2021年华师大版七年级下第九章多边形能力测试题(六)
华师大版七年级下册数学第9章 多边形含答案
华师大版七年级下册数学第9章多边形含答案一、单选题(共15题,共计45分)1、如图,∠MON=90°,矩形 ABCD 在∠MON 的内部,顶点 A,B 分别在射线OM,ON 上,AB=4,BC=2,则点 D 到点O最大距离是()A. B. C. D.2、如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A. B. C. D.3、已知三角形两边的长分别是5和9,则此三角形第三边的长可能是()A.5B.10C.15D.204、在Rt△ABC中,∠C=90°,AB=10,AC=8,则sinA等于 ( )A. B. C. D.5、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A.(-2,2 )B.(-2,4)C.(-2,2 )D.(2,2 )6、把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点,且另三个锐角顶点在同一直线上,若,则的长是()A. B. C.0.5 D.7、经过多边形的一个顶点的所有对角线把多边形分成10个三角形,多边形经过这个顶点的对角线条数是()A.8条B.9条C.10条D.11条8、已知一个多边形的内角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形9、在△ABC中,∠A=70°,∠B=55°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形10、若等腰三角形的一边长是4,则它的周长可能是()A.7B.8C.9D.8或911、已知三角形两边的长分别是5和9,则此三角形第三边的长可能是()A.5B.10C.15D.2012、如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12mB.20mC.22mD.24m13、如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD ;(2)AD⊥BC;(3)∠B=∠C ;(4)AD是△ABC的角平分线。
华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案)
七年级数学下册第九章多边形单元检测试题姓名:__________班级:__________一、单项选择题〔共10题;共30分〕.△ABC中,∠B是∠A的2倍,∠C比∠A大20°,那么∠A等于()A.40°B.60C.80°D°.90°2.如图,在△ABC中,BC边上的高是〔〕A.CEB.ADC.CFD.AB3.假如一个正多边形的一个外角为30°,那么这个正多边形的边数是〔〕A.6B.11C.12D.184.〕如图,矩形 ABCD,一条直线将该矩形 ABCD切割成两个多边形,那么所得任一多边形内角和度数不行能是〔〕A.720°B.540°C.360°D.180°5.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为〔〕A.5B.5或6C.5或7D.5或6或76.以下列图方格纸中的三角形是〔〕A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7.如图,在△ABC中,E是BC上的一点,EC2BE D是AC的中点,设△ABC△ADF△BEF=,点,,的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,那么S△ADF-S△BEF=()A.1B.2C.3D.4,BD是AC边上的高,8.如图,在△ABC中,AB=AC,∠A=36那么∠DBC的度数是〔〕°°°°9.AD是△ABC的中线,BE是△ABD的中线,假定△ABC的面积为20,那么△ABE的面积为〔〕A.5B.10C.15D.1810.如图,那么∠A+∠B+∠C+∠D+∠E=〔〕度A.90B.180C.200D.360二、填空题〔共8题;共24分〕11.如图,在△ABC中,AB=AC,AD⊥BC于点D,假定AB=6,CD=4,那么△ABC的周长是________12.如图,墙上钉了根木条,小明想查验这根木条能否水平,他拿来一个以下列图的测平仪,再这个测平仪中,AB=AC,BC边的中点D处有一个重锤,小明建BC边与木条重合,察看此重锤能否经过A点,如经过A点,那么是水平的,此中的道理是________.113.三角形片ABC中,∠A=55°,∠B=75°,将片的一角折叠,使点C落在△ABC内〔如〕,∠1+∠2的度数________度.14.在△ABC中,AB=13cm,AC=20cm,BC上的高12cm,△ABC的面________cm2.15.在△ABC中,AB=AC=17,BC=16,AD⊥BC于点D,AD=________.16.假定一个四形的四个内角度数的比3∶4∶5∶6,个四形的四个内角的度数分________.17.假定+=0,以的等腰三角形的周.18.如,∠MON=30°,点A1,A2,A3,⋯在射ON上,点B1,B2,B3,⋯在射OM上,△A1B1A2,△A2B2A3,△A3B3A4,⋯均等三角形,假定OA1=2,△A5B5A6的________.三、计算题〔共4题;共24分〕19.如,假定∠B=28°,∠C=22°,∠A=60°,求∠BDC.20.如,AB⊥BC,DC⊥BC,假定∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.21.如,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠A的度数.22.如所示,在△ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC的度数.2((((((((((((((四、解答题〔共4题;共34分〕(23.以下列图,AD,AE是三角形A BC的高和角均分线,∠B=36°,∠C=76°,求∠DAE的度数.((((((((((((24.如图,在△ABC中,BD是∠ABC的均分线,CD是外角∠ACE的均分线.求证:∠D=∠A.(((((((((((((〔1〕等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;〔2〕等腰三角形的一边长等于6cm,周(长等于28cm,求其余两边的长.((((((((((((26.如图,AD为△ABC的中线,BE为△ABD的中线.(1〕∠ABE=15°,∠BAD=40°,求∠BED的度数;(2〕作图:在△BED中作出BD边上的高EF;BE边上的高DG;3〔3〕假定△ABC的面积为40,BD=5,那么△BDE中BD边上的高EF为多少?假定BE=6,求△BED中BE边上的高DG为多少?答案分析局部一、单项选择题1.【答案】A2.【答案】B3.【答案】C4.【答案】A5.【答案】D6.【答案】A7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】B二、填空题2021.等腰三角形底边上的中线与底边上的高相互重合13.100 14.126或66 15.15 16.60o,80o,100o,18.32.三、计算题19.解:以下列图:连接BC.∵∠A=60°,∴∠ABC+ACB=120°.∵∠B=28°,∠C=22°,∴∠DBC+∠DCB=70°.∴∠BDC=180°﹣70°=110°.20.解:∵DC⊥BC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;AB⊥BC,DC⊥BC,∴AB∥CD,∴∠AED=∠A=70°;在△DEF中,∠BFE=∠D+∠AED=45°+70°=115°.21.解:∵DF⊥BC,∴∠FDC=90°,∵∠AFD=152°,∴∠C=∠AFD﹣∠FDC=152°﹣90°=62°,4∵∠B=∠C,∴∠A=180°﹣∠B﹣∠C=180°﹣62°﹣62°=56°22.解:∠3=∠1+∠2,∠1=∠2,∴∠3=2∠1,∵∠3=∠4,∴∠4=2∠1,∴180°﹣4∠1+∠1=78°,解得,∠1=34°,∴∠DAC=78°﹣∠1=44°.四、解答题23.解:∵∠B=36°,∠C=76°∴∠BAC=68°∵AE均分∠BAC∴∠EAC=68°÷2=34°∵AD是高线∴∠DAC=90°-76°=14°∴∠DAE=∠EAC-∠DAC=34°-14°=20°24证明:依据三角形外角性质有∠3+∠4=∠1+∠2+∠A.由于BD、CD是∠ABC和∠ACE的均分线,因此∠1=∠2,∠3=∠4.进而2∠4=2∠1+∠A,即∠4=∠1+∠A①在△BCD中,∠4是一个外角,因此∠4=∠1+∠D,②由①、②即得∠D=∠A.25.〔1〕解:8cm是腰长时,三角形的三边分别为8cm、8cm、9cm,能构成三角形,周长=8+8+9=25cm,8cm是底边时,三角形的三边分别为8cm、9cm、9cm,能构成三角形,周长=8+9+9=26cm,综上所述,周长为25cm或26cm〔2〕解:6cm是腰长时,其余两边分别为6cm,16cm,6+6=12<16,∴不可以构成三角形,6cm是底边时,腰长为〔28-6〕=11cm,三边分别为6cm、11cm、11cm,能构成三角形,因此,其余两边的长为11cm、11cm26.〔1〕解:∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°2〕解:绘图以下:3〕解:∵AD为△ABC的中线,BE为△ABD的中线,∴△ABD的面积=△ABC的面积=20,△BDE的面积=△ABD的面积=10,BD·EF=10,×5EF=10,解得EF=4,BE·DG=10,×6DG=10,5华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案) EF=6。
2021-2022学年度华东师大版七年级数学下册第9章多边形同步测评试题(含答案及详细解析)
