大学物理第9章静电场习题参考答案
大学物理答案第9章
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律 ()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图 分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得 300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图 分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 ∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++= r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ 9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 ⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 . 题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势 R εQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布 ()()()22021********* π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则 rεQ Q V 0213π4+= (2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 ⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的 ()x x R εσx r rr εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 V 1695π40==xεq V 1-20m V 5649π4⋅==x εq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k 021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k 0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度m/s 1037.927⨯==m E v k题 9-27。
大学物理课后习题答案
第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。
因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。
AOP ∆是边长为a 的等边三角形。
已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。
袁艳红主编大学物理学第九章课后习题答案
----------专业最好文档,专业为你服务,急你所急,供你所需-------------文档下载最佳的地方第9章 静电场习 题一 选择题9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ](A)4f (B) 8f (C) 38f (D) 16f答案:B解析:经过碰撞后,球A 、B 带电量为2q,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为8f。
9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。
因而正确答案(B )习题9-3图(B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 (C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。
O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式204q E rπε=,移动电荷后,由于OP =OT ,即r 没有变化,q 没有变化,因而电场强度大小不变。
因而正确答案(D )9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ](A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。
大学物理答案第9章
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题9-1图 分析与解 “无限大”均匀带电平板激发的电场强度为2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )(C )(D )分析与解但不也9-3 (A )(B )(C )(D )*9-4 偶极子将(A )(B )(C )(D )题9-4图分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e ,中子电量为10-21e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20m),中子内的两个下夸克之间相距2.60×10-15m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 2.0q 的解9-8 (2)分析 L ,它在点P (1)若点P (2)若点P P 的电证 (1)E L/-L/P =⎰(2)当棒长L 此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题9-9图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有积分得02/π004d cos sin 2εδθθθεδ⎰==E9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0.试计算在分子的对称轴线上,距分子较远处的电场强度.题9-10图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0,利用教材第5-3节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩解2 由于r 2=代入得(+r x2029-11 分析 (1(2)量,即:解 (1) (2)设F 显然有F +9-12 .分析 .因而方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有 依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理地球表面电荷面密度 单位面积额外电子数9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解依照上述分析,由高斯定理可得R r <R r >9-15 .求离轴线为r 分析只有侧面布.解 r <R 1, R 1<r <R 2r >R 2,9-16 分析W ′=-W .(1)其中E 是点电荷Q 1、Q 3产生的合电场强度.(2)根据电场力作功与电势能差的关系,有 其中V 0是Q 1、Q 3在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1所受的合力为零 解得Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.9-17 已知均匀带电长直线附近的电场强度近似为其中λ为电荷线密度.(1)求在r =r 1和r =r 2两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明. 解 (1)由于电场力作功与路径无关,若沿径向积分,则有 (2)不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →9-18 分析 的电势.解 q 2=2q 19-19 分析分布.解 9-20 (2)分析 通常可采用两种方法.方法(1)由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为 在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1)由高斯定理可求得电场分布 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有 当r ≥R 2时,有(2)两个球面间的电势差解2 (1)由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则 若该点位于两个球面之间,即R 1≤r ≤R 2,则 若该点位于两个球面之外,即r ≥R 2,则 (2)两个球面间的电势差9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题9-21图分析解 当r ≤R 时得()r E =当r ≥R 时得()r E =当r ≤R 时当r ≥R 时9-22 布;(2)分析解 由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2(1)(2)轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3)将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得 当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1=3.0×10-2m ,R 2=0.10 m ),带有等量异号的电荷,两者的电势差为450V.求:(1)圆柱面单位长度上带有多少电荷?(2)r =0.05 m 处的电场强度.解 (1)由习题9-15的结果,可得两圆柱面之间的电场强度为 根据电势差的定义有 解得1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2)解得两圆柱面之间r =0.05m 处的电场强度9-24即 .但是要 m )分析 解由k0E 得=T9-25年消耗的能量为3000kW ·h ,则可为多少个家庭提供一年的能量消耗?解 (1)若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量 即可融化约90吨冰.(2)一个家庭一年消耗的能量为一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能. 9-26 已知水分子的电偶极矩p =6.17×10-30C ·m .这个水分子在电场强度E =1.0×105V ·m -1的电场中所受力矩的最大值是多少?分析与解在均匀外电场中,电偶极子所受的力矩为当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有9-27电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK ⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解(1)依照上述分析,电子到达被焊接金属时具有的动能(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题9-27。
大学物理第9篇习题解答
第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。
考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±=(2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r r m G r q f f G e ππε氧其净力是引力。
9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = ×10-9C ,B 点处有点电荷q 2 = -×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。
解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。
点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε E 2 EE 1q 2A C q 1B θ994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。
C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。
大学物理第九章课后习题答案
题库
第九章 静电场的基本规律
一、 填空 1. 电荷分为 和 ,一般把用 摩擦过的玻璃棒上所带的电 荷称为 , 把用毛皮摩擦过的 上所带的电荷称为 。 2. 物体所带电荷的多寡程度的物理量称为 。 3. 物体所带的电荷量不是以连续值出现,而是以不连续的量值出现的,这称 为 。 4. 试探电荷满足的两个条件是 , 。 5. 穿过电场中某曲面的电场线条数称为电场对该曲面的 。 6. 静电场的电场线起始于, ,终止于 , 是 (填 “闭合” 或 “不闭合” ) 的曲线, 在没有电荷的空间里, 电场线既不会 , 也不会 。 7. 高斯定理的表达式是 。 8. 电场中电势相等的点所构成的曲面称为 。 点电荷的等势面是以点电 荷为球心的一系列 。 9. 沿等势面移动电荷,电场力做功为 ,等势面和电场线处处 。 10. 沿电场线方向,电势 (填“升高”或“降低” ) 。 二、 简答 1. 2. 3. 4. 5. 简述真空中点电荷满足的库仑定律的内容及矢量表达式。 简述研究电场性质时,试探电荷需满足的两个条件。 简述电场线怎样描述电场的性质,以及静电场的电场线的特点。 简述高斯定理。 简述等势面具有的性质。
s
q内
0
。
8. 等势面,同心球面。 9. 零,正交。 10. 降低。 二、 简答 1. 答:内容:真空中两个点电荷之间的相互作用力沿其连线方向,同号相斥, 异号相吸;作用力的大小与两电荷的电荷量的乘积成正比,与两电荷之间的距离 的平方成反比。 矢量表达式: F =
q1 q 2 r0 。 4πε 0 r 2
� q j 2π 2 ε 0 R 2
联立①②, 可得 Q = 3 q 3
① ②
∴在三角形的中心应放置一电量为 − 的合力为零. 5.
