总体平均数的情形课后任务完成教材第116页练习.。

人教版八年级数学下册数据的分析《课题学习 体质健康测试中的数据分析》示范教学设计

人教版八年级数学下册数据的分析《课题学习  体质健康测试中的数据分析》示范教学设计

课题学习体质健康测试中的数据分析教学目标1.能根据实际需要确定和抽取样本.2.依据抽取的样本,对收集的数据进行整理、描述和分析,并对统计结果作出正确的评估以及提出合理的建议.3.经历统计调查的基本过程,体会通过统计调查活动解决实际问题的思路、方法和策略,培养学生的实践能力以及合作交流能力,建立统计观念.4.通过对统计结果的分析,增强健康意识.教学重点综合运用各种统计量分析数据.教学难点通过统计调查活动解决实际问题的思路、方法和策略.教学过程知识回顾【问题】什么是抽样调查?说一说总体、个体、样本、样本容量的概念.【师生活动】直接找学生回答.【答案】抽样调查是这样一种方法,它只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.总体:要考察的全体对象.个体:组成总体的每一个对象.样本:被抽取调查的那部分个体构成总体的一个样本.样本容量:一个样本中包含的个体的数目.【设计意图】回顾抽样调查,为下面的统计调查活动作铺垫.新知探究一、探究学习【问题】收集近两年你校七年级学生的《体质健康标准登记表》,分析登记表中的数据,对你校七年级学生的体质健康情况进行评定,从而提出增强学生体质健康的建议.体质健康标准登记表我们来看下面这个样例.某学校七年级有4个班,共180人,其中男生85人,女生95人.这个调查如何完成呢?【师生活动】教师引导,小组讨论,找学生代表回答.(一)收集数据1.确定样本从全校七年级的各班分别抽取5名男生和5名女生,组成一个容量为40的样本.2.确定抽取样本的方法按照各班的学号,分别在每个班抽取学号排在最前面的5名男生和5名女生.(二)整理数据教师引导:根据你收集的原始数据能清晰地反映出本校七年级学生的体质健康状况吗?如果不能,可以用什么方式作进一步的整理更好?学生回答,教师纠正,得到答案:列表整理体质健康登记表中的各项数据.教师示例:例如,计算每个个体的最后得分,按评分标准整理样本数据,得到下表.(三)描述数据根据整理的各种表格,画出条形图、扇形图、折线图、直方图等,使得数据分布的信息更清楚地表示出来.教师示例:例如,根据上面整理的表格,可以画出条形图和扇形图如下.(四)分析数据根据原始数据或上面的各种统计图表,计算各组数据的平均数、中位数、众数、方差等,通过分析图表和计算结果得出结论.教师追问:根据以上各图表,你能得到什么结论?学生回答,教师纠正,得到答案:例如,根据以上各图表可知,样本的体质健康成绩达到良好的最多,有17人,良好及以上的有29人,约占统计人数的70%左右.由此可以估计全校七年级学生的体质健康成绩有类似的结果.(五)撰写调查报告(六)交流写出活动总结,向全班同学介绍本小组的调查过程,展示调查结果,交流通过数据处理寻找规律、得出结论的感受.【新知】统计调查活动的基本步骤是:收集数据、整理数据、描述数据、分析数据,然后将调查过程和结果撰写报告,最后交流体会和感受.【设计意图】通过这个问题,让学生知道统计调查活动的基本步骤,并会在实际生活中进行运用.二、典例精讲【例题】某中学数学活动小组为了调查居民的用水情况,从某社区的1 500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:(1)求这30户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m t,家庭月用水量不超过m t的部分按原价收费,超过m t 的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.【答案】解:(1)这组数据的平均数为3443106.230⨯+⨯++=,众数为7,中位数为7.(2)1 500×6.2=9 300(t),所以估计该社区月用水量约为9 300t.(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7t的家庭节约用水.【设计意图】检验学生在实际生活中分析数据的能力.课堂小结板书设计一、统计调查活动的基本步骤二、样例问题解决过程课后任务完成教材第137页复习题第8题.。

人教版初中数学八年级下第二十章 数据的分析极差和方差

人教版初中数学八年级下第二十章 数据的分析极差和方差

甲同学成绩与平均成绩的偏差的平方和:
(85-90)2+(90-90)2+(90-90)2 +(90-90)2 + (95-90)2 = 50
乙同学成绩与平均成绩的偏差的平方和:
(95-90)2+(85-90)2+(95-90)2 +(85-90)2 +(90-90)2 = 100
上述各偏差的平方和的大小还与什么有关?
4、计算下列各组数据的方差: (1)6 6 6 6 6 6 6; 6 0 (2)5 5 6 6 6 7 7; 6 4/7 (3)3 3 4 6 8 9 9 ;6 44/7 (4)3 3 3 6 9 9 9 ;6 54/7
小明的烦恼
在学校,小明本学期五次测验的数学成绩和英语 成绩分别如下(单位:分)
成绩(分)
下图中画出折线统计图; 100
⑶ 现要挑选一名同学参加竞
95
90
赛,若你是老师,你认为挑 85
考 试
选哪一位比较适宜?为什么? 80
次 数
0 1 2 345
甲 85 90 90 90 95
乙 95 85 95 85 90
_
_
x甲 90(分) x乙 90(分)
甲同学成绩与平均成绩的偏差的和:
25
23 22
20
23 21
14 10
24 20
19 16
25
23 22
20
23 21
(1)乌鲁木齐的气温的最大值、最小值各是多少?温差是多少?
广 州呢?
气温 最大值 最小值 温差
乌鲁木齐 广州
24℃ 25℃
10℃ 20℃
14℃ 5℃
(2)你认为两个地区的气温情况怎样? 乌鲁木齐的气温变化幅度较大,广 州的气温变化幅度较小.