七年级数学下册第9章多边形同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)∠+∠+∠+∠+∠=()1、如图,12345A.180°B.360°C.270°D.300°2、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是()A.1个B.2个C.3个D.4个3、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为()A.42°B.48°C.52°D.58°4、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边5、利用直角三角板,作ABC 的高,下列作法正确的是( )A .B .C .D .6、如图,AD BC ⊥于点D ,GC BC ⊥于点C ,CF AB ⊥于点F ,下列关于高的说法错误的是( )A .在ABC 中,AD 是BC 边上的高B .在GBC 中,CF 是BG 边上的高 C .在ABC 中,GC 是BC 边上的高D .在GBC 中,GC 是BC 边上的高7、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A .80°B .90°C .100°D .120°8、一副三角板如图放置,点A 在DF 的延长线上,∠D =∠BAC =90°,∠E =30°,∠C =45°,若BC //DA ,则∠ABF 的度数为( )A .15°B .20°C .25°D .30°9、如图,在ABC 中,点D 、E 分别是AC ,AB 的中点,且=12ABC S △,则=BDE S △( )A .12B .6C .3D .210、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB ∥CD ,ABE ∠和CDE ∠的平分线相交于F ,140E ∠=︒,求BFD ∠的度数_____.2、如图,△ABC 的面积等于35,AE =ED ,BD =3DC ,则图中阴影部分的面积等于 _______3、一个多边形,每个外角都是60︒,则这个多边形是________边形.4、若正n 边形的每个内角都等于120°,则这个正n 边形的边数为________.5、如图,从A 处观测C 处的仰角是36∠=︒CAD ,从B 处观测C 处的仰角74CBD ∠=︒,则从C 处观测A ,B 两处的视角BCA ∠的度数是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,CD 是ACB ∠的平分线,点E 在边AC 上,且DE CE =.(Ⅰ)求证:∥DE BC ;(Ⅱ)若50A ∠=︒,60B ∠=︒,求BDC ∠的大小.2、用无刻度的直尺作图,保留作图痕迹.(1)在图1中,BD 是△ABC 的角平分线,作△ABC 的平分内角∠BCA 的角平分线;(2)在图2中,AD 是∠BAC 的角平分线,作△ABC 的∠BCA 相邻的外角的角平分线.3、如图,在ABC 中,AD 是角平分线,54B ∠=︒,76C ∠=︒.(1)求BAD∠的度数;(2)若DE AC⊥,求EDC∠的度数.4、已知,△ABC中,∠C>∠B,AE平分∠BAC,M是AE上一点,MN⊥BC于N.(1)如图①,当点M与A重合时,若∠B=40°,∠C=80°,求∠EMN的度数;(2)如图②,当点M在线段AE上(不与A,E重合),用等式表示∠EMN与∠B,∠C之间的数量关系,并证明你的结论;(3)如图③,当点M在线段AE的延长线上,连接MC,过点A做MC的垂线,交MC的延长线于点F,交BC的延长线上于点D.①依题意补全图形;②若∠B=α°,∠ACB=β°,∠D=γ°,则∠AMC=°.(用含α,β,γ的式子表示)5、阅读材料,回答下列问题:【材料提出】“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.【探索研究】探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为;探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为;探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为.【模型应用】应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A=(用含有α和β的代数式表示),∠P =.(用含有α和β的代数式表示)应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P=.(用含有α和β的代数式表示)【拓展延伸】拓展一:如图6,若设∠C=x,∠B=y,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论.-参考答案-一、单选题1、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.2、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D .【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.3、B【解析】【分析】根据两直线平行,同位角相等可得42B AFG ∠=∠=︒,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵FG BC ∥,∴42B AFG ∠=∠=︒,∵DE AB ⊥,∴90BDE ∠=︒,∴18048DEB BDE B ∠=︒-∠-∠=︒,故选:B .【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.4、C【解析】【分析】根据三角形具有稳定性进行求解即可.解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.5、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.6、C【解析】【详解】解:A、在ABC中,AD是BC边上的高,该说法正确,故本选项不符合题意;B、在GBC中,CF是BG边上的高,该说法正确,故本选项不符合题意;C、在ABC中,GC不是BC边上的高,该说法错误,故本选项符合题意;D、在GBC中,GC是BC边上的高,该说法正确,故本选项不符合题意;【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.7、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.8、A【解析】【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.9、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=12S△ABC=6,然后利用S△BDE=12S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=12S△ABC=12×12=6,∵点E为AB的中点,∴S△BDE=12S△ABD=12×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键.三角形的中线把三角形分成面积相同的两部分.10、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.二、填空题1、110°【解析】【分析】过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.【详解】解:过点E作EH∥AB,如图所示,∵AB ∥CD ,∴AB ∥EH ∥CD ,∴∠ABE =∠BEH ,∠CDE =∠DEH ,∵∠BEH +∠DEH +∠BED =360°,∠BED =140°,∴∠BEH +∠DEH =220°,∴∠ABE +∠CDE =220°,∵∠ABE 和∠CDE 的平分线相交于F ,∴∠EBF +∠EDF =12(∠ABE +∠CDE )=110°,∵∠BFD +∠BED +∠EBF +∠EDF =360°,∴∠BFD =110°.故答案为:110°.【点睛】本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E 作EH ∥AB ,也是解题的关键.2、15【解析】【分析】连接DF ,根据AE =ED ,BD =3DC ,可得12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =,然后设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+,再由△ABC 的面积等于35,即可求解. 【详解】解:如图,连接DF ,∵AE =ED , ∴12ABE BDE ABD S S S == ,AEF DEF S S =,∵BD =3DC ,∴3ABD ADC S S = ,3BDF CDF S S =设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+, ∵△ABC 的面积等于35,∴()1353x x y y x y +++++= , 解得:15x y += .故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =是解题的关键.3、六【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是60°,∴n =360°÷60°=6,故答案为:六.【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键. 4、6【解析】【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.【详解】解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.5、38︒【分析】根据三角形外角的性质求解即可.【详解】解:由题意可得36∠=︒CAD ,74CBD ∠=︒,∴743638BCA DBC CAD ∠=∠-∠=︒-︒=︒,故答案为:38︒【点睛】此题考查了三角形外角的性质,解题的关键是掌握三角形外角的有关性质.三、解答题1、(Ⅰ)见解析;(Ⅱ)85︒【解析】【分析】(Ⅰ)由CD 是ACB ∠的平分线得出DCB DCE ∠=∠,由DE CE =得出CDE DCE ∠=∠ 从而得出DCB CDE ∠=,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出70ACB ∠=︒,由角平分线得出35BCD ∠=︒,由三角形内角和求出BDC ∠即可得出答案.【详解】(Ⅰ)∵CD 是ACB ∠的平分线,∴DCB DCE ∠=∠,∵DE CE =,∴CDE DCE ∠=∠,∴DCB CDE ∠=,∴∥DE BC ;(Ⅱ)∵50A ∠=︒,60B ∠=︒,∴180506070ACB ∠=︒-︒-︒=︒, ∴1352BCD ACB ∠=∠=︒,∴18085BDC B BCD ∠=︒-∠-∠=︒.【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键2、(1)见解析;(2)见解析.【解析】【分析】(1)作∠BAC 的平分线交BD 于点O ,作射线CO 交AB 于E ,线段CE 即为所求;(2)作△ABC 的∠ABC 的外角的平分线交AD 与D ,作射线CD ,射线CD 即为所求.【详解】(1)如图1,线段CE 为所求;(2)如图2,线段CD 为所求.【点睛】本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.3、 (1)25BAD∠=︒;(2)14EDC∠=︒.【解析】【分析】(1)根据三角形内角和定理可求出50BAC∠=︒,然后利用角平分线进行计算即可得;(2)根据垂直得出90AED∠=︒,然后根据三角形内角和定理即可得.