《基因工程制药新版》PPT课件

合集下载

基因工程制药_PPT幻灯片

基因工程制药_PPT幻灯片

3.2生物药物目的基因的获得
问题:来源于真核细胞的产生基因工程药物 的目的基因,为什么不能进行直接分离? 一、逆转录法
逆转录法就是分离纯化目的基因的mRNA,再反转 录成cDNA,然后进行cDNA 克隆表达。 一)逆转录法的基本过程 1、mRNA purification
a.细胞内RNA的组成和含量:DNA:95%核内,5%
AAAAA TTTTTT
AAAAA TTTTTT
100mM NaCl
10mM Tris 1mM EDTA
Total RNA
洗脱 rRNA/tRNA
纤维素柱纯化Poly(A)mRNA 流程图
Poly(A)mRNA
2、cDNA第一链的合成:一次好的逆转录反应可使 oligo(dT)选出的mRNA有5-30%被拷贝。 3、cDNA第二链的合成: 4、cDNA cloning:expression vector pUC 5、将重组体导入host cell 6、cDNA library identification 7、目的cDNA 克隆的分离和鉴定 (限制酶图谱的绘制、杂交分析、基因定位、基因 测序、确定基因的转录方向、起始点等。)
第三章 基因工程制药
教学目标:掌握基因工程制备生物药物的基本原理、基本技术。 教学要求:了解基因工程的概念、基本操作过程和主要用途;理解基因 工程制药的特点和基因工程药物主要种类;掌握基因工程药物生产的基 本过程,掌握生物药物目的基因的获得方法,掌握药物目的基因的表达 方法,掌握基因工程菌的发酵方法及重组蛋白的分离纯化方法。 教学重点:生物药物目的基因的获得方法、药物目的基因的表达策略、 基因工程菌的稳定性及重组药物的分离纯化。 教学难点:逆转录法获得药物目的基因、高水平表达策略、产物表达形 式的选择、重组药物的分离纯化。

基因工程制药PPT课件

基因工程制药PPT课件
在体外反转录成cDNA,与适当的载体 常用噬菌体或质粒载体连接后转化受体菌, 则每个细菌含有一段cDNA,并能繁殖扩增, 这样包含着细胞全部mRNA信息的cDNA克隆集 合称为该组织细胞的cDNA。第二章基因工程制药
主要内容: 基因工Fra bibliotek制药的基本过程。 目的基因的获得及基因的表达。 基因工程菌的生长代谢特点,其质粒不稳定 产生的原因及提高质粒稳定性的方法。 基因工程菌的培养方式,发酵工艺及培养设 备。 基因工程药物的分离纯化。 基因工程药物的质量控制。
第一节


传统生物药物由于来源及制备上的困 难、价格等因素的影响,此外在制备过程 可能受到的病毒、衣原体、支原体等的感 染等问题,促使人们寻求安全、实用、疗 效可靠的新方法来制备生物药物。
20世纪70年代基因工程诞生最先应 用在医药科学领域。 1982年第一个基因工程产品--人胰 岛素在美国问世。 优点:大量生产、应用临床、深入研 究、扩大应用。
结晶牛胰岛素:1965年9月17日,中国首次人 工合成结晶牛胰岛素。这是当时人工合成的具 有生物活力的最大的天然有机化合物,使中国 成为第一个合成蛋白质的国家。
上游:主要指的是目的基因分离、工程菌 (或细胞)构建。上游阶段的工作主要在 实验室内完成; 下游:主要指的是从工程菌(或细胞)的大 规模培养一直到产品的分离纯化、质量控 制等。
工程菌(或细胞)构建中重要的工具
该过程中重要的工具便是酶:限制性内切 酶和连接酶是将所需目的基因插入适当的载体 质粒或噬菌体中并转入大肠杆菌或其他宿主菌 (细胞)大量复制目的基因过程中的重要工具。
人体来源:人血浆中制备人血浆白蛋白; 男性尿中制备尿激酶;孕妇尿中制备绒膜促 性激素;人血白细胞中制备白细胞介素等。