大学物理静电场练习题及答案
练习题7-1 两个点电荷所带电荷之和为Q ,它们各带电荷为多少时,相互间的作用力最大?解: 这是一个条件极值问题。
设其中一个点电荷带电q ,则另一个点电荷带电q Q -, 两点电荷之间的库仑力为()241r qq Q F -=πε由极值条件0d d =q F,得Q q 21=又因为202221d d r q F πε-=<0这表明两电荷平分电荷Q 时,它们之间的相互作用力最大。
7-2 两个相同的小球,质量都是m ,带等值同号的电荷q ,各用长为l 的细线挂在同一点,如图7-43所示。
设平衡时两线间夹角2θ很小。
(1)试证平衡时有下列的近似等式成立:31022⎪⎪⎭⎫⎝⎛=mg l q x πε式中x 为两球平衡时的距离。
(2)如果l = 1.20 m ,m =10 g ,x =5.0 cm ,则每个小球上的电荷量q 是多少?(3)如果每个球以-19s C 1001⋅⨯-.的变化率失去电 图7-43 练习题7-2图 荷,求两球彼此趋近的瞬时相对速率d x /d t 是多少? 解:(1)带电小球受力分析如图解所示。
小球平衡时,有FT =θsinmg T =θcos由此二式可得mgF =θtan因为θ很小,可有()l x 2tan ≈θ,再考虑到2024x q F πε=可解得31022⎪⎪⎭⎫ ⎝⎛=mg l q x πε(2)由上式解出C 10382282130-⨯±=⎪⎪⎭⎫⎝⎛±=.l mgx q πε (3) 由于tq q x t q q mg l t x d d 32d d 322d d 31310=⎪⎪⎭⎫ ⎝⎛==-πευ 带入数据解得-13s m 10401⋅⨯=-.υ合力的大小为2222201222412cos 2⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⋅===d x x d x e F F F x πεθ()23222043241dx xe +=πε令0d d =x F ,即有()()0482341825222232202=⎥⎥⎦⎤⎢⎢⎣⎡+⋅-+d x x d x e πε 由此解得α粒子受力最大的位置为22d x ±=7-4 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。
大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第九章_习题9_答案
习题9之阳早格格创做(1)正圆形的二对付角线处各搁置电荷Q,另二对付角线各搁置电荷q,若Q所受到合力为整,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[问案:A](2)底下道法精确的是:()(A)若下斯里上的电场强度到处为整,则该里内肯定不电荷;(B)若下斯里内不电荷,则该里上的电场强度肯定到处为整;(C)若下斯里上的电场强度到处不为整,则该里内肯定有电荷;(D)若下斯里内有电荷,则该里上的电场强度肯定到处不为整.[问案:D](3)一半径为R的导体球表面的里面荷稀度为σ,则正在距球里R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [问案:C](4)正在电场中的导体里里的()(A)电场战电势均为整;(B)电场不为整,电势均为整;(C)电势战表面电势相等;(D)电势矮于表面电势.[问案:C](1)正在静电场中,电势稳定的天区,场强肯定为 .[问案:相共](2)一个面电荷q搁正在坐圆体核心,则脱过某一致况的电通量为,若将面电荷由核心背中移动至无限近,则总通量将 .[问案:q/6ε0, 将为整](3)电介量正在电容器中效率(a)——(b)——.[问案:(a)普及电容器的容量;(b) 延少电容器的使用寿命](4)电量Q匀称分散正在半径为R的球体内,则球内球中的静电能之比 .[问案:5:6]9.3 电量皆是q的三个面电荷,分别搁正在正三角形的三个顶面.试问:(1)正在那三角形的核心搁一个什么样的电荷,便不妨使那四个电荷皆达到仄稳(即每个电荷受其余三个电荷的库仑力之战皆为整)?(2)那种仄稳与三角形的边少有无关系?(1) 以A处面电荷为钻研对付象,由力仄稳知:q 为背电荷解得 q q 33-=' (2)与三角形边少无关.9.4 二小球的品量皆是m ,皆用少为l 的细绳挂正在共一面,它们戴有相共电量,停止时二线夹角为2θ,如题9.4图所示.设小球的半径战线的品量皆不妨忽略不计,供每个小球所戴的电量.解:解得 θπεθtan 4sin 20mg l q = 9.5 根据面电荷场强公式204r q E πε=,当被观察的场面距源面电荷很近(r →0)时,则场强→∞,那是不物理意思的,对付此应怎么样明白?解: 020π4r r q Eε=仅对付面电荷创造,当0→r 时,戴电体不克不迭再视为面电荷,再用上式供场强是过失的,本量戴电体有一定形状大小,思量电荷正在戴电体上的分散供出的场强不会是无限大.9.6 正在真空中有A ,B 二仄止板,相对付距离为d ,板里积为S ,其戴电量分别为+q 战-q .则那二板之间有相互效率力f,有人道f =2024dq πε,又有人道,果为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问那二种道法对付吗?为什么? f 到底应等于几?解: 题中的二种道法均分歧过失.第一种道法中把二戴电板视为面电荷是分歧过失的,第二种道法把合场强Sq E 0ε=瞅成是一个戴电板正在另一戴电板处的场强也是分歧过失的.精确解允许为一个板的电场为Sq E 02ε=,另一板受它的效率力Sq S qq f 02022εε==,那是二板间相互效率的电场力.9.7 少l =的曲导线AB 上匀称天分散着线稀度λx10-9C ·m -1的正电荷.试供:(1)正在导线的延少线上与导线B 端相距1a =处P 面的场强;(2)正在导线的笔曲仄分线上与导线中面相距2d = 处Q 面的场强.解:(1) 正在戴电曲线上与线元x d ,其上电量q d 正在P面爆收场强为20)(d π41d x a xE P-=λε用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代进得21074.6⨯=P E 1C N -⋅ 目标火仄背左(2)共理2220d d π41d +=x x E Qλε由于对付称性⎰=l Qx E 0d ,即Q E惟有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代进得21096.14⨯==Q y Q E E 1C N -⋅,目标沿y 轴正背一个半径为R 的匀称戴电半圆环,电荷线稀度为λ,供环心处O 面的场强.ϕλλd d d R l q ==,它正在O 面爆收场强盛小为20π4d d R R E εϕλ=目标沿半径背中则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰ ∴ RE E x0π2ελ==,目标沿x 轴正背.9.9 匀称戴电的细线直成正圆形,边少为l ,总电量为q .(1)供那正圆形轴线上离核心为r 处的场强E ;(2)道明:正在l r >>处,它相称于面电荷q 爆收的场强E .解: 如9.9图示,正圆形一条边上电荷4q 正在P 面爆收物强P Ed 目标如图,大小为∵ 22cos 221l r l +=θ∴ 24π4d 22220l r l l r E P++=ελP Ed 正在笔曲于仄里上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ由于对付称性,P 面场强沿OP 目标,大小为 ∵ lq4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 目标沿OP(1)面电荷q 位于一边少为a 的坐圆体核心,试供正在该面电荷电场中脱过坐圆体的一个里的电通量;(2)如果该场源面电荷移动到该坐圆体的一个顶面上,那时脱过坐圆体各里的电通量是几?解: (1)由下斯定理0d εqS E s⎰=⋅坐圆体六个里,当q 正在坐圆体核心时,每个里上电通量相等∴ 各里电通量06εq e =Φ.(2)电荷正在顶面时,将坐圆体蔓延为边少a 2的坐圆体,使q 处于边少a 2的坐圆体核心,则边少a 2的正圆形上电通量6εq e =Φ 对付于边少a 的正圆形,如果它不包罗q 天圆的顶面,则24εq e =Φ,如果它包罗q 天圆顶面则0=Φe .如题9.10图所示. 题9.10 图匀称戴电球壳内半径6cm ,中半径10cm ,电荷体稀度为2×510-C ·m -3供距球心5cm ,8cm ,12cm 各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 目标沿半径背中.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径背中. 