(1)解:∵54B∠︒=,76C∠︒=,∴180180547650BAC B C∠=︒-∠-∠=︒-︒-︒=︒,∵AD是角平分线,∴1252BAD BAC∠=∠=︒,∴25BAD∠=︒;(2)∵DE AC⊥,∴90AED∠=︒,∴180180907614EDC AED C∠=︒-∠-∠=︒-︒-︒=︒,∴14EDC∠=︒.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.4、(1)20EMN ︒∠=;(2)1()2N B EM C ∠=∠-∠,见解析;(3)①见解析;②1122AMC γβα=-+∠ 【解析】【分析】(1)根据三角形内角和求出∠BAC =180°-40°-80°=60°.根据AE 平分∠BAC ,∠CAE =12∠BAC =30°,利用三角形内角和∠C =80°,∠MNC =90°,得出∠CMN =10°即可;(2)∠EMN =12(∠C -∠B );证法1:如图,作AD ⊥BC 于D .根据AE 平分∠BAC ,可得∠EAC =12∠BAC =12(180°-∠B -∠C ).根据AD BC ⊥,Rt △DAC 中,∠DAC =90°-∠C ,得出∠EAD =∠EAC -∠DAC =12(∠C -∠B ).根据AD ⊥BC ,MN ⊥BC ,可得AD//MN ,得出∠EMN =∠EAD =12(∠C -∠B ).证法2:根据 AE 平分∠BAC ,得出∠EAC =12∠BAC =12(180°-∠B -∠C ),根据三角形内角和得出∠AEC =180°-∠EAC -∠C =90°-12(∠C -∠B )即可;(3)①依题意补全图形,当点M 在线段AE 的延长线上,连接MC ,过点A 作AD ⊥MC 交MC 的延长线于点F ,交BC 的延长线上于点D ,如图;②∠AMC =1122γβα-+.过A 作AG ⊥BC 于G ,MN ⊥BC 于N ,可得MN∥AG ,得出∠NME =∠GAE =12(∠ACB -∠B ),根据MC ⊥AD ,得出∠CFD =∠CNM=90°,可证∠NMC =∠D ,根据两角差∠AMC =∠NMC -∠NME =∠D -∠NME =∠D -12∠ACB +12∠B 即可【详解】解:(1)∵∠B =40°,∠C =80°,∴∠BAC =180°-40°-80°=60°.又∵AE 平分∠BAC ,∴∠CAE =12∠BAC =30°,∵∠C =80°,∠MNC =90°,∴∠CMN=10°,∴∠EMN=∠CAE-∠CM N=30°-10°=20°;(2)∠EMN=12(∠C-∠B).…证法1:如图,作AD⊥BC于D.∵AE平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C).∵AD BC,∴Rt△DAC中,∠DAC=90°-∠C,∴∠EAD=∠EAC-∠DAC=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B).∵AD⊥BC,MN⊥BC,∴AD//MN,∴∠EMN=∠EAD=12(∠C-∠B).证法2:∵AE平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C),∴∠AEC=180°-∠EAC-∠C=90°-12(∠C-∠B),∴∠EMN=90°-∠AEC=12(∠C-∠B).(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点A作AD⊥MC交MC的延长线于点F,交BC的延长线上于点D.如图;②∠AMC=1122γβα-+.过A作AG⊥BC于G,MN⊥BC于N,∴MN∥AG,∴∠NME=∠GAE=12(∠ACB-∠B),∵MC⊥AD,∴∠CFD=∠CNM=90°,∵∠FCD=∠NCM,∴∠NMC=180°-∠CNM-∠NCM=180°-∠CFD-∠FCD=∠D,∴∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-12∠ACB+12∠B,∵∠B=α°,∠ACB=β°,∠D=γ°,∴∠AMC=γ°-12β°+12α°.【点睛】本题考查三角形内角和,角平分线定义,平行线性质,角的和差,补全图形,垂线定义,掌握三角形内角和,角平分线定义,平行线性质,角的和差,作图语句,垂线定义是解题关键.5、∠A +∠B =∠C +∠D ; 25°;∠P =2B D ∠+∠;α+β﹣180°,∠P =1802a β︒+-; 1802a β︒--;∠P =23x y +;2∠P ﹣∠B ﹣∠D =180°. 【解析】【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线的定义可得∠BAP =∠DAP ,∠BCP =∠DCP ,结合(1)的结论可得2∠P =∠B +∠D ,再代入计算可求解;探索三:运用探索一和探索二的结论即可求得答案;应用一:如图4,延长BM 、CN ,交于点A ,利用三角形内角和定理可得∠A =α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;应用二:如图5,延长MB 、NC ,交于点A ,设T 是CB 的延长线上一点,R 是BC 延长线上一点,利用应用一的结论即可求得答案;拓展一:运用探索一的结论可得:∠P +∠PAB =∠B +∠PDB ,∠P +∠CDP =∠C +∠CAP ,∠B +∠CDB =∠C +∠CAB ,再结合已知条件即可求得答案;拓展二:运用探索一的结论及角平分线定义即可求得答案.【详解】解:探索一:如图1,∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D,故答案为∠A+∠B=∠C+∠D;探索二:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,∴∠B﹣∠P=∠P﹣∠D,即2∠P=∠B+∠D,∵∠B=36°,∠D=14°,∴∠P=25°,故答案为25°;探索三:由①∠D +2∠1=∠B +2∠3,由②2∠B +2∠3=2∠P +2∠1,①+②得:∠D +2∠B +2∠1+2∠3=∠B +2∠3+2∠P +2∠1∠D +2∠B =2∠P +∠B .∴∠P =2B D∠+∠.故答案为:∠P =2B D∠+∠.应用一:如图4,延长BM 、CN ,交于点A ,∵∠M =α,∠N =β,α+β>180°,∴∠AMN =180°﹣α,∠ANM =180°﹣β,∴∠A =180°﹣(∠AMN +∠ANM )=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;∵BP 、CP 分别平分∠ABC 、∠ACB ,∴∠PBC =12∠ABC ,∠PCD =12∠ACD ,∵∠PCD =∠P +∠PBC ,∴∠P=∠PCD﹣∠PBC=12(∠ACD﹣∠ABC)=12∠A=1802αβ+-︒,故答案为:α+β﹣180°,1802αβ+-︒;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,∵∠M=α,∠N=β,α+β<180°,∴∠A=180°﹣α﹣β,∵BP平分∠MBC,CP平分∠NCR,∴BP平分∠ABT,CP平分∠ACB,由应用一得:∠P=12∠A=1802αβ︒--,故答案为:1802αβ︒--;拓展一:如图6,由探索一可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,∵∠C=x,∠B=y,∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,∠PAB=23∠CAB,∠PDB=23∠CDB,∴∠P+23∠CAB=∠B+23∠CDB,∠P+13∠CDB=∠C+13∠CAB,∴2∠P=∠C+∠B+13(∠CDB﹣∠CAB)=x+y+13(x﹣y)=423x y+,∴∠P=23x y+,故答案为:∠P=23x y+;拓展二:如图7,∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,∴∠PAD=12∠BAD,∠PCD=90°+12∠BCD,由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,③﹣①,得:2∠P﹣∠B=∠D+180°,∴2∠P﹣∠B﹣∠D=180°,故答案为:2∠P﹣∠B﹣∠D=180°.【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可.。
2021-2022学年最新华东师大版七年级数学下册第9章多边形综合测评试题(无超纲)
七年级数学下册第9章多边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列长度的三条线段能组成三角形的是( )A .3,4,7B .3,4,8C .3,4,5D .3,3,72、在一个直角三角形中,一个锐角等于52°,则另一个锐角的度数是( )A .28°B .38°C .45°D .58°3、如图,在ABC 中,点D 、E 分别是AC ,AB 的中点,且=12ABC S △,则=BDE S △( )A .12B .6C .3D .24、将一张正方形纸片ABCD 按如图所示的方式折叠,CE 、CF 为折痕,点B 、D 折叠后的对应点分别为B '、D ',若∠ECF =21°,则∠B 'CD '的度数为( )A.35°B.42°C.45°D.48°5、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为()A.15°B.20°C.25°D.30°6、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()7、如图,CM 是ABC 的中线,4cm AM =,则BM 的长为( )A .3cmB .4cmC .5cmD .6cm8、如图,五边形ABCDE 中,320A B E ∠∠+∠=︒十,CP ,DP 分别平分BCD ∠,CDE ∠,则CPD ∠=( )A .60°B .72°C .70°D .78°9、如图,AB 和CD 相交于点O ,则下列结论不正确的是( )A .12∠=∠B .1B ∠=∠C .2D ∠>∠ D .A D B C ∠+∠=∠+∠10、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3∠的度数为( )第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个多边形的内角和比外角和多180°,则它的边数为______.2、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)3、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.4、如图,在△ABC中,点D,E,F分别是BC,AD,EC的中点,若△ABC的面积等于36,则△BEF的面积为________.5、已知,在△ABC中,∠B=48°,∠C=68°,AD是BC边上的高,AE平分∠BAC,则∠DAE的度数为____.