《基因工程制药技术》课件

《基因工程制药技术》课件

02
该系统可用于生产具有治疗价值 的蛋白质药物,如疫苗、抗体等

转基因植物表达系统的优点是生 产成本低,且易于大规模生产。
03
缺点是可能存在食品安全和环境 问题,需要加强监管和控制。
04
04 基因工程制药的挑战与前 景
安全性问题
基因工程制药产品的安全性是首要考 虑的问题,需要经过严格的临床试验 和审批程序,确保产品的安全性和有 效性。
02 基因工程制药技术的基本 原理
基因克隆与表达
基因克隆
01
通过特定的方法将目的基因从生物体中分离出来,并在体外进
行复制和扩增的过程。
基因表达
02
在细胞内,基因通过转录和翻译过程,将遗传信息转化为蛋白
质的过程。
基因克隆与表达在制药工业中的应用
03
利用基因克隆技术获取药物靶点基因,通过基因表达技术生产
未来发展前景与展望包括开发更加高效和精准的基因工程制药技术、拓展新的治 疗领域和应用范围、降低生产成本和提高可及性等,需要加强研发和创新投入, 推动基因工程制药技术的可持续发展。
பைடு நூலகம்
05 基因工程制药的案例分析
胰岛素的基因工程生产
总结词
通过基因工程技术,将胰岛素基因转入到大肠杆菌或 酵母菌中,实现大规模生产。
感谢您的观看
THANKS
具有生物活性的蛋白质药物。
重组DNA技术
01
重组DNA技术
通过人工方法将不同来源的DNA片段进行剪切、拼接和重组,形成新
的DNA分子。
02
重组DNA技术在制药工业中的应用
利用重组DNA技术构建基因表达载体,将目的基因导入受体细胞,实
现目的基因的高效表达。

基因工程制药新版(2)ppt课件

基因工程制药新版(2)ppt课件

(二)关于限制酶
1、宿主限制现象 2、限制酶的定义 3、限制酶的特征 4、限制酶的作用 5、基因工程所用到的限制酶 6、影响限制酶作用的因素
1、宿主限制现象
病毒或噬菌体在宿主A细胞中生长良好,但在 宿主B细胞中生长很差,原因是它的DNA受 到宿主B的限制,这种现象是宿主控制性限
制 (restriction)与修饰(modification) ,简
※EcoB(大肠杆菌B株)的核酸酶不能识别已甲基化
的序列。
甲基化酶
ECOB核酸酶
TGAN8TGCT ACTN8ACGA
CH3 TGAN8TGCT ACTN8ACGA CH3 CH3 CH3
噬菌体来源序列
宿主来源序列

R/M体系的作用:
保护自身的DNA不受限制; 破坏外源DNA使之迅速降解
பைடு நூலகம்
※限制性内切酶本是微生物细胞中用于
称(R/M体系)。

细菌的R/M体系类似于免疫系统,能辨别 自身的DNA与外来的DNA,并能使后者降 解掉。

R/M体系: 是由两种酶活性配合完成的: 一种是修饰的甲基转移酶 另一种是核酸内切限制酶
E.coliB含有EcoB核酸酶和EcoB甲基化酶
※当λ(k)噬菌体侵染E.coliB时,由于其DNA中有 EcoB核酸酶特异识别的碱基序列,被降解掉。 而E.coliB的DNA中虽然也存在这种特异序列, 但可在EcoB甲基化酶的作用下,催化S-腺苷甲 硫氨酸(SAM)将甲基转移给限制酶识别序列 的特定碱基,使之甲基化。
3、限制酶的特征
具有专一性的识别 位点。
能够形成固定的核 苷酸单链末端。 比较适合于进行 DNA结构的分析 和进行基因重组。

《基因工程制药》课件

《基因工程制药》课件
、改变细胞特性等。
基因治疗技术
基因治疗技术定义
基因治疗技术是指将目的基因导入到病变细胞中,以纠正 或补偿缺陷的基因,从而达到治疗疾病的目的的技术。
基因治疗技术原理
基因治疗技术基于分子生物学原理,通过将目的基因导入 到病变细胞中,实现对缺陷基因的补偿或纠正,从而改善 疾病症状。
基因治疗技术应用
基因治疗技术在遗传性疾病、肿瘤等疾病的治疗中具有广 泛的应用前景,例如用于治疗囊性纤维化、血友病等遗传 性疾病。
基因修饰技术
基因修饰技术定义
基因修饰技术是指通过特定的方 法对目的基因进行修饰,以改变
其表达水平或功能的技
基因修饰技术原理
基因修饰技术主要基于DNA的化 学修饰和酶学修饰,通过改变目 的基因的序列、启动子、增强子 等调控元件,实现目的基因的高
表达或抑制表达。
基因修饰技术应用
基因修饰技术在制药、生物治疗 、生物合成等领域具有广泛的应 用,例如用于生产重组蛋白药物