半径为1R 战2R (2R >1R )的二无限少共轴圆柱里,单位少度上分别戴有电量λ战-λ,试供:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s与共轴圆柱形下斯里,正里积rl S π2=则 rl E S E Sπ2d =⋅⎰对付(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径背背中(3) 2R r > 0=∑q∴ 0=E9.13 二个无限大的仄止仄里皆匀称戴电,电荷的里稀度分别为1σ战2σ,试供空间各处场强.解: 如题9.13图示,二戴电仄里匀称戴电,电荷里稀度分别为1σ与2σ, 二里间, n E)(21210σσε-=1σ里中, n E)(21210σσε+-=2σ里中, n E)(21210σσε+=n:笔曲于二仄里由1σ里指为2σ里.9.14 半径为R 的匀称戴电球体内的电荷体稀度为ρ,若正在球内掘去一齐半径为r <R 的小球体,如题图所示.试供:二球心O 与O '面的场强,并道明小球空腔内的电场是匀称的.解: 将此戴电体瞅做戴正电ρ的匀称球与戴电ρ-的匀称小球的拉拢,睹题9.14图(a).(1) ρ+球正在O 面爆收电场010=E,ρ-球正在O 面爆收电场'dπ4π3430320OO r E ερ=∴ O 面电场'd33030OO r E ερ= ;(2) ρ+正在O '爆收电场'dπ4d 3430301OO E ερπ='ρ-球正在O '爆收电场002='E∴ O ' 面电场 003ερ='E'OO 题9.14图(a) 题9.14图(b)(3)设空腔任一面P 相对付O '的位矢为r',相对付O 面位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+='∴腔内场强是匀称的. 9.15 一电奇极子由q ×10-6C的二个同号面电荷组成,二电荷距离d=,把那电奇极子搁正在×105N ·C -1的中电场中,供中电场效率于电奇极子上的最大举矩.解: ∵ 电奇极子p正在中场E 中受力矩∴ qlE pE M ==max 代进数字二面电荷1q ×10-8C ,2q ×10-8C ,相距1r =42cm ,要把它们之间的距离形成2r =25cm ,需做几功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εε )11(21r r -中力需做的功 61055.6-⨯-=-='A A J9.17 如题图所示,正在A ,B 二面处搁有电量分别为+q ,-q 的面电荷,AB 间距离为2R ,现将另一正考查面电荷0q 从O 面通过半圆弧移到C 面,供移动历程中电场力做的功.解:∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题图所示的绝缘细线上匀称分散着线稀度为λ的正电荷,二曲导线的少度战半圆环的半径皆等于R .试供环核心O 面处的场强战电势.解: (1)由于电荷匀称分散与对付称性,AB 战CD 段电荷正在O 面爆收的场强互相对消,与θd d R l =则θλd d R q =爆收O 面Ed 如图,由于对付称性,O 面场强沿y 轴背目标R0π4ελ=[)2sin(π-2sin π-](2) AB 电荷正在O 面爆收电势,以0=∞U 共理CD 爆收 2ln π402ελ=U 半圆环爆收 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 9.19 一电子绕一戴匀称电荷的少曲导线以2×104m ·s -1的匀速率做圆周疏通.供戴电曲线上的线电荷稀度.(电子品量0m ×10-31kg ,电子电量e ×10-19C)解: 设匀称戴电曲线电荷稀度为λ,正在电子轨讲处场强 电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 气氛不妨启受的场强的最大值为E =30kV ·cm -1,超出那个数值时气氛要爆收火花搁电.今有一下压仄止板电容器,极板间距离为d =,供此电容器可启受的最下电压.解: 仄止板电容器里里近似为匀称电场9.21 道明:对付于二个无限大的仄止仄里戴电导体板(题图)去道,(1)相背的二里上,电荷的里稀度经常大小相等而标记差同;(2)相背的二里上,电荷的里稀度经常大小相等而标记相共.证: 如题9.21图所示,设二导体A 、B 的四个仄里匀称戴电的电荷里稀度依次为1σ,2σ,3σ,4σ(1)则与与仄里笔曲且底里分别正在A 、B 里里的关合柱里为下斯里时,有∴ +2σ03=σ道明相背二里上电荷里稀度大小相等、标记差同;(2)正在A 里里任与一面P ,则其场强为整,而且它是由四个匀称戴电仄里爆收的场强叠加而成的,即 又∵ +2σ03=σ ∴ 1σ4σ=道明相背二里上电荷里稀度经常大小相等,标记相共. 9.22 三个仄止金属板A ,B 战C 的里积皆是200cm 2,A 战B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 皆接天,如题图所示.如果使A 板戴正电×10-7C ,略去边沿效力,问B 板战C 板上的感触电荷各是几?以天的电势为整,则A 板的电势是几? 解: 如题9.22图示,令A 板左正里电荷里稀度为1σ,左正里电荷里稀度为2σ(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV 二个半径分别为1R 战2R (1R <2R )的共心薄金属球壳,现给内球壳戴电+q ,试估计:(1)中球壳上的电荷分散及电势大小;(2)先把中球壳接天,而后断启接天线沉新绝缘,此时中球壳的电荷分散及电势;*(3)再使内球壳接天,此时内球壳上的电荷以及中球壳上的电势的改变量.解: (1)内球戴电q +;球壳内表面戴电则为q -,中表面戴电为q +,且匀称分散,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)中壳接天时,中表面电荷q +进天,中表面不戴电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -爆收: (3)设此时内球壳戴电量为q ';则中壳内表面戴电量为q '-,中壳中表面戴电量为+-q q ' (电荷守恒),此时内球壳电势为整,且得 q R R q 21=' 中球壳上电势半径为R 的金属球离大天很近,并用导线与天相联,正在与球心相距为R d 3=处有一面电荷+q ,试供:金属球上的感触电荷的电量.解: 如题9.24图所示,设金属球感触电荷为q ',则球接天时电势0=O U由电势叠加本理有: 得 -='q 3q 有三个大小相共的金属小球,小球1,2戴有等量共号电荷,相距甚近,其间的库仑力为0F .试供:(1)用戴绝缘柄的不戴电小球3先后分别交战1,2后移去,小球1,2之间的库仑力;(2)小球3依次接替交战小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3交战小球1后,小球3战小球1均戴电2q q =', 小球3再与小球2交战后,小球2与小球3均戴电 ∴ 此时小球1与小球2间相互效率力(2)小球3依次接替交战小球1、2很多次后,每个小球戴电量均为32q .∴ 小球1、2间的效率力00294π432322F r qq F ==ε正在半径为1R 的金属球除中包有一层中半径为2R 的匀称电介量球壳,介量相对付介电常数为r ε,金属球戴电Q .试供:(1)电介量内、中的场强; (2)电介量层内、中的电势; (3)金属球的电势.解: 利用有介量时的下斯定理∑⎰=⋅q S D Sd(1)介量内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介量中)(2R r <场强 (2)介量中)(2R r >电势 介量内)(21R r R <<电势 (3)金属球的电势9.27 如题图所示,正在仄止板电容器的一半容积内充进相对付介电常数为r ε的电介量.试供:正在有电介量部分战无电介量部分极板上自由电荷里稀度的比值. 解: 如题9.27图所示,充谦电介量部分场强为2E,真空部分场强为1E,自由电荷里稀度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε= ∴ r r E E εεεεσσ==102012二个共轴的圆柱里,少度均为l ,半径分别为1R 战2R (2R >1R ),且l >>2R -1R ,二柱里之间充有介电常数εQ 战-Q 时,供:(1)正在半径r 处(1R <r <2R =,薄度为dr ,少为l 的圆柱薄壳中任一面的电场能量稀度战所有薄壳中的电场能量; (2)电介量中的总电场能量; (3)圆柱形电容器的电容. 