三、解答题(5小题,每小题10分,共计50分)1、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.2、如图,BD⊥AC,∠1=∠2,∠C=66°,求∠ABC的度数.3、如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?4、如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°;求∠AEC的度数.5、在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,已知点A、B、C都在格点上,按下列要求画图:(1)连结AC,画射线BC,则三角形ABC的面积是(2)过点C画直线CD,使CD∥AB;过点C画AB的垂线CE,垂足为F;(3)线段的长度是点C到AB的距离;(4)直线CD、CE的位置关系为________-参考答案-一、单选题1、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.2、B【解析】【分析】利用直角三角形的两锐角互余直接计算即可.【详解】解:一个锐角等于52°,则另一个锐角的度数是905238,故选B【点睛】本题考查的是直角三角形的两锐角互余,掌握“直角三角形的角的性质”是解本题的关键.3、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=12S△ABC=6,然后利用S△BDE=12S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=12S△ABC=12×12=6,∵点E为AB的中点,∴S△BDE=12S△ABD=12×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键.三角形的中线把三角形分成面积相同的两部分.4、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.5、A【解析】【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D =∠BAC =90°,∠E =30°,∠C =45°,∴∠EFD =60°,∠ABC =45°,∵BC ∥AD ,∴∠EFD =∠FBC =60°,∴∠ABF =∠FBC -∠ABC =15°,故选A .【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.6、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.7、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM 是ABC 的中线,4cm AM =,∴BM = 4cm AM =,故选:B .【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.8、C【解析】【分析】根据五边形的内角和等于540︒,由320A B E ∠+∠+∠=︒,可求BCD CDE ∠+∠的度数,再根据角平分线的定义可得PDC ∠与PCD ∠的角度和,进一步求得CPD ∠的度数.【详解】 解:五边形的内角和等于540︒,320A B E ∠+∠+∠=︒,540320220BCD CDE ∴∠+∠=︒-︒=︒,BCD ∠、CDE ∠的平分线在五边形内相交于点O ,1()1102PDC PCD BCD CDE ∴∠+∠=∠+∠=︒, 18011070CPD ∴∠=︒-︒=︒.故选:C .【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.9、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A 、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A 不符合题意;选项B 、∵∠1=∠B +∠C ,∴∠1>∠B ,故选项B 符合题意;选项C 、∵∠2=∠D +∠A ,∴∠2>∠D ,故选项C 不符合题意;选项D 、∵1A D ∠+∠=∠,1B C ∠+∠=∠,∴A D B C ∠+∠=∠+∠,故选项D 不符合题意;故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.10、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60︒的角即可.⨯︒=︒,解:3180540⨯︒=︒,360180∴︒-︒-︒=︒,540180180180∴∠+∠+∠=︒,123180∠+∠=︒,12100∴∠=︒,380故选:A.【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.二、填空题1、5【解析】【分析】n-⨯︒=︒计算求解即可.设边数为n,由题意知多边形的内角和为540︒,用边数表示为()2180540【详解】解:设边数为n∵多边形的外角和为360︒︒+︒=︒∴多边形的内角和为360180540n-⨯︒=︒∴()2180540n=解得5故答案为:5.本题考查了多边形的内角和与外角和.解题的关键在于求解多边形的内角和.2、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即532-=;而小于两边之和,即538+=,即2<第三边8<,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.3、15︒【解析】【分析】利用三角形的内角和定理以及折叠的性质,求出130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,利用四边形内角和为360︒,即可求出∠2.【详解】解:在ABC ∆中,180130A B C ∠+∠=︒-∠=︒,在CDE ∆中,180130CDE CED C ∠+∠=-∠=︒,由折叠性质可知:''130A B A B ∠+∠=∠+∠=︒ ,四边形''DEB A 的内角和为360︒,''''360A B ADE B ED ∴∠+∠+∠+∠=︒,1A DE CDE ∠=∠+∠','2B ED CED ∠=∠+∠,''12()360CDE CED A B ∴∠+∠+∠+∠+∠+∠=︒,130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,且∠1=85°,215∴∠=︒,故答案为:15︒.【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.4、9【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可求得.【详解】解:∵点D ,E ,F 分别是BC ,AD ,EC 的中点,∴AE =DE =12AD ,EF =CF =12CE ,BD =DC =12BC ,∵△ABC 的面积等于36, ∴11361822ABD ACD ABCS S S ===⨯=,192ABE BED ABD S S S ===,192AEC CDE ACD S S S ===, ∴9918BEC BDE CDE S S S =+=+=,∴1118922BEF BCF BEC S S S ===⨯=, 故答案为:9.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键..5、10°##10度【解析】【分析】由三角形内角和求出BAC ∠的度数,然后利用角平分线的定义求出BAE ∠的度数,再根据AD ⊥BC 求出BAD ∠的度数,利用DAE BAD BAE ∠=∠-∠即可求出DAE ∠的度数.【详解】解:如图,∵∠B =48°,∠C =68°180180486864BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒∵AE 平分∠BAC11643222BAE BAC ∴∠=∠=⨯︒=︒ ∵AD ⊥BC90BDA ∴∠=︒904842BAD BDA B ∴∠=∠-∠=︒-︒=︒423210DAE BAD BAE ∴∠=∠-∠=︒-︒=︒故答案为10︒【点睛】本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.三、解答题1、这个多边形的边数是6【解析】【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n 边形的内角和可以表示成(n -2)•180°,设这个多边形的边数是n ,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n ,由题意得:(n -2)×180°=2×360°,解得n =6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n -2)•180°,外角和为360°.2、69°【解析】【分析】利用三角形的内角和定理先求出∠2、∠CBD 的度数,再利用角的和差关系求出∠ABC 的度数.【详解】解:∵BD ⊥AC ,∴∠ADB =∠BDC =90°.∵∠1=∠2,∠C =66°, ∴∠1=∠2=12∠ADB =45°,∠CBD =∠ADB ﹣∠C =24°.∴∠ABC =∠2+∠CBD=45°+24°=69°.【点睛】本题考查了三角形的内角和定理,掌握三角形的内角和等于180°是解决本题的关键.3、360°【解析】【分析】分别记,,B C A ∠∠∠的外角为,,αβγ,用αβγ++即可得出答案.【详解】如图,当小汽车从P 出发行驶到B 市,由B 市向C 市行驶时转的角是α,由C 市向A 市行驶时转的角是β,由A 市向P 市行驶时转的角是γ.∴小汽车从P 市出发,经B 市、C 市、A 市,又回到P 市,共转360αβγ++=︒.【点睛】本题考查外角和定理的应用,掌握多边形的外角和为360︒是解题的关键.4、∠AEC =115º.【解析】【分析】根据三角形内角和定理求出∠C 的度数,根据直角三角形两锐角互余求出∠DAC 的度数,然后根据角平分线的定义求出∠DAE 的度数,再根据三角形的外角的性质即可求出∠AEC 的度数.【详解】解:∵∠BAC =80º,∠B =60º,∴∠C =180º-∠BAC -∠B =180º-80º-60º=40º,∵AD ⊥BC ,∴∠DAC =90º-∠C =90º-40º=50º ,∵AE 平分∠DAC ,∴∠DAE =12∠DAC =12×50º=25º ,∴∠AEC =∠DAE +∠ADE =25º+90º=115º.【点睛】本题考查了三角形内角和定理,直角三角形的性质,角平分线的定义,三角形的外角的性质.熟练掌握各个知识点是解题的关键.5、(1)作图见解析,3;(2)作图见解析;(3)CF;(4)垂直.【解析】【分析】(1)按要求画图,求出三角形面积即可;(2)直接利用网格作图即可;(3)根据点到直线的距离的定义即可判断;(4)直接利用网格得出直线CD、CE的位置关系.【详解】(1)如图:三角形ABC的面积=12332⨯⨯=,故答案为:3;(2)如图:(3)由(2)可知线段CF的长度是点C到AB的距离,故答案为:CF;(4)两直线CD、CE的位置关系为:垂直,故答案为:垂直.【点睛】本题考查复杂作图以及三角形的面积,正确借助网格作图是解题关键.。