03
免疫反应
免疫反应是基因工程制药中另一个重要问题,可能导致免疫排斥或免疫
攻击。解决方案包括采用免疫沉默技术、降低免疫原性等。
伦理与法律问题
伦理问题
基因工程制药涉及人类基因改造,可能引发伦理争议,如人 类尊严、基因优劣等。解决方案需要遵循伦理原则,如尊重 人权、保护隐私等。
法律问题
基因工程制药涉及法律法规的制定和执行,可能存在法律空 白或法律冲突。解决方案需要完善相关法律法规,明确监管 职责和法律责任。
基因工程制药的发展历程
1970年代
基因工程的诞生,科学 家开始探索利用基因工
程技术生产药物。
1980年代
基因工程药物开始进入 临床试验阶段,如胰岛

基因工程制药ppt课件

基因工程制药ppt课件
一,酿酒酵母(Saccharomycescerevisiae)表达系统:
酿酒酵母(Saecharomycescerevisiae)在酿酒业和面 包业的使用已有数千年的历史,被认为是 GRAS(generally recognized as safe)生物,不产生 毒素,已被美国FDA确认为安全性生物,但酿酒 酵母难于高密度培养,分泌效率低,几乎不分泌 分子量大于30 kD的外源蛋白质,也不能使所表达 的外源蛋白质正确糖基化,而且表达蛋白质的C端 往往被截短。因此,一般不用酿酒酵母做重组蛋 白质表达的宿主菌
2018/10/23
二,甲醇营养型酵母表达系统:
甲醇酵母表达系 统是目前应用最广泛的酵母表达系统。目前甲醇酵母 主要有汉森酵母属(Hansenula),毕赤酵母属(Pichia), 球拟酵母属(Torulopsis)等,并以毕赤酵母属(Pichia) 应用最多。 甲醇酵母的表达载体为整合型质粒, 载体中含有与酵母染色体中同源的序列,因而比较容 易整合入酵母染色体中,大部分甲醇酵母的表达载体 中都含有甲醇酵母醇氧化酶基因—1(AOX1),在该基因 的启动子(PAOX1)作用下,外源基因得以表达。甲醇 酵母一般先在含甘油的培养基中生长。培养至高浓度。 再以甲醇为碳源。诱导表达外源蛋白。
2018/10/23
一、原核表达系统
2018/10/23
在各种表达系统中,最早被采用进行研究的是大肠杆
菌表达系统,也是目前掌握最为成熟的表达系统,大 肠杆菌表达系统以其细胞繁殖快速产量高、IPTG诱导 表达相对简便等优点成为生产重组蛋白的最常用的系 统。
2018/10/23
于表达不同的蛋白,需要采用不同的载体。目前已知
的大肠杆菌的表达载体可分为非融合型表达载体和融 合型表达载体两种。非融合表达是将外源基因插到表 达载体强启动子和有效核糖体结合位点序列下游,以 外源基因mRNA的AUG为起始翻译,表达产物在序列 上与天然的目的蛋白一致。融合表达是将目的蛋白或 多肽与另一个蛋白质或多肽片段的DNA序列融合并在 菌体内表达。融合型表达的载体包括分泌表达载体、 带纯化标签的表达载体、表面呈现表达载体、带伴侣 的表达载体。