解: 与半径为r 的共轴圆柱里)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQD π2=(1)电场能量稀度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介量中总电场能量(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 如题9.29 图所示,1C =μF ,2C =μF ,3C =μF .1C 上电压为50V .供:AB U . 解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 9.30 1C 战2C 二电容器分别标明“200 pF 、500 V”战“300 pF 、900 V”,把它们串联起去后等值电容是几?如果二端加上1000 V的电压,是可会打脱?解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超出耐压值会打脱,而后2C 也打脱.半径为1R = 的导体球,中套有一共心的导体球壳,壳的内、中半径分别为2R =战3R =,当内球戴电荷Q ×10-8C 时,供:(1)所有电场储藏的能量;(2)如果将导体壳接天,估计储藏的能量; (3)此电容器的电容值.解: 如图,内球戴电Q ,中球壳内表面戴电Q -,中表面戴电Q(1)正在1R r <战32R r R <<天区正在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴正在21R r R <<天区正在3R r >天区∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接天时,惟奇尔21R r R <<30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε。
大学物理标准答案第9章
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max<<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律 ()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图 分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得 300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图 分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 ∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++= r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ 9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 ⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 . 题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势 R εQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布 ()()()22021********* π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则 rεQ Q V 0213π4+= (2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 ⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的 ()x x R εσx r rr εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 V 1695π40==xεq V 1-20m V 5649π4⋅==x εq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度m/s 1037.927⨯==m E v k题 9-27。
大学物理3第09章习题分析与解答
大学物理3第09章习题分析与解答(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第九章 电磁感应9-1 在感应电场中电磁感应定律可写成tΦd d d L K -=⎰⋅l E ,式中K E 为感生电场的电场强度.此式表明[ ]。
(A) 闭合曲线L 上K E 处处相等 (B)感生电场的电场强度线不是闭合曲线(C) 感生电场是保守力场 (D) 在感生电场中不能像对静电场那样引入电势的概念分析与解 感生电场与位移电流是麦克斯韦两个重要假设,感生电动势总是等于感生电场沿该闭合回路的环流,故感生电场不是保守场,称为有旋电场,不能象静电场那样引入电势的概念。
正确答案为(D )。
9-2 E 和E k 分别表示静电场和有旋电场的电场强度,下列关系式中,正确的是[ ]。
(A )0d L =⎰⋅l E (B )0Ld ≠⎰⋅l E(C )0d k L =⎰⋅l E(D )0d k L≠⎰⋅l E 分析与解 静电场的环流恒为零,而感生电场的环流不一定为零。
正确答案为(A )。
9-3 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感,则[ ]。
(A) 铜环中有感应电流,木环中无感应电流(B) 铜环中有感应电流,木环中有感应电流(C) 铜环中感生电场大,木环中感生电场小(D )铜环中感生电场小,木环中感生电场大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但木环中不会形成电流。
正确答案为(A )。
9-4 关于位移电流,有下面四种说法,正确的是[ ]。
(A )位移电流的实质是变化的电场(B )位移电流和传导电流一样是定向运动的电荷(C )位移电流的热效应服从焦耳—楞兹定律(D )位移电流的磁效应不服从安培环路定律分析与解 位移电流的实质是变化的电场。
变化的电场激发磁场,这一点位移电流等效于传导电流;但位移电流不是定向运动的电荷,也不服从焦耳热效应、安培力等定律。
太原理工大学大学物理第五版第9章课后题答案
第9章 真空中的静电场(习题选解)9-补充 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。
为使每个负电荷受力为零,Q 之值应为多大?解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图22221004330cos 42r q r q f πεπε=︒⨯=中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为2233200434r Qqr Qq f πεπε==⎪⎪⎭⎫ ⎝⎛由12f f =,得3Q q =。
6-补充 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。
试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大?解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 1912 3.210Q e C -==⨯Th 离子带90个单位正电荷,即1929014410Q e C -==⨯它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:191991221520 3.21014410(9.010)5124(9.010)Q Q F N r πε---⨯⨯⨯==⨯⨯=⨯(2) 粒子的质量为:2727272()2(1.6710 1.6710) 6.6810p n m m m Kg α---=+=⨯⨯+⨯=⨯由牛顿第二定律得:282275127.66106.6810F a m s m α--===⨯⋅⨯ 9-1 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。
求作用在第3个点电荷上的力。
解:由图可知,第3个电荷与其它各电荷等距,均为2r m =。
大学物理静电场作业题参考答案
解得 q 2l sin 4 0mg tan 7.3.4 长 l =15.0cm的直导线AB上均匀地分布着线密度 =5.0x10-9C·m-1的正电荷.试
求:(1)在导线的延长线上与导线B端相距 a1 =5.0cm处 P 点的场强;(2)在导线的垂直 平分线上与导线中点相距 d2 =5.0cm 处 Q 点的场强.
S
(D) 曲 面 S 的 电 场 强 度 通 量 不 变 , 曲 面 上 各 点 场 强 变
化.