第9章 多边形测试卷 2021-2022学年华东师大版数学七年级下册 (word版 含答案)
第9章多边形标测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图1,人字梯中间一般会设计一“拉杆”,这样做的依据是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性图1 图22.如图2,AD是△ABC的中线,则下列结论正确的是()A.BD=CD B.∠BAD=∠CAD C.AB=AC D.AD⊥BC 3.如果n边形每个内角等于与它相邻外角的2倍,则n的值是()A.4 B.5 C.6 D.74.下列说法中错误的是()A.三角形的中线、角平分线,高线都是线段B.三角形的三条中线都在三角形内部C.任意三角形的外角和都是360°D.三角形的一个外角大于任何一个内角5.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正方形、正六边形,则另外一个多边形为()A.正三角形B.正方形C.正五边形D.正六边形6.将一副三角尺按图3所示摆放,则∠α的度数是()A.120°B.105°C.90°D.75°图3 图47.如图4,平面内将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2=()A.10°B.12°C.24°D.36°8.甲、乙、丙、丁四位同学在讨论数学问题时,做了如下发言:甲:因为三角形中最多有一个钝角,所以三角形的三个外角中最多有一个锐角;乙:在求每个内角都相等的n边形的一个内角度数时,可利用公式360180n︒⎛⎫-⎪⎝⎭;丙:多边形的内角和总比外角和大;丁:n边形的边数每增加一条,对角线就增加n条.其中正确的说法有()A.0个B.1个C.2个D.3个9.如图5,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE 相交于点E,若∠A=60°,则∠BEC的度数是()A.15°B.30°C.45°D.60°图5 图610.如图6,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A 的度数是()A.50°B.55°C.60°D.65°二、填空题(本大题共6小题,每小题3分,共18分)11.若一个三角形的两边长分别是2和6,第三边长为偶数,则第三边长为.12.如图7,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=69°,则∠5=°.图7 图813.如图8,在△ABC中,AD⊥BC于点D,那么图中以AD为高的三角形共有个.14.如图9,BC⊥ED于点O,∠A=27°,∠D=20°,则∠B=.图9 图10 图1115.如图10,直线l1,l2分别经过正五边形ABCDE的顶点A,B,且l1∥l2,若∠1=58°,则∠2=.16.已知△ABC和△DEF按图11所示摆放,使得∠D的两边分别经过点B,C.若∠A=50°,∠E+∠F=100°,则∠ABD+∠ACD=°.三、解答题(本大题共6小题,共52分)17.(6分)一个多边形的内角和比外角和的3倍少180°,求这个多边形的边数.18.(8分)某木材市场上木棒规格与价格如下表:规格1m 2m 3m 4m 5m 6m 7m价格(元/根)10 15 20 25 30 35 40小明的爷爷要做一个三角形的木架,现有两根长度分别为3m和5m的木棒,还需要到该木材市场上购买一根.(1)有几种规格不同的木棒可供小明的爷爷选择?(2)选择哪一种规格木棒最省钱?19.(8分)如图12,在△ABC中,BE⊥AC于点E,BC=5 cm,AC=10 cm,BE=3 cm.(1)画出△ABC边BC上的中线AF,并求△ACF的面积.(2)画出△ABC边BC上的高AD,并求AD的长.CBEA图1220.(8分)如图13,某计算机兴趣小组为机器人编制了一段程序:图13如果机器人以2cm/s的速度在平地上按图中的步骤行走,按此程序,机器人能否走回点O 处?若能,机器人所走的路径是一个什么几何图形?并求出该图形的内角和及机器人回到点O时所用的时间;若不能,请说明理由.21.(10分)如图14,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数.(2)试探究∠DAE与∠C-∠B有何关系?并说明理由.图1422.(12分)阅读下列材料:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图15-①,四边形ABCD为凹四边形.图15根据上面材料,解答下面问题:(1)如图15-②,已知四边形ABCD是凹四边形,试说明∠BCD=∠B+∠A+∠D.(2)如图15-③,在凹四边形ABCD中,∠BAD,∠BCD的平分线交于点E,若∠ADC=140°,∠AEC=102°,求∠B的度数.附加题(20分,不计入总分)综合实践图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP,CP相交于点P,且与CD,AB分别相交于M,N.操作发现(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:;(2)在图2中“8字形”有个;实践探究(3)如图2,当∠D=50°,∠B=40°时,求∠P的度数.(4)如图2,当∠D和∠B为任意角时,其他条件不变,试问:∠P与∠D,∠B之间存在怎样的数量关系?(直接写出结论,不必说明理由)第9章多边形测试卷一、1.D 2.A 3.C 4.D 5.B 6.B 7.C 8.C 9.B 10.A二、11.6 12.84 13.6 14.43°15.22°16.230三、17.解:设这个多边形的边数为n.根据题意,得180°×(n-2)=360°×3-180°.解得n=7.所以这个多边形的边数为7.18.解:(1)设第三根木棒的长度为x m.根据三角形的三边关系,得5-3<x<5+3.解得2<x<8.所以x可取3,4,5,6或7,共有5种规格不同的木棒可供小明的爷爷选择.(2)根据木棒的价格可得选3m的木棒最省钱.19.解:(1)画出BC边上的中线AF,如图1所示.因为S△ABC=12AC·BE=12×10×3=15(cm2).因为AF为△ABC边BC上的中线,所以S△ACF=12S△ABC=12×15=7.5(cm2).图1(2)画出△ABC边BC上的高AD,如图1所示.因为S△ABC=12BC·AD,即12×5·AD=15,可得AD=6.20.解:能走回点O处.理由如下:因为360°÷45°=8,所以机器人所走的路径能组成一个正八边形,其内角和为(8-2)×180°=1080°.因为正八边形的周长为4×8=32(cm),所以走回点O处所用的时间为32÷2=16(s).21.解:(1)因为∠B=30°,∠C=50°,所以∠BAC=180°-30°-50°=100°.因为AE是△ABC的角平分线,所以∠CAE= 12∠BAC=12×100°=50°.因为AD是△ABC的高,∠C=50°,所以∠CAD=90°-50°=40°.所以∠DAE=∠CAE-∠CAD=50°-40°=10°.(2)∠DAE=12(∠C-∠B),理由如下:同(1)的思路,∠CAE= 12∠BAC=12(180°-∠B-∠C)=90°-12∠B-12∠C,∠CAD=90°-∠C,所以∠DAE=∠CAE-∠CAD=90°-12∠B-12∠C-(90°-∠C)=12(∠C-∠B).22.解:(1)如图2,延长BC交AD于点M.因为∠BCD是△CDM的外角,所以∠BCD=∠CMD+∠D.同理,可得∠CMD=∠A+∠B,所以∠BCD=∠A+∠B+∠D.(2)如图3,设∠B=x°,∠ECB=∠ECD=α,∠EAD=∠EAB=β.由(1),可知102,102140.xαβαβ++=⎧⎨++=⎩解得x=64.所以∠B的度数是64°.附加题解:(1)∠A+∠D=∠B+∠C 提示:因为∠A+∠D+∠AOD=∠B+∠C+∠BOC=180°,∠AOD=∠BOC,所以∠A+∠D=∠B+∠C.(2)6(3)因为AP,CP分别平分∠DAB,∠BCD,所以∠DAP=∠P AB,∠DCP=∠PCB.由(1),得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠P AB+∠P②,①+②,得∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠P AB+∠P,即2∠P=∠D+∠B.因为∠D=50°,∠B=40°,所以2∠P=50°+40°,可得∠P=45°.(4)2∠P=∠D+∠B.。
2021华师大版七数下第9章《 多边形》单元测试及答案 (6)
2021华师大版七数下第9章《 多边形》单元测试及答案一 你的数学风采,在于你的合理选择(每题3分,共30分)1.下列判断正确的是:①平分三角形内角的射线叫三角形的角平分线;②三角形的中线、角平分线、高线都是线段;③一个三角形有三条角平分线,三条中线和三条高线;④三角形的中线是经过顶点和对边中点的直线.其中正确的是( )A.①②③④ B.②③④ C.①④ D.②③2.有长度为4cm ,8cm ,10cm ,12cm 的四条线段,从中任意选取三条线段能构成的三角形的个数是( )A.1个 B.2个 C.3个 D.4个3.如果三角形的一个外角与它不相邻的一个内角互余,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定4. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定5.内角和外角和相等的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形6.n 边形的内角中,最多有锐角( )A.1个 B.2个 C.3个 D.4个7.下列正多边形组合中,能够镶嵌平面的正多边形组合是( )A.正六边形和正三角形 B.正方形和正十边形C.正方形和正六边形 D.正五边形和正六边形8.如图,光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间来回反射,这时光线的入射角等于反射角,即16,53∠=∠∠=∠,24∠=∠。