5.1基因工程制药PPT课件

5.1基因工程制药PPT课件
• 2、下游阶段:将实验室成果产业化、商品化, 它主要包括工程菌大规模发酵最佳参数的确立, 新型生物反应器的研制,高效分离介质及装置的 开发,分离纯化的优第化14页控/共制71页,高纯度纯品的制备 技术,生物传感器等一系列仪器仪表的设计和制 造,电子计算机的优化控制等。上述(4)、 (5)、(6)、(7)、(8)等属于下游阶段。
第30页/共7表1页达用的酵母宿主菌应具备: ①菌体生长力强。 ②菌体内蛋白酶要较弱。 ③菌株性能稳定。 ④ 分泌能力强。
(四)动物细胞中的基因表达
哺乳动物细胞表达外源基因的主要优点 ——能识别和剪切外源基因中的内含子 并加工为成熟的mRNA。
❖中国仓鼠卵巢细胞(CHO) ❖猴肾细胞(COS)
CHO细胞属成纤维细胞,该细胞缺乏二氢叶酸还原 酶(DHFR),经转染第3可1页将/共7D1页HFR重组至细胞中, 含有DHFR表达载体的重组CHO细胞,经氨甲喋呤 (MTX)培养筛选后可选择出克隆表达异源基因的 重组细胞。
• 逆转录-(聚三合)酶反R应T-法P。C该R方法是mRNA经逆转录合成cDNA
第一链,不需再合成第二链,而是在特异引物的协助下,用 PCR法进行扩增,特异地合成目的cDNA链,用于重组,克隆。
第21页/共71页
二、基因表达
基因表达是指结构基因在生物体中的转录、 翻译以及所有加工过程。
基因表达研究是指外源基因在某种细胞中 的表达活动,即剪切下一个外源基因片断, 拼接到另一个基因表达体系中,使其能获得 既有原生物活性又可高产的表达产物。
常用的表达载体: (1)pBV220系统 (2)pET系统
第26页/共71页
2、影响目的基因在大肠杆菌中表达的因素 (1)外源基因的拷贝数 (2)外源基因的表达效率 (①3)启表动达子产的物强的弱稳定性 (②4)核细糖胞体的结代合谢位负点荷 (③5)SD工序程列菌和的起培始养密条码件子ATG的间距

生物制药--基因工程制药--ppt课件可编辑全文

生物制药--基因工程制药--ppt课件可编辑全文

组建重组质粒 构建基因工程菌或细胞
前5个步骤是上游过程
培养工程菌
后4个步骤是下游过程
产物分离纯化
除菌过滤
半成品和成品鉴定
包装
基因工程制药
2.1 目的基因的获得
逆转录法
• 从真核细胞中提取产生该蛋白质的 mRNA 并纯化 (oligo-dT 亲和层析法)
• 借助于逆转录酶,以 mRNA 为模板,以 oligo-dT 为引物, 进行第一链 cDNA 的合成
• 酶解除去 mRNA 链; • 通常在合成 cDNA 第一链后直接 PCR 扩增,即“逆转录
-PCR法”
基因工程制药
2.1 目的基因的获得
逆转录法
基因工程制药
2.1 目的基因的获得
从基因组中直接分离
• 随机断裂法:将基因组 DNA 用内切酶切成多个片段,然 后将这些片段混合物随机重组入适当载体、转化、扩增, 再筛选出所需的基因片段
基因工程制药
2.2 基因载体的选择
质粒载体 —— pET-32a(+)
E. coli 中表达的优良载 体。
pET-32a(+) 具有 Ampr 抗性,酶切位点丰富。含 T7lac 启动子;含有 T7.Tag 和 His-Tag 融合标签,便于 检测和纯化目标蛋白。
基因工程制药
2.2 基因载体的选择
Escherichia coli Rye13
Hae III G GCC
Haemophilus aegyptius
Hind III A AGCTT
Haemophilus influenzae
Hpa I GTT AAC(平末端)
Haemophilus parainfluenzae