题 7.1(2)图
[答案 D ]
(3)在电场中的导体内部的 [ ] (A)电场和电势均为零; (B)电场不为零,电势均为零; (C)电势和表面电势相等; (D)电势低于表面电势。 [答案:C]
(4)两个同心均匀带电球面,半径分别为 Ra 和 Rb (Ra<Rb), 所带电荷分别为 Qa 和
Uo
4U1
4
8.99
109
1.25 5
108 102
8.99 103V
(2)根据电势差的定义,有UO q0 (U UO )
选取无穷远处为电势零点WO q0 (U UO ) 8.99 106 J
电场力做负功,说明实际需要外力克服电场力做功。
题 7.3.11 图 7.3.11 如题7.3.11图所示,在 A ,B 两点处放有电量分别为+ q ,- q 的点电荷,AB
解:如题 7.3.4 图所示
(1) 在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为 dEP
1 4π 0
dx (a x)2
EP
dE P
4π 0
l 2 l 2
dx (a x)2
4π 0
[ a
1
l
1 a
大学物理第9章答案
大学物理第9章答案第三篇电磁学综合练习题一、填空题1、把一根导线弯成形状固定的平面曲线放在均匀磁场B中,绕其一端α点以角速率逆时针方向旋转,转轴与B平行,如图9-52所示。
则整个回路电动势为,ab两端的电动势为图9-52图-532、引起动生电动势的非静电力是力,其非静电场强度Ek=3、如图9-53所示,在通有电流为I的长直导线近旁有一导线段ab长l,离长直导线距离d,当它沿平行于长直导线的方向以速度平移时,导线中的i=____4、感应电场是由产生的,它的电场线是的,它对导体中的自由电荷的作用力大小为5、如图9-54所示,导体AB长为L,处在磁感应强度为B的匀强磁场中,磁感应线垂直纸面向里,AB搁在支架上成为电路的一部分。
当电路接通时,导体AB弹跳起来,此时导体AB中的电流方向为6、半径为r的小导线圆环置于半径为R的大导线圆环的中心,二者在同一平面内。
且rR。
若在大导线圆环中通有电流iI0int,其中,I0为常量,t为时间。
则任意时刻,小导线圆环中感应电动势的大小为7、一个折成角形的金属导线aoc(aoocl)位于某oy平面中,磁感强度为B的匀强磁场垂直于某oy平面,如图9-55所示。
当aoc以速度沿某轴正方向运动时,导线a,c两点的电势差Vac=;当aoc以速度沿y 轴正方向运动时,导线上o,a两点的电势差Voa=8、自感为0.25H的线圈中,当电流在(1/16)内由2A均匀减少到零时,线圈中自感电动势的大小为63第三篇电磁学图9-54图9-559、在磁感强度为B的磁场中,以速率垂直切割磁力线运动的—长度为L的金属杆,相当于它的电动势为,产生此电动势的非静电力是二、选择题1、如图9-56所示,当闭合线圈ABCD以速度平行长直导线运动时,判断下哪种说法是正确的:()A、线圈磁通不变,线圈上电动势处处相等,故无电流;B、AB、CD切割磁力线,线圈的动生电动势不为零,线圈中存在感应电流;C、线圈中AB、CD存在动生电动势,但线圈总的动生电动势为零,故无感应电流;D、以上说法都不对。
大学物理(第4版)主编赵近芳-第9章课后答案
习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:A](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2填空题(1)在静电场中,电势梯度不变的区域,电场强度必定为。
[答案:零](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。
[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。
[答案:1:5]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9 C/m 的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题9.7图所示由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x=以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E . 解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为 ()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C/m 3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.9.12 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N/C 的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M ⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m/s 的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ==∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30 kV/cm ,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r qq F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ 外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E == rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F。
《大学物理》静电场练习题及答案
《大学物理》静电场练习题及答案一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。
答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。
0ε∑⎰=⋅内S SqS d E3、写出静电场的环路定理,并分别说明其物理意义。
答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E),静电场是保守场。
4、感生电场与静电场有哪些区别和联系?5、在电场中某一点的电场强度定义为0q F E=.若该点没有试验电荷,那么该点的电场强度又如何? 为什么?答案: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。
6、在点电荷的电场强度公式中,如果0→r ,则电场强度E 将趋于无限大。
对此,你有什么看法? 答案: 这表明,点电荷只是我们抽象出来的一个物理模型,当带电体较小而作用距离较大时使用点电荷模型较为方便、精确。
但当作用距离r 很小时,点电荷模型的误差会变大,这时我们不能再用点电荷的电场强度公式而要采用更精确的模型。
二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A 、20214r Q Q επ+B 、()()2202210144R r Q R r Q -π+-πεε C 、()2120214R R Q Q -+επ D 、2024r Q επ2、A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。
河北科技大学大学物理答案静电场
习 题10-1 在边长为a 的正方形的四角,依次放置点电荷24 q q q -、、和2q ,它的正中放着一个单位正电荷,求这个电荷受力的大小和方向。
解:两个2q 的电荷对中心电荷的作用力大小相等,方向相反,合力为0。
q 对中心电荷的作用力2/4201a qeF πε=,方向背离q 指向中心;q 4-对中心电荷的作用力2/44202a qeF πε=,方向由中心指向q 4-电荷,与1F 同向,所以中心电荷所受的合力 202125a qeF F F πε=+=,方向由中心指向q 4-电荷。
10-2 把某一电荷分成q 与()Q q -,两个部分,且此两部分相隔一定距离,如果使这两部分有最大库仑斥力,则Q 与q 有什么关系? 解:q 与q Q -为同性电荷,斥力()0420>-=r q Q q F πε,最大时0d d =q F ,2/Q q = 10-5 两根无限长的均匀带电直线相互平行,相距为2a ,线电荷密度分别为l +和l -,求每单位长度的带电直线所受的作用力。