若已知155,375∠=∠=,那么2∠等于( )A 50B 55C 66D 659.如图3,已知12l l ∥,则下列式子正确的是( )A.180αβγ++=∠∠∠B.180αβγ+-=∠∠∠C.γβ>∠∠ D.180βα+=∠∠10.三角形三条边的长a bc ,,均为正整数,且a b c ≤≤,当2b =时,符合上述条件的三角形有( )A.1个 B.2个 C.3个 D.4个二 用你敏锐的思维,写出简洁的结果(每题3分,共30分)11.一个三角形最多有_____个直角,最多有_____钝角,最多有_____个锐角.12.一个三角形的两条高既不在三角形内,又不在三角形外,这个三角形是_____三角形.13.木制的门框是矩形,木工师傅在建筑房屋的过程中,总是在门框的上面钉上两根木条,待墙砌好后再撤去木条,从而防止门框变形,根据的是_____.14.已知三角形的边长分别为2,6,x ,则x 的取值范围是_____.15.如图4,3125=∠,150=∠,4∠的度数为_____.16.如图5,A B C D E F G ++++++=∠∠∠∠∠∠∠_____.17.一个多边形的内角和为1620,则这个多边形为_____边形.18.现有正三角形、正方形、正五边形、正六边形、正八边形、正十二边形砖块,用同一种正多边形地砖能镶嵌地面的是_____.19.一个多边形的每个外角为45,则它的对角线有_____条.20.用长与宽的比为2:1的长方形瓷砖铺设一个正方形,至少需要_____块这样的长方形瓷砖.三 圆满的解答,是你萌动的智慧(21—26每题10分)21.如图6,ABC △是钝角三角形.(1)画出ABC △中BC 边上的高;(2)画出ABC △中BC 边上的中线;(3)画出ABC △中B ∠的平分线.22.如图,在直角三角形ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,求○1△ABC 的面积;○2CD 的长。
2020_2021学年七年级数学下册第9章多边形测试题新版华东师大版20210622159
《第9章多边形》单元测试题一.选择题1.小明说:有这样一个三角形,它两条边上的高的交点正好是该三角形的一个顶点.你认为小明说的这个三角形一定()A.是钝角三角形B.是直角三角形C.是锐角三角形D.不存在2.如图,下列图形不是凸多边形的是()A.B.C.D.3.如图,在△ABC中,AD,CH分别是高线和角平分线,交点为E,已知CA=4,DE=1,则△ACE的面积等于()A.8B.6C.4D.24.△ABC的三个内角分别为∠A,∠B,∠C,设∠1=∠A+∠B,∠2=∠B+∠C,∠3=∠A+∠C,那么∠1、∠2、∠3中锐角可能有()A.0个B.1个C.2个D.0个或1个5.一个凸n边形的边数与对角线条数的和小于20,且能被5整除,则n为()A.4B.5C.6D.5或66.两个正多边形的边数之比为1:2,内角和之比为3:8,这两个多边形的内角和分别为()A.540°和1080°B.720°和1440°C.540°和1440°D.360°和720°7.生活中,如图所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的()A.稳定性B.全等性C.灵活性D.对称性8.以长为3cm,4cm,7cm,11cm的四条线段中的三条线段为边,可以组成三角形的个数是()A.1B.2C.3D.09.若三角形中的一条边是另一条边的2倍,且有一个角为30°,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.以上都不对10.把一副三角尺按如图所示的方式放置,则两斜边的夹角∠1=()A.155°B.175°C.165°D.135°二.填空题11.一些大小、形状完全相同的三角形密铺地板,正五边形密铺地板.(填“能”或“不能”)12.如图所示的是由相同的小图案无空隙、无重叠地拼接而成,将组成它的小图案画在它右边的方框内.13.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有条,可以将此多边形分成个三角形.14.如图所示,则x=.15.如果一个三角形三个内角的比是1:2:3,那么这个三角形是三角形.16.若三角形的两边长分别是4和3,则第三边长c的取值范围是.17.如图,在△ABC中,AD是BC边上的中线,△ABD的面积为6cm2,则△ABC的面积为cm2.18.如果一个多边形的每个内角都等于150°,那么它的边数等于.19.折叠式防盗窗利用的是四边形的性.20.在△ABC中,∠ACB=90°,CD、CE分别是斜边上的高和中线,若AC=8,BC=6,则ED=.三.解答题21.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.22.如图,△ABC正好可以放在长方形内,要测出△ABC的面积,现有一把刻度尺,你能做到吗?说出你是怎样做的.23.有一块厚度均匀的任意四边形木块,如图所示.如何用作图的方法来确定此木块的重心位置?请写出作图步骤.24.如图,在Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点.(1)若点P在线段AB上,如图①,且∠3=65°,则∠1与∠2的度数和是多少?(2)若点P在斜边AB上运动,如图②,探索∠3,∠1,∠2之间的关系,并说明理由.25.如图,直线a上有5个点,A1,A2,…,A5,图中共有多少个三角形?26.已知三角形的两边长分别为5cm和2cm,第三边的长是偶数,求第三边的长以及三角形的周长.27.如图,请复制并剪出若干个纸样,通过拼图解答以下问题.(1)这种图形能密铺平面吗?如果你认为能,请用这种图形组成一幅镶嵌图案.(2)若AB=4cm,AD=BC=1.5cm,由20个这种图形组成的镶嵌图形面积有多大?参考答案与试题解析一.选择题1.解:∵只有直角三角形三条高相交于直角顶点,∴这个三角形一定是直角三角形.故选:B.2.解:选项A、B、D中,画出这个多边形的任意一条边所在的直线,整个多边形都在这条直线的同一侧,所以都是凸多边形,只有C不符合凸多边形的定义,不是凸多边形.故选:C.3.解:过点E作EF⊥AC于F,∵CE平分∠ACB,ED⊥BC,EF⊥AC,∴EF=DE=1,∴△ACE的面积=×AC×EF=2,故选:D.4.解:根据三角形的内角和定理,三角形的内角至少有两个锐角,∵∠1=∠A+∠B,∠2=∠B+∠C,∠3=∠A+∠C,∴∠1、∠2、∠3为三角形的三个外角,∴△ABC为锐角三角形时∠1、∠2、∠3中锐角有0个,△ABC为直角三角形时∠1、∠2、∠3中锐角有0个,△ABC为钝角三角形时∠1、∠2、∠3中锐角有1个,所以,锐角可能有0个或1个.故选:D.5.解:设多边形有n条边,则n+<20,即n(n﹣1)<40,又能被5整除,所以n=5或6.故选:D.6.解:设这两个正多边形的边数分别为n和2n条,根据多边形的内角和公式则有两多边形的内角和分别为180(n﹣2)°和180(2n﹣2)°,由于两内角和度数之比为3:8,因此,解得:n=5,则180(n﹣2)=540°,180(2n﹣2)=1440°,所以这两多边形的内角和分别为540°和1440°.故选:C.7.解:这是利用了三角形的稳定性.故选:A.8.解:首先进行组合,则有3,7,11;4,7,3;3,7,11;4,7,11,根据三角形的三边关系,没有能组成三角形的.故选:D.9.解:如图:(1)当AB是30°角所对的边AC的2倍时,△ABC是直角三角形;(2)当AB是30°角相邻的边AC的2倍时,△ABC是钝角三角形.所以三角形的形状不能确定.故选:D.10.解:如图,延长FO交AC于E,∵∠C=90°,∠F=30°,∴∠AEF=∠C+∠F=90°+30°=120°,∵∠A=45°,∴∠1=∠A+∠AEF=45°+120°=165°,故选:C.二.填空题11.解:因为三角形的内角和为180°,所以360°÷180°=2,即拼接点处有6个角.正五边形每个内角是:180°﹣360°÷5=108°,不能整除360°,不能密铺;故答案为:能,不能.12.解:作图如下:13.解:根据题意得:360°÷(180°﹣150°)=360°÷30°=12,那么它的边数是十二.从它的一个顶点出发的对角线共有12﹣3=9条,可以把这个多边形分成12﹣2=10个三角形.故答案为:9;10.14.解:∵∠ACD是∠A和∠B的外角,∴x+(x+10)=x+70,解得x=60.故答案为60.15.解:∵一个三角形三个内角的比是1:2:3,∴这个三角形的最大内角的度数是:180°×=90°,∴这个三角形是直角三角形,故答案为:直角.16.解:根据三角形三边关系,∴三角形的第三边c满足:4﹣3<c<3+4,即1<c<7,故答案为:1<c<7.17.解:∵△ABC中,AD是BC边上的中线,△ABD的面积为6cm2,∴△ABC的面积=6×2=12cm2.故答案为:12.18.解:∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12.故答案为:12.19.解:折叠式防盗窗利用的是四边形的不稳定性.20.解:∵在△ABC中,∠ACB=90°,CD、CE分别是斜边上的高和中线,∴BE=,CD⊥AB,∵AC=8,BC=6,∴AB==10,BE=5,∵•AC•BC=•AB•DC,∴DC=8×6÷10=4.8.在△BDC中,BD===3.6,∴DE=BE﹣BD=5﹣3.6=1.4.三.解答题21.解:连接CD.∵在△CDM和△ABM中,∠DMC=∠BMA,∴∠A+∠B=∠BDC+∠ACD,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BDC+∠ACD+∠ACF+∠BDE+∠E+∠F=∠EDC+∠FCD+∠E+∠F=360°.22.解:能做到.其方法是:如图,过点A作AE⊥BC于点E.则S△ABC =BC•AE,S矩形ABCD=BC•AE,所以,S△ABC =S矩形ABCD.故只需测出矩形的长和宽即可.23.解:作图步骤:(1)取AB、BC、CD三边的中点G、E、F,连接AE,AF,DE,DG;(2)分别在AE,AF,DE,DG上取EP=AE,FQ=AF,ES=DE,GR=DG;(3)连接PQ,RS交于O点.O点即为所求.24.解:(1)如图①,连接PC,∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠3+∠ACB,∵∠3=65°,∠ACB=90°,∴∠1+∠2=65°+90°=155°;(2)∠1+∠2=90°+∠3.理由:如图②,连接PC,∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠3+∠ACB,∵∠ACB=90°,∴∠1+∠2=90°+∠3.25.解:∵直线a上有5个点,∴直线a上的线段共有:=10(条),即图中共有10个三角形.26.解:设第三边为acm,根据三角形的三边关系可得:5﹣2<a<5+2.即:3<a<7,由于第三边的长为偶数,则a可以为4cm或6cm.∴三角形的周长是2+5+6=13cm或2+5+4=11cm.27.解:(1)这种图形能密铺平面,如图所示:(2)∵由20个这种图形组成的镶嵌图形是有20个4×1.5的小矩形组成,AB=4cm,AD =BC=1.5cm,∴镶嵌后图形面积为:20×4×1.5=120(cm 2).答:由20个这种图形组成的镶嵌图形面积为120cm 2.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
华师大版七年级下册数学第9章多边形 测试题及答案
故选A.