生物制药工艺学基因工程制药ppt演示课件

生物制药工艺学基因工程制药ppt演示课件
c. 利用基因工程技术可以发现、挖掘更多的内源性生 理活性物质;
d. 内源性生理活性物质在作为药物使用时存在的不足 之处,可以通过基因工程和蛋白质工程进行改造;
e. 利用基因工程技术可获得新型化合物,扩大药物筛 选 源。
10
关于中国
20世纪70主末,开始应用DNA重组技术、淋巴细 胞杂交瘤技术、细胞培养、克隆表达等技术开发 新产品 改造传统制药工艺。
化学 专一性 仅限于合成核苷酸对较少的 合成法 最强 简单基因
42
个人观点供参考,欢迎讨论!
切除发夹结构(核酸酶S1,专一性切除单链DNA)
28
4. cDNA克隆
用于cDNA克隆的载体有两类: 质粒DNA(如pUC、pBR322等) <10kb 噬菌体DNA(如gt10、 gt11等) >10kb
根据重组后插入的cDNA能否表达、转录和翻译 合成蛋白质,又将载体分为: 表达型载体(pUC、gt11)有启动子 非表达型载体(pBR322、gt10 )
18
第三节 目的基因的原核+真核) 反转录-聚合酶链反应法(真核) 化学合成法(原核+真核) 旧基因改造法(原核+omic DNA):指代表一个细 胞或生物体整套遗传信息(染色体及线粒体) 的所有DNA序列。
可从基因组中、载体上扩增基因
32
PCR的条件
模板 引物
dNTP DNA聚合酶
双链DNA
原材料:A、T、G、C 链的延伸
33
PCR三步曲
PCR 反应分三步完成: 第一步 变性 --95℃高温下,双链DNA 变性成 为单链。 第二步 退火--适当温度下,引物 DNA结合在 适于配对的DNA片断上。 第三步 延伸--72℃,由DNA 聚合酶催化,从 引物开始利用四种脱氧核糖核苷酸合成目的 基因DNA。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