解:线电荷密度为l +直线在距线2a 的地方的场强为al E 04πε=,方向垂直于指向向外,线电荷密度为l -单位长度带电直线所受的作用力==lE F al 024πε,为引力。
10-6把电偶极矩p ql =的电偶极子放在点电荷Q 的电场内,p 的中心O 到Q 的距离为()r r l ?,分别求:(1)p QO P 和(2)p QO ^时电偶极子所受的力F 和力矩M 。
解:(1)p ∥QO 时,电偶极子在Q 位置的场强为3042rpE πε=方向与电偶极矩的方向相同,q 2qq 4q 2因此电荷受的力为3042rQpF πε=',方向与电偶极矩的方向相同。
所以电偶极子所受的力 302r QpF πε=,方向与电偶极矩的方向相反;Q 在电偶极子处的场强204rQ E πε=,方向由Q 指向p ,与p 的方向平行,电偶极子受的力矩0=⨯=E p M 。
大学物理第章习题分析与解答
第九章 电磁感应9-1 在感应电场中电磁感应定律可写成tΦd d d LK -=⎰⋅l E ,式中K E 为感生电场的电场强度.此式表明[ ]。
(A) 闭合曲线L 上K E 处处相等 (B)感生电场的电场强度线不是闭合曲线(C) 感生电场是保守力场 (D) 在感生电场中不能像对静电场那样引入电势的概念分析与解 感生电场与位移电流是麦克斯韦两个重要假设,感生电动势总是等于感生电场沿该闭合回路的环流,故感生电场不是保守场,称为有旋电场,不能象静电场那样引入电势的概念。
正确答案为(D )。
9-2 E 和E k 分别表示静电场和有旋电场的电场强度,下列关系式中,正确的是[ ]。
(A )0d L=⎰⋅l E (B )0Ld ≠⎰⋅l E(C )0d kL=⎰⋅l E (D )0d kL≠⎰⋅l E分析与解 静电场的环流恒为零,而感生电场的环流不一定为零。
正确答案为(A )。
9-3 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感,则[ ]。
(A) 铜环中有感应电流,木环中无感应电流 (B) 铜环中有感应电流,木环中有感应电流 (C) 铜环中感生电场大,木环中感生电场小(D )铜环中感生电场小,木环中感生电场大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但木环中不会形成电流。
正确答案为(A )。
9-4 关于位移电流,有下面四种说法,正确的是[ ]。
(A )位移电流的实质是变化的电场(B )位移电流和传导电流一样是定向运动的电荷 (C )位移电流的热效应服从焦耳—楞兹定律 (D )位移电流的磁效应不服从安培环路定律分析与解 位移电流的实质是变化的电场。
变化的电场激发磁场,这一点位移电流等效于传导电流;但位移电流不是定向运动的电荷,也不服从焦耳热效应、安培力等定律。
正确答案为(A )。
9-5 用导线制成一半径为r =10cm 的闭合圆形线圈,其电阻R =10Ω,均匀磁场B 垂直于线圈平面,欲使电路中有一稳定的感应电流i =0.01A ,B 的变化率应为d B /d t =____ ___。
《新编大学物理》(下册)教材习题答案
第9章 静电场一、选择题 9.1 答案:B 9.2 答案:C解:根据高斯定理,通过整个立方体表面的电通量为d εqse =⋅=Φ⎰S E ,由于电荷位于立方体的中心,从立方体各个面穿出的电力线一样多,所以穿过一个表面的电场强度通量为06εq. 9.3 答案:B 9.4 答案:A解:根据电势的定义式)0(,d =⋅=⎰BBP V V l E 知,空间中某点的电势高低与电势零点的选择有关,所以B 、C 、D 均不正确;如果某一区域内电势为常数,则该区域内任意两点的电势差为0,即0d =⋅=-⎰BA B A V V l E ,要使其成立,该区域内电场强度必为零. 9.5 答案:A解:根据电势和电势差的定义式)0(,d =⋅=⎰BBP V V l E ,⎰⋅=-=BAB A AB V V U lE d 知,空间中某点电势的高低与电势零点的选择有关,选择不同的电势零点,同一点的电势数值是不一样的.而任意两点的电势差总是确定的,与电势零点的选择无关.9.6 答案:D解:根据电势叠加原理,两个点电荷中垂线上任意一点的电势为BB AA B A r q r q V V V 0044πεπε+=+=由于中垂线上的任意一点到两电荷的距离相等,即r r r B A ==,所以rq q V B A 04πε+=.要使其为零,则0=+B A q q ,所以B A q q -=.9.7 答案:A解:根据保守力做功和势能的关系PB PA BA AB E E q -=⋅=⎰l E d W 0知,负电荷沿电力线移动电场力做负功,所以电势能增加.根据等势面的定义,等势面上各点的电势相等,而电势相等的点场强不一定相等;根据电场力做功的公式AB B A AB qU V V q =-=)(W 知,初速度为零的点电荷, 仅在电场力的作用下,如何运动取决于点电荷本身和电势的高低.正电荷从高电势向低电势运动;负电荷从低电势向高电势运动. 9.8 答案:C解:达到静电平衡后,根据高斯定理设各板上的电荷密度如图所示.根据静电平衡条件,有BA BA P E σσεσσ=⇒=-=020习题9.8图 解习题9.8图由于A 、B 板由导线相连,所以其与中间板C 的电势差必然相等,所以12210220112222d dd d U U A B B A BC AC =⇒--⨯=--⨯⇒=σσεσσσεσσσ 9.9答案:D解:根据动能定理,有)11(41221)44()(W 21022010r r m e m r er e e V V e B A AB -=⇒⨯=-=-=πευυπεπε 二、填空题 9.10 答案:3028Rqd επ;方向水平向右解:根据场强叠加原理,本题可以利用割补法,等效于一个均匀带电圆环和一个带相同电荷密度的异号电荷缺口在圆心处的电场.由于均匀带电圆环电荷分布的对称性,在圆心处产生的电场强度为零.异号电荷缺口在圆心处产生的电场强度大小为30220208424Rqd R dR qR dq E εππεππε=⨯== 方向水平向右.习题9.10图习题9.11图习题9.12图9.11答案:2R E π⋅解:根据题意知穿过半球面的电力线条数和穿过底面的电力线的条数相同,所以根据电通量的定义,有2d E d d d R E S S E e π⋅==⋅=⋅=⋅=Φ⎰⎰⎰⎰底面底面底面半球面S E S E 9.12 答案:02εσ,水平向左;023εσ,水平向左;02εσ,水平向右 解:根据教材例9-7的结果和电场强度叠加原理,以水平向右为正有000212222εσεσεσ-=-=+=E E E A 0002123222εσεσεσ-=--=+=E E E B 000212222εσεσεσ+=+=+=E E E C “+”表示电场强度的方向水平向右,“-” 表示电场强度的方向水平向左. 三、计算题 9.13解:(1)如图所示,在θ处取一小段弧为电荷元,其电量为θλλRd dl dq ==根据点电荷的场强分布知,它在O 点处产生的电场强度大小为Rd R dq dE 02044πεθλπε==在x、y 轴上的分量为θcos dE dE x -=,θsin dE dE y -=根据场强叠加原理,有⎰=-=πθθπελ000cos 4d RE x Rd R E y 0002sin 4πελθθπελπ-=-=⎰所以 j j i E RλE E y x 08ε-=+=(2)根据点电荷的电势分布,有044πεθλπεd Rdq dV ==根据电势叠加原理,有⎰=-=πελθπελ044d V 9.14解:(1)由于均匀带电的球体可以看作是由许多半径不同均匀带电的球面构成,根据教材例9.5的分析知,均匀带电球面的电场分布具有球对称性分布,所以均匀带电球体的电场分布也具有球对称性分布,即到球心距离为r 的所有点的电场强度的大小都相等,方向为各自的径向.可以利用高斯定理求解.根据电场的这种球对称性分布,过P 点作半径为r 的同心球面为高斯面,如图所示.根据高斯定理,有∑⎰⎰⎰⎰=π==⋅=⋅=⋅=Φise qE r ds E ds E ds E 0214cos d εθS E解习题9.13图根据已知,有电荷的分布为:=∑i q )()(343433R r Q R r r R Q><⨯ππ 所以,电场强度的大小为=E )(4)(42030R r r QR r R Qr><πεπε根据分析知,电场强度E 的方向为径向.如果Q >0,则电场强度的方向沿径向指向外;若Q <0,则电场强度的方向沿径向指向球心. (2)根据电势的定义式⎰∞⋅=P V l E d ,为了便于积分,我们沿径向移到无穷远,所以⎰∞⋅=r V lE d 1⎰⎰∞⋅+⋅=RR rrE r E d d 30200302288348)(R Qr R Q R Q Rr R Q πεπεπεπε-=+-=)(R r <rQ r E V rr024d d πε=⋅=⋅=⎰⎰∞∞l E)(R r >9.15解:(1)如图所示,在空间任取一点P ,过P 点作无限长圆柱面轴的垂线交于O 点,O 、P 的距离为r .