人教版八年级下册数学知识点归纳:第二十章数据的分析

人教版八年级下册数学知识点归纳:第二十章数据的分析

人教版八年级下册数学知识点归纳
第二十章数据的分析
数据的代表:平均数、众数、中位数、极差、方差
1.解统计学的几个基本概念
总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。

2.平均数:当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。

3.众数与中位数:平均数、众数、中位数都是用来描述数据集中趋势的量。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。

中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。

4.极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。

5.方差与标准差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是
s2=[(x1-)2+(x2-)2+…+(x n-)2];
方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷 鼎尚图文**整理制作
数据分析
姓名:
一、选择题(每小题6分,共36分)
1、数据2,3,5,5,4的众数是 ( )
(A )2 (B )3 (C )4 (D )5
2、某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该组数据的中位数是 ( )
(A )78 (B )81 (C )91 (D )77.3
3、某男装专卖店老板专营某品牌夹克,店主统计了一周中不同尺码的夹克的销售量如下表:
尺码 39 40 41 42 43 平均每天销售量/件 10 12 20 12 12 如果每件夹克的利润相同,你认为该店主最关注的销售数据是( )
(A )平均数 (B )方差 (C ) 众数 (D )中位数
4、12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6位进入决赛。

如果小颖知道了自己的成绩后,要判断能否进入决赛,小颖需要知道这12位同学成绩的 ( )
(A )平均数 (B )方差 (C ) 众数 (D )中位数
5、某学校在开展“节约每一滴水”的活动中,从七年级的100名同学中任选出20名同学汇报了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是正整数)整理如下表:
节水量x/t
5.15.0<≤x 5.25.1<≤x 5.35.2<≤x 5.45.3<≤x 人数 6 4 8 2 请你估计这100名同学的家庭一个月节约用水的总量大约是 ( )
(A )180 t (B )300 t (C )230 t (D )250 t
6、甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:
班级 参赛人数 中位数 方差 平均数 甲 55 149 191 135 乙 55 151 110 135 某同学分析上表后得到如下结论:
①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数≥150为优秀);③甲班成绩的波动比乙班大。

上述结论中正确的是 ( )
(A )①②③ (B )①② (C )①③ (D )②③
二、填空题(每小题6分,共24分) 7、一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表: 尺码/cm 22 22.5 23 23.5 24 24.5 25 销售量/双 1 2 5 12 6 3 1 如果鞋店要购进90双这种女鞋,那么购进22cm ,24cm 和24.5cm 三种尺码女鞋数量最合适的分别是________________。

8、甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气
温的方差大小关系为22____乙甲s s (填>或<)
9、一组数据,25,29,x ,14,它的中位数是23,则这组数据的平均数为______.
10、阅读下列材料:
为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核。

在相同条件下,各跳了10次,成绩(单位:分)如下:
甲 76 84 90 86 81 87 86 82 85 83
乙 82 84 85 89 79 80 91 89 74 79
回答下列问题:
(1) 甲成绩的平均数是________,乙成绩的平均数是________;
(2)经计算知s 2甲=13.2,36.26s 2=乙,这表明_________________(用简明的文字语言表述)。

(3)你认为选谁去比赛更合适?_______,理由是_________________________。

三、解答题(每小题10分,共40分)
11、国家规定“中小学生每天在校体育活动时间不低于1h ”,为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内320名初中学生。

根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A 组:h t 5.0<
B 组:h t h 15.0<≤
C 组:h t h 5.11<≤
D 组:h t 5.1≥
请根据上述信息解答下列问题:
(1)C 组的人数是__________;
(2)本次调查数据的中位数落在______组内。

(3)若该市辖区内约有32000名初中学生, 请你估计其中国家规定体育活动时间的人约 有多少?
20
40
60
80100120140A B C D 组别 人数
161820222426283032
12345678910日期
甲地乙地温度
12、一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条作上标记,然后放回池塘里。

过了一段时间,待带标记的鱼混合于鱼群后,再捕捞5次,记录如下:第一次捕捞90条,带标记的有11条;第二次捕捞100条,带标记的有9条;第三次捕捞120条,带标记的有12条;第四次捕捞100条,带标记的有9条;第五次捕捞80条,带标记的有8条。

池塘内大约有多少条鱼?
13、某公司招聘职员,对甲,乙两位候选人进行了笔试和面试,面试中包括形体和口才,笔试中包括专业水平和创新能力,它们的成绩(百分制)如下表:
候选人
面试笔试
形体口才专业水平创新能力
甲86 90 96 92
乙92 88 95 93
(1)如果公司根据经营性质和岗位要求,以形体、口才、专业水平、创新能力按照5:5:4:6的比确定成绩,请计算甲、乙两人的平均成绩,看看谁将录取?(2)如果公司根据经营性质和岗位要求,以面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,创新能力占30%确定成绩,那么你认为该公司应该录取谁?
14、某商场统计了每个营业员在某月的销售额,绘制了如下统计图。

解答下列问题:
(1)设营业员的月销售额为x (单位:万元)。

商场规定:当x < 15时为不称职,当2015<≤x 时为基本称职,当2520<≤x 时为称职,当25≥x 时为优秀。

试求出不称职、基本称职、称职、优秀四个层次营业员人数所占百分比,并画出相应的扇形图。

(2)根据(1)中规定,所有称职和优秀的营业员月销售额的中位数、众数和平均数分别是多少?
(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励。

如果要使得称职和优秀的所有营业员的半数左右能获奖,奖励标准应定为多少元?并简述其理由。

01234
5
6
1314151617181920212223242528销售额x/万元 人数。

相关文档
最新文档