至2004年,FDA共批准了大肠杆菌表达的基 因重组生物技术药物18种:
重组人甲状旁腺激素、胰岛素、生物激素、 白介素、干扰素等主要为细胞因子类药物。
(2)枯草芽孢杆菌
优点: (1)分泌能力很强,可以将蛋白质产物直接分 泌到培养液中。 (2)不会形成包含体。
缺点: (1)不能使蛋白质产物糖基化。 (2)枯草芽孢杆菌具有很强的胞外蛋白酶分泌 系统,常常对蛋白质产物造成破坏。
2、宿主细胞的类型
原核细胞类:大肠杆菌、枯草芽孢杆菌、链霉菌。 真核细胞类:酵母菌、丝状真菌、动物细胞、昆虫细
胞和植物细胞。
(1)大肠杆菌 (2)枯草芽孢杆菌 (3)链霉菌 (4)酵母菌 (5)丝状真菌 (6)动物细胞
(1)大肠杆菌
优点: (1)生长迅速、大规模发酵经济。 (2)分子遗传结构清楚、操作简单。 (3)基因工程研究中采用最多的表达体系。
缺点: (1)表达产物多为胞内物质,提取时需破碎细胞。 (2)细胞破碎时,细胞质内的其它蛋白质也会释放出 来,形成杂质。给提取带来困难。 (3)所表达的真核蛋白质在其体内常形成包含体,在 提取后必须经过变性、复性处理才能恢复生物活性。 (4)大肠杆菌中不存在翻译后修饰系统,不能对蛋白 产物进行糖基化及磷酸化等修饰。 (5)大肠杆菌内的蛋白酶会对目的蛋白造成破坏。 (6)大肠杆菌会产生内毒素,难去除。
(3)感受态细胞
感受态(competent) :指细胞在一定的生理状 态可摄取外源性遗传物质经体内重组成为染色 体中的一部分,导致受体细胞某些遗传性状的 改变。
(4)人工感受态细胞
在基因工程中,宿主细胞经过人工处理,最后 成为感受态细胞,称为人工感受态细胞。所有 生物细胞均可处理成人工感受态细胞。
(3)链霉菌
优点: (1)不致病, (2)使用安全, (3)分泌能力强, (4)可将培养产物直接分泌到培养液中, (5)具有糖基化能力
近年来,作为外源基因表达体系,正日益受到人 们的重视。
(4)酵母菌
酿酒酵母研究最为透彻。干扰素和乙肝表面抗原基因在 酵母菌中进行克隆和表达。 优点: (1)是研究基因表达调控最有效的单细胞真核生物, (2)其基因组小、繁殖迅速、可以利用廉价材料进行 大规模培养, (3)无毒性, (4)基因工程操作简单, (5)表达的蛋白质产物能够直接分泌出细胞外, (6)能够对蛋白质产物进行糖基化, (7)真核基因在酵母中表达良好。
(5)丝状真菌
曲霉被认为一种安全菌株、并且已经对它形成了 成熟的发酵和后处理工艺。 • 优点: (1)有很强的蛋白质分泌能力, (2)能正确地进行翻译后的加工,如进行糖基化、 肽剪切。
(6)动物细胞
优点: (1)表达产物可以分泌到培养液中, (2)培养液成份完全由人所控制, (3)所分泌的基因产物接近于天然产物, (4)产物容易得到提纯。
第三节 基因工程制药生产的基本过程
一、工具酶的分离纯化 二、载体的分离纯化 三、外源DNA和目的基因的分离和获得 四、外源DNA与载体DNA的切割与连接 五、宿主细胞的选择和基因导入操作 六、基因工程菌的稳定性及生长代谢的特点 七、基因工程菌中试 八、基因工程菌的扩增和发酵生产 九、基因工程药物的分离和纯化技术 十、变性蛋白的复性 十一、基因工程药物的质量控制 十二、基因工程药物的制造实例
五、宿主细胞的选择和基因导入操作
体外重组的DNA分子,如果不引入到宿主细胞,则无法显 示其生命力,而只是表现出纯粹的试剂性质。随着时间的 推移而逐渐失活。
(一)宿主细胞的选择 (二)具体的转移技术 (三)大肠杆菌中的基因导入和表达 (四)酵母菌中的基因导入和表达 (五)动物细胞中的基因导入和表达
(一)宿主细胞的选择
缺点: (1)生产慢、 (2)生产率低、 (3)培养条件苛刻、费用高, (4)培养液浓度较稀。
至2004年,FDA共批准了哺乳动物细胞表达 的基因重组生物技术药物53种,其中激素类 5种,酶7种,细胞因子7种,凝血因子5种, 治疗性抗体17种。
主要基因工程表达体系比较
表达体系 产 物 产生部位 培养方式 提 纯 产物活性 潜在危性
1、转化作用
(1)基本概念 (2)转化作用的特性 (3)感受态细胞 (4)人工感受态细胞 (5)转化程序 (6)影响转化的因素
(1)基本概念
转化 (transformation):
以质粒为载体构建的重 组DNA分子导入原核细胞 的过程.
(2)转化作用的特性
(1)是自然界经常发生的现象之一。 (2)转化作用的前提条件是宿主细胞必须转变为感受态细胞。 (3)转化作用的先决条件是要获得携带目的基因的重组DNA分子。
大肠杆菌 多肽蛋白质 菌体内 融合蛋白质
容易
一般
部分高产
对原核好 对真核差
不大
酵 母 多肽蛋白质 菌体内 糖基化蛋白 外分泌
容易 可高产
菌体内 真核的接近 稍复杂 天然产物
不大
哺乳动物 完 整 外分泌 糖基化蛋白
较难成本高 简单 可高产
可达天然 产物
需注意 致癌
(二)具体的转移技术
1、转化作用 2、转导作用
1、宿主细胞应满足的条件 2、宿主细胞的类型
1、宿主细胞应满足的条件
(1)容易获得较高浓度的细胞。 (2)能够利用廉价原料进行生产。 (3)不致病。 (4)不产生内毒素。 (5)发热量低。 (6)需氧低。 (7)具有一定的细胞形态。 (8)需有适当的发酵浓度。 (9)容易进行代谢调控。 (10)容易进行DNA重组技术操作。 (11)产物的产量稳定、产率高。 (12)产物容易提取和纯化。
至2004年,FDA共批准了酵母表达的基因重 组生物技术药物8ቤተ መጻሕፍቲ ባይዱ:
胰高血糖素、巨细胞集落刺激因子、乙肝 疫苗、胰岛素(Novolin)、水蛭素等。
虽然酵母表达系统表达的蛋白质有糖基化 修饰,但是糖链结构和组成与天然糖蛋白相 差甚远,对于那些糖链极大影响生物活性的 蛋白质,如EPO、治疗性抗体等,仍不能用酵 母表达系统表达。
制备人工感受态细胞的方法: (1)将对数生长期细胞于低温、低渗的CaCl2 溶液中处理,就可成为感受态细胞。 (2)用MgCl2、CsCl、LiCl、或者是多价阳离 子DETE-Sephadex处理,改变细胞膜结构,也 能成为感受态细胞。
相关文档
最新文档