考点:1.三角形的面积;2.三角形的角平分线、中线和高.
10.B
【解析】
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和把五个角转化为一个三角形的内角的和,再根据三角形内角和定理解答.
【详解】
16.若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为____.
17.若 ,则以a、b为边长的等腰三角形的周长为.
18.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为________.
【详解】
∵S△ABC=12,
EC=2BE,点D是AC的中点,
∴S△ABE= ×12=4,
S△ABD= ×12=6,
∴S△ABD-S△ABE,
=S△ADF-S△BEF,
=6-4,
=2.
故选B.
8.A
【解析】
试题分析:先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.
∵AB=AC,∠A=36°
考点:勾股定理
15.15 cm
【解析】
【分析】
利用等腰三角形的性质求得BD= BC=8cm.然后在直角△ABD中,利用勾股定理来求AD的长度.
【详解】
如图所示:
∵△ABC中,AB=AC=17cm,BC=16cm,AD⊥BC于点D,
∴BD= BC=8cm,
∴在直角△ABD中,由勾股定理,得
AD= cm.
华师大七年级下第九章多边形能力测试题(六)初一数学
初一数学下能力测试题(六)班级 _______ 姓名 ____________一、填空题1、假如∠ A =35° 18′,那么∠ A 的余角等于_____;2、如图①,直线 a、b 被直线 c 所截(即直线 c 与直线 a、 b 都订交),且a∥ b,若∠ 1= 118°,则∠ 2 的度数=_____;图③3、一个角的补角比这个角的余角大___度;4、如图③: A、 O、 B 是直线,∠ EOB= ∠ DOF=90 0, OB 均分∠ DOC ,则图中与∠ DOE 互余的角有,与∠ DOE 互补的角有。
5、如图,①假如1 2,那么根 E 据,可得// ;D 3如果DAB ABC 180 ,那么根 1据,可得// .②当// 时 , 2依据, A B得 CABC 180;当// 时 ,依据,得 A E3 C .6、已知:如图, AB∥CD,EF 分别交于 AB、G H CD于 E、F, EG均分∠ AEF, FH 均分∠EFD。
求证: EG∥ FHC D 证明:∵ AB ∥ CD(已知)∴∠ AEF=∠ EFD F( ____ __)∵EG 均分∠ AEF, FH均分∠ EFD(____ __),C B∴∠ ____ __= 1∠ AEF,∠ ___ ___=1∠ EFD(角均分线定义)∴2 2∠ ____ __= ∠ _____ ∴ EG∥ FH(____ __ )二、选择题1、假如一个角的补角是150°,那么这个角的余角的度数是()A 30°B 60°C 90°D 120°2、(1)假如直线a b, b c, 那么a∥c(2)假如两个角不相等,那么这两个角不是对顶角(3)两条直线被第三条直线所截,同位角相等(4)假如直线 a b, c ∥ b ,那么a∥c(5)两条直线平行,同旁内角相等;(6)邻补角的角均分线所在的两条直线相互垂直( 7)两条直线订交,所成的四个角中,必定有一个是锐角以上说法正确的有几个()A、1个B、2 个C、3 个D、4 个3、以下语句中,正确的选项是()A、相等的角必定是对顶角B、互为补角的两个角不相等C、两边互为反向延伸线的两个角是对顶角D 、交于一点的三条直线形成 3 对对顶角4、以下语句中,正确的选项是:A、两条直线订交所成的角叫做对顶角B、有公共极点,且有一条边公共的两个角叫邻补角D、有公共极点,且大小相等的两个角是对顶角5、以下语句中,错误的选项是:()A 、一条直线有且只有一条垂线B、不相等的两个角必定不是对顶角C、直角的补角必是直角D、假如两个角是邻补角,那么这两个角的均分线构成的图形是直角6、如图 6,在∠ 1、∠ 2、∠ 3、∠ 4 中,内错角是:()A、∠1 与∠ 4B、∠2与∠4C、∠1 与∠ 3D、∠2与∠3CB2 1AOD图 8图 6 图 77、如图7 所示的∠ 1~∠ 9 这九个角中,同位角,内错角,同旁内角的对数分别是:()A 、四、四、二B、四、四、四C、六、四、四D、六、四、二8、如图 8, 1 15 ,AOC 90 ,点B、O、D在同向来线上,则 2 的度数为()A 、75B、15C、105D、165三、解答以下各题1、一个角的余角比它的补角2还多1,求这个角. 92、已知互余两角的差为20 ,求这两个角的度数.3、如图,在四边形 ABCD 中,已知∠ B = 60°,∠ C= 120°,由这些条件你能判断哪两条直线平行?谈谈你的原因。
华师大版 七年级数学下册第九章 多边形 2021 2021学年检测试题(含答案)
华师大版七年级数学下册第九章多边形 2021 2021学年检测试题(含答案)华师大版七年级数学下册第九章多边形2021-2021学年检测试题(含答案)第9章检测题(时间:90分钟,满分:100分后)一、选择题(每小题2分,共12分)1.能够把三角形的面积分成成正比的两部分的就是()a.三角形的角平分线b.三角形的中线c.三角形的高d.以上都不对2.未知从多边形的一个顶点带出的对角线把多边形分割为10个三角形,则此多边形的内角和就是(a.1440°b.1800°c.2160°d.1620°3.某人到瓷砖商店去购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()a.正三角形b.正四边形c.正五边形c.正六边形4.能挂满地面的正多边形女团就是()a.正六边形和正方形b.正五边形和正八边形c.正方形和正八边形d.正三角形和正十边形5.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()a.5b.6c.7d.86.设一个多边形的一个内角为x°,其余内角之和为1740°,则x的值()a.30b.60c.90d.120二、填空题(每小题2分,共18分)7.未知一个多边形的内角和就是2340°,则这个多边形就是边菱形.8.一个正多边形的每个外角都就是24°,则这个多边形的边数为.)9.4条线段的长度分别为2,3,4,5,自由选择3条线段可以共同组成个三角形.10.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有个正三角形和个正四边形。
11.在△abc中,∠a+∠b=∠c,∠b=2∠a,则∠c=,∠a=12.三角形的三边长分别为5,1+2x,8,则x的取值范围是13.如图,ac⊥bd于点c,已知∠a=40°,∠aef=70°,则∠d=14.例如图,未知∠1=20°,∠2=25°,∠a=50°,则∠bdc等同于15.如图,小兰在操场上散步。
2021-2022学年华东师大版七年级数学下册第9章多边形综合测评试卷(精选)
七年级数学下册第9章多边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A .35°B .20°C .15°D .10°2、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )A.60°B.120°C.135°D.150°3、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,134、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是()A.5或6 B.6或7 C.5或6或7 D.6或7或85、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A.30°B.40°C.50°D.60°6、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7∠+∠+∠+∠+∠+∠=()度.7、如图,123456A.180 B.270 C.360 D.5408、若一个三角形的三个外角之比为3:4:5,则该三角形为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形9、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于()A.180°B.210°C.360°D.270°10、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF 上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有()A .2个B .3个C .4个D .5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,点D 为BC 边延长线上一点,若∠ACD =75°,∠A =45°,则∠B 的度数为__________.2、已知ABC 中,AB =5,AC =7,BC =a ,则a 的取值范围是 ___.3、在ABC 中,AD ⊥BC 于点D ,BD =CD ,若BC =6,AD =4,则图中阴影部分的面积为__________.4、如图,四边形ABCD ,BP 、CP 分别平分ABC ∠、BCD ∠,写出A ∠、D ∠、P ∠之间的数量关系______.5、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥C D.2、如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(注:此题作图不要求写出画法和结论)(1)分别连接AB、AD,作射线AC,作直线BD与射线AC相交于点O;(2)我们容易判断出线段AB+AD与BD的数量关系是,理由是.3、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.