为了便于分析P 点的电场强度,作其俯视图,则俯视图圆上任意一段弧代表一根无限长均匀带电直线.根据教材例9-6的分析知,无限长均匀带电直线周围的电场强度呈轴对称分布,即任意点的场强方向垂直于直线.由于圆柱面电荷分布的对称性,所以P 点的场强方向沿垂线向外(假设λ解习题9.14图>0).同理,距离直线也为r 的另一点P '的电场强度方向也沿该点的垂线方向向外.可见,到柱面的轴距离相同的所有点的场强大小都相等,方向沿各点的垂线方向向外,即场强也呈轴对称分布,可以用高斯定理求解.根据电场强度的这种对称性分布,过P 点作同轴的圆柱面为高斯面,如图所示.该闭合的高斯面由上、下底面和侧面组成,其面积分别为S 1、S 2和S 3,半径为r ,长为l . 根据高斯定理有⎰⎰⎰⎰⋅+⋅+⋅=⋅=Φ321s s s d d d d S E S E S E S E se由于上、下底面的外法线方向都与场强E 垂直,0cos =θ,所以上式前两项积分为零;又由于圆柱侧面外法线方向与场强E 的方向一致,因此有⎰⎰⎰⎰==⋅=⋅=Φ333s d d s s se ds E Eds S E S E2επ∑=⋅=i qrl E根据已知,有电荷的分布为:=∑i q)()(0R r l R r ><λ 所以,电场强度的大小为解习题9.15图=E )(2)(00R r rR r ><πελ根据分析知,场强的方向是垂直于轴的垂线方向.如果λ>0,则电场强度的方向沿垂线向外辐射;若λ<0,则电场强度的方向沿垂线指向直线.(2)由于均匀带电无限长圆柱面的电荷分布到无限远,所以不能选择无穷远处为电势零点,必须另选零电势的参考点.原则上来说,除“无穷远”处外,其他地方都可选.本题我们选择距圆柱面轴为)(00R R R >处电势为零,即00=R V .根据电势的定义式⎰⋅=0d R PV l E ,有RR r E r E V R RRrR P01ln 2d d d 0πελ=⋅+⋅=⋅=⎰⎰⎰l E )(R r <rR r E V R rR P02ln 2d d 0πελ=⋅=⋅=⎰⎰l E )(R r >9.16解:(1)由于圆盘是由许多小圆环组成的,取一半径为r 宽度为dr 的细圆环,此圆环上带电量为rdr dq πσ2⋅=,由教材例9-9的结果知,圆环轴线上到环心的距离为x 的任意点P 的电势为2204x r dq dV +=πε根据电势叠加原理,有P 点电势为)(242220220x x R x r dr r dV V R-+=+==⎰⎰εσπεσπ (2)根据分析知,圆盘轴线上的电场强度方向沿轴线方向,所以解习题9.16图根据电场强度与电势梯度的关系gradV -=E ,有轴线上到环心的距离为x 的任意点P 的电场强度为i i k j i E ])(1[2)(21220x R xdx dV V z y x gradV +-=-=∂∂+∂∂+∂∂-=-=εσ 此结果与教材例9-4的结果一样,很明显这种方法比较简单,去掉了复杂的矢量积分. 9.17解:由于自由电荷和电介质分布的球对称性,所以E 和D 的分布具有球对称性,可以用有介质时的高斯定理.根据电位移矢量D 的这种球对称性分布,过P 点作半径为r 的同心球面为高斯面,如图所示.根据D 的高斯定理,有∑⎰⎰⎰⎰=π==⋅=⋅=⋅i sq D r ds D ds D ds D 24cos d θS D 根据已知,有电荷的分布为:=∑i q)()(0R r Q R r ><所以,电位移矢量D 的大小为=D )(4)(02R r r QR r >⋅<π根据分析知,电位移矢量D 的方向为径向.如果Q >0,则D 的方向沿径向指向外;若Q <0,则D 的方向沿径向指向球心. 根据电场强度E 和电位移矢量D 关系E E D εεε==r 0,有电场强度E的大小为习题9.17图==rDE εε0)(4)(020R r r Q R r r ><επε方向也为径向.根据极化强度与电场强度的关系E P )1(0-=r εε,知极化强度的大小为=-=E P r )1(0εε )(4)1()(0200R r r QR r r r >-<επεεε根据极化电荷密度和极化强度的关系n n 'P =⋅=e P σ,有2004)1('r Q r r επεεεσ--= 所以,球外的电场分布以及贴近金属球表面的油面上的极化电荷'q 为Q R R Q q r r r )11(344)1('3200-=⨯--=επεπεεε第10章 稳恒电流的磁场一、选择题 10.1 答案:B 10.2 答案:C解:根据洛伦兹力公式B υF ⨯=q m 知,洛伦兹力始终与运动速度垂直,所以对运动电荷不做功,根据动能定理电荷的动能不变。
大学物理静电场习题答案
[ B ]
a
b
4.(1076) 点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一 试验电荷从A点分别移动到B、C、D各点,则 (A) 从A到B,电场力作功最大. (B) 从A到C,电场力作功最大. (C) 从A到D,电场力作功最大. -q (D) 从A到各点,电场力作功相等. [D ] A B O
R dEx
dq
d
x
dE
O dEy
dEx dE cos, dEy dE sin
对各分量分别求和
0 Ex sin cos d 0 4 0 R
0 0 2 Ey sin d 0 4 0 R 8 0 R
所以
0 E Ex i E y j j 8 0 R
O
a aBiblioteka xa 4.(1025) 电荷面密度分别为+δ和-δ的两块“无限大”均匀带电平行平面,分别与x x 轴垂直相交于x1=a,x2=-a 两点.设坐标原点O处电势为零,试求空间 - 的电势分布表示式并画出其曲线.
z
a
+
解:由高斯定理可得场强分布为: E =-δ/ ε0 (-a<x<a) E=0 (-∞<x<-a ,a<x<+∞) 由此可求电势分布:在-∞<x≤-a区间
Rb Rc Ra A BC
E1=λ1 / 2πε0r,方向由B指向A
B、C间场强分布为 B、A 间电势差
E2=λ2 / 2πε0r,方向由B指向C
1 U BA E1 d r Rb 2 0
Ra
Rb dr 1 Rb r 2 0 ln Ra
Ra
C
B A
E2 E1
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有210141AC r q E πε=14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 220241BC r q E πε=14299m V 107.204.0108.1109--⋅⨯=⨯⨯⨯= 方向沿CB 方向∴ C 点的合场强E的大小为:24242221)107.2()108.1(⨯+⨯=+=E E E 14m V 1024.3-⋅⨯=设E 的方向与CB 的夹角为α,则有︒===--7.337.28.11211tg E E tg α 9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相互抵消。
习题9-1图习题9-3图习题9-2图0=∴x E ,圆心O 处场强E 的y 分量为⎪⎪⎭⎫⎝⎛-===⎰⎰2312sin d 412sin d 412026260R R R R lE y πελθθλπεθλπεππ方向沿y 轴正向。
9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。
设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是 ⎰⎰-+-==11)(20d 41d d L d P P xxE E πε 132289110m V 1041.2102811081103109114----⋅⨯=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-=L d d πελ方向沿x 轴方向。
(2)坐标如题9-4图(b)所示,在带电细棒上取电荷元x q d d λ=与Q 点距离为r ,电荷元在Q 点所产生的场强20d 41d rxE λπε=,由于对称性,场d E 的x 方向分量相互抵消,所以E x =0,场强d E 的y 分量为θλπεθsin d 41sin d d 20r xE E y ==因θθθπθθd csc d d ,d 2d ,csc d 22222=-=⎪⎭⎫⎝⎛-==x ctg tg x r ∴ θθπελθλπεd sin d 4sin d 41d 202==r xE y)cos (cos d 4d sin d 4d 21202021θθπελθθπελθθ-===⎰⎰y y E E其中 22222221)2/(d 2/cos ,)2/(d 2/cos L L L L +-=+=θθ习题9-4图(a )习题9-4图(b )代入上式得22220)2/(4L d L d E y +=πελ[]1321222891027.5)2/2.0()108(1082.0103109----⋅⨯=+⨯⨯⨯⨯⨯⨯=m V方向沿y 轴正向。
9-5 带电圆弧长m d R l 12.302.050.04.322=-⨯⨯=-=π,电荷线密度199m C 100.112.31012.3---⋅⨯=⨯==l q λ。
带电圆弧在圆心O 处的场强等价于一个闭合带电圆环(线密度为λ)和一长为d 、电荷线密度为-λ的小段圆弧在O 处场强的矢量和。
带电闭合圆环在圆心处的场强为零,而d<<R,∴小段带电圆弧可视为点电荷,所带电量Cd q 11910202.0100.1--⨯=⨯=='λ,故圆心处的场强,1211920m V 72.05.010210941-⋅=⨯⨯⨯='=R q E πε,方向由圆心指向空隙中心。
9-6 (1)点电荷q 位于一立方体中心,则通过立方体每一面的电通量相等,∴ 通过每一面的电通量1Φ为总通量Φ的61,即 001661d 61d 1εεqq S E S E S ==⋅=⋅=Φ⎰⎰(2)如果这点电荷移到立方体的一个角上,则电荷q 所在顶角的三个面上,因为各点E平行于该面,所以这三个面的电通量均为零,另三个面的电通量相等。
如果要把q 全部包围需要有8个立方体,相当于有24个面,每一面上通过的电通量为总通量的241,即 ⎰⎰=⋅=⋅=⋅=Φ10124241d 241d S qq S E S E εε 9-7 解法(一)通过圆形平面的电通量与通过以A 为球心,r R x AB =+=22为半径,以圆平面的周界为周界的球冠面的电通量相等,该球冠面的面积rH S π2=,通过整个球面204r S π=的电通量00εq=Φ,所以通过该球冠面的电通量为rH q r rH q S S 02000242εππε==Φ=Φ 习题9-7图(a )rr r q αεcos 20-=⎪⎪⎭⎫⎝⎛+-=-=220012)cos 1(2R x xq q εαε解法(二)在图形平面上取一同心面元环,设其中半径为r ,宽为d r ,此面元的面积r r s d 2d π=。
设此面元对A 点的半张角为θ,见图所示,由通量公式可得⎰⎰⎰+=+=⋅=ΦSRRr x rr qxr r r x q S E 02/320220)2(d 2d 2cos 14d επθπε⎪⎪⎭⎫ ⎝⎛+-=22012R x xqε9-8 通过此半球面的电通量与通过以O 为圆心的圆平面电通量相等,无限大平面外任一点的场强为2εσ,∴ 通过该球面的电通量为 022022εσππεσR R S E ==⋅=Φ 9-9 设想地球表面为一均匀带电球面,则它所带总电量为E R S E S d E q 20004πεεε-=-=⋅=⎰C1092.5130)104.6(41085.852612⨯-=⨯⨯⨯⨯⨯-=-π9-10 设均匀带电球壳内、外半径分别为R 1和R 2,它所产生的电场具有球对称性,以任意半径r 作一与均匀带电球壳同心的高斯球面S ,由高斯定理可得24d επi q E r S E ∑=⋅=⋅⎰∴ 204rq E iπε∑=当15R cm r <=时,0=∑i q ,∴01=E218R cm r R <=<⎰⎰-===∑rR rR i R r r r V q 11)(34d 4d 3132πρπρρ⎪⎪⎭⎫⎝⎛-=-=231020313234)(34r R r r R r E ερπεπρ 习题9-7(b)图⎥⎦⎤⎢⎣⎡⨯⨯-⨯⨯⨯⨯=-----22322125)108()106(1081085.83102 14m V 1048.3-⋅⨯= )(34cm 1231322R R q R r i -=∑>=πρ∴ 20313220313233)(4)(34r R R r R R E ερπεπρ-=-=14212335m V 101.412.01085.83)06.01.0(102---⋅⨯=⨯⨯⨯-⨯= 9-11 无限长均匀带电圆柱面产生的电场具有轴对称性,方向垂直柱面,以斜半径r 作一与两无限长圆柱面的同车圆柱面以及两个垂直轴线的平面所形成的闭合面为高斯面,由高斯定理可得⎰∑==⋅Si q rlE S E 02d επ∴ rl q E i∑=021πε(1)当r <R 1,;0,01==∑E q i (2)当21R r R <<时l q i λ=∑ ∴ rrllE 002221πελλπε==; (3)当2R r >时,0=∑i q ,∴ 03=E9-12 见题9-12图所示,由于平面无限大,电荷分布均匀,且对中心面S 0(图中虚线)对称,电场分布也应具有均匀性和对称性,即在与带电板平行且位于中心面S 0两侧距离相等的平面上场强大小应处处相等,且方向垂直该平面。
过板内P 点或板外Q 点作轴线与x 轴平行,两底面积为S 且相对中心面S 0对称的闭合正圆柱面为高斯面,由高斯定理可得: (1)平板内⎰=∑==⋅0022d ερεxS q S E S E i 内∴ ⎪⎭⎫ ⎝⎛≤=2d 0x x E ερ内方向垂直板面向外习题9-12图(2)平板外⎰==⋅02ερds S E S d E 外∴ ⎪⎭⎫ ⎝⎛≥=220d x d E ερ外方向垂直板面向外。
9-13 由于电荷分布具有轴对称性,故其场强必沿柱体的径向,其大小也具有轴对称性,故在圆柱体内取下同心薄圆筒,其半径为r ,厚度d r ,长l ,见右图示,根据高斯定理可得⎰⎰=⋅Svv S d E d 10ρε()⎰+=rr rl a r rl E 02202d 2)/(112πρεπ∴ ⎰+=+=rr a r a r a rr ra E 022002222004)(2)(d ερερ 9-14 设想原来不带电的小空腔内同时存在电荷体密度为ρ±的两种电荷,则原带电荷等价于一个半径为R ,电荷体密度为ρ+的均匀带电球体和一个半径为r ,电荷体密度为ρ-的均匀带电球体的组合,空间各处的场强等于这两个均匀带电球体产生场强的矢量和。
对于球心O 处,210E E E+=,由于均匀带电球体球心处的场强为零,所以2032302020d 3d 3441d 4ερρππεπεr r q E E ====方向由O 指向O '。
对于球心O '处,121E E E E O=+='∴ 03033013d 434d 4d ερπερππε===='R R R q E E O方向由O 指向O '。
对于空腔内的任一点P ,位置如图所示。
30330330302143443444r b r R a R r bq R a q E E E περππερππεπε -='+=+= 习题9-13图习题9-14图d b a b a 00003)(333ερερερερ=-=-= 以上计算表明空腔任意点的场强大小均为3dερ且方向均由O 指向O ',所以,空腔内为匀强电场。
9-15 电偶极子在均匀电场中所受的力矩为θsin PE M = θ为电矩P与E两方向间的夹角,当2πθ=时,外电场作用于电偶极子上的力矩最大356max 102100.1100.1--⨯⨯⨯⨯⨯==qEd Mm N 100.24⋅⨯=-9-16 外力所作的功为⎪⎪⎭⎫⎝⎛-=-=-=1202201121124141)(r q r q q u u q W W A πεπε J1056.642.0125.01109100.3105.1114698812021---⨯=⎪⎭⎫⎝⎛-⨯⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=r r q q πε 9-17 (1)氢原子内负电荷的总电量为 ⎰⎰--=+=02/2320d 4d 4)(a a re e a e r r e a q q r r r q q πππρ ⎰==-=--00022/23067.05d 4a e e a r e e q e q r r e a q q(2)由于负电荷呈球状对称分布,故可采用高斯定理计算负电荷产生的电场强度1E的大小为⎰⎰=⋅v S E Sd 1d 01ρε⎰-=ra r e r r e a q r E 02/230021d 4140ππεπ 习题9-15图⎰-=ra r er r e a r q E 02/23201d 0πε2/2020220412240r q e a r a r r q e a r eπεπε+⎪⎪⎭⎫ ⎝⎛++-=- 正电荷e q +在球心,其产生的电场强度2E的大小为2024r q E e πε=则在距球心r 处的总电场强度为21E E E+=,其大小为0/2020220121224a r ee a r a r r q E E E -⎪⎪⎭⎫ ⎝⎛++=-=πεE的方向沿径向向外。