(1)求∠F的度数;(2)若∠ABE=75°,求证:BE∥CF.4、如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数.5、如图,在ABC 中,AD 是角平分线,54B ∠=︒,76C ∠=︒.(1)求BAD ∠的度数;(2)若DE AC ⊥,求EDC ∠的度数.-参考答案-一、单选题1、C【解析】【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】解:∵45CDE ∠=︒,90C ∠=︒,∴45CED ∠=︒,∵DE ∥AF ,∴∠CAF =∠CED =45°,∵∠BAC =60°,∴∠BAF =60°-45°=15°,故选:C【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.2、B【解析】【分析】观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.【详解】∠α=6218061()20-⨯︒÷=︒故选:B .【点睛】本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.3、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A 不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.4、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.5、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.6、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.7、C【解析】【分析】∠=∠+∠∠=∠+∠,再由四边形的内角和等于360°,即可求根据三角形外角的性质,可得946,1015解.【详解】解:如图,∠=∠+∠∠=∠+∠,根据题意得:946,1015∠+∠+∠+∠=︒,∵23910360∴123456360∠+∠+∠+∠+∠+∠=︒.故选:C【点睛】本题主要考查了三角形外角的性质,多边形的内角和,熟练掌握三角形外角的一个外角等于与它不相邻的两个内角的和,四边形的内角和等于360°是解题的关键.8、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x 、4x 、5x ,则3x +4x +5x =360°,解得,x =30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A .【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.9、B【解析】【分析】已知90C ∠=︒,得到2390∠+∠=︒,根据外角性质,得到1D α∠=∠+∠,4F β∠=∠+∠,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵90C ∠=︒,∴2390∠+∠=︒,∵1D α∠=∠+∠,4F β∠=∠+∠,∴14D F αβ∠+∠=∠+∠+∠+∠,∵12∠=∠,34∠=∠,∴1423D F D F ∠+∠+∠+∠=∠+∠+∠+∠,∵30D ∠=︒,90F ∠=︒,∴23233090210D F ∠+∠+∠+∠=∠+∠+︒+︒=︒;故选D .【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.10、C【解析】【分析】先由翻折的性质得到∠AEN =∠A ′EN ,∠BEM =∠B ′EM ,从而可知∠NEM =12×180°=90°,然后根据余角的定义找出∠B ′ME 的余角即可.【详解】解:由翻折的性质可知:∠AEN =∠A ′EN ,∠BEM =∠B ′EM .∠NEM =∠A ′EN +∠B ′EM =12∠AEA ′+12∠B ′EB =12×180°=90°.由翻折的性质可知:∠MB ′E =∠B =90°.由直角三角形两锐角互余可知:∠B ′ME 的一个余角是∠B ′EM .∵∠BEM =∠B ′EM ,∴∠BEM 也是∠B ′ME 的一个余角.∵∠NBF +∠B ′EM =90°,∴∠NEF =∠B ′ME .∴∠ANE 、∠A ′NE 是∠B ′ME 的余角.综上所述,∠B ′ME 的余角有∠ANE 、∠A ′NE 、∠B ′EM 、∠BEM .故选:C .【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.二、填空题1、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B ∠=∠+∠ ,∴B ACD A ∠=∠-∠ ,∵∠ACD =75°,∠A =45°,∴30B ∠=︒ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2、2<a <12【解析】【分析】直接利用三角形三边关系得出a 的取值范围.【详解】解:∵△ABC 中,AB =5,AC =7,BC =a ,∴7﹣5<a <7+5,即2<a <12.故答案为:2<a <12.【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.3、6【解析】【分析】如图,先标注字母,证明,,ABD ACD BEF CEF SS S S 可得1,2ABC S S 阴影从而可得结论.【详解】解:如图,先标注字母,AD ⊥BC 于点D ,BD =CD ,,,ABD ACD BEF CEFS S S S 1,2ABC S S 阴影BC =6,AD =4,16412,2ABC S 1 6.2ABCS S 阴影 故答案为:6【点睛】本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.4、2D A P +∠∠=∠【解析】【分析】如图(见解析),先根据角平分线的定义可得21,22ABC BCD ∠=∠∠=∠,再根据三角形的内角和定理、四边形的内角和即可得.【详解】解:如图,BP 、CP 分别平分ABC ∠、BCD ∠,21,22ABC BCD ∴∠=∠∠=∠,20118P ∠︒+=∠+∠,23221260P ∴∠+∠+∠=︒,又3212260D ABC A BCD A D ∠+∠=∠+∠∠+∠++∠=︒∠+,2D A P +∠∴=∠∠,故答案为:2D A P +∠∠=∠.【点睛】本题考查了角平分线的定义、三角形的内角和定理、四边形的内角和,熟练掌握三角形的内角和定理、四边形的内角和是解题关键.5、七【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.【详解】解:设多边形的边数为n,则(n-2)•180°-2×360°=180°,解得n=7.故答案为:七.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.三、解答题1、见解析【解析】【分析】连接OC,OD,再根据三角形的三边关系即可得出结论.【详解】连接OC,OD,+>,=+=+,OC OD CDAB OA OB OC OD∴>.AB CD当且仅当CD过圆心O时,取“=”号,∴≥.AB CD【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.2、(1)见解析;(2)AB+AD>BD,在三角形中,两边之和大于第三边.【解析】【分析】(1)根据直线,射线,线段的作图方法作图即可;(2)根据三角形三边的关系:两边之和大于第三边进行求解即可.【详解】解:(1)如图所示,即为所求;(2)我们容易判断出线段AB+AD与BD的数量关系是:AB+AD>BD,理由是:在三角形中,两边之和大于第三边,故答案为:AB+AD>BD,在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,作直线,射线和线段,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)30∠=︒;(2)证明见详解.F.【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得75ABC ACB∠=∠=︒,由各角之间的∠=︒,45PAC关系及三角形内角和定理可得30∠=︒,最后由平行线的性质即可得出;PDCPCD∠=︒,60(2)由题意及各角之间的关系可得30CBE∠=︒,得出DCB CBE∠=∠,利用平行线的判定定理即可证明.【详解】解:(1)∵90=,∠=︒,15BACBAE∠=︒,AB AC∴75ABC ACB∠=∠=︒,∠=︒,45PAC∵CD AE⊥,∴90∠=︒-∠-∠=︒,ACD ADC DAC∠=︒,18015ADC∴451530PCD PCA ACD∠=∠-∠=︒-︒=︒,∴180903060∠=︒-︒-︒=︒,PDC∵EF BC∥,∴60DPC PEFF DCP∠=∠=︒,∠=∠=︒,30∴30∠=︒;F(2)∵75∠=︒,45ABE∠=︒,ABC∴754530∠=︒-︒=︒,CBE由(1)可得30∠=︒,DCP∴DCB CBE∠=∠,∴BE CF∥(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.4、150°【解析】【分析】求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.【详解】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∴∠ABC=30°,∵DE∥BC,∴∠BED=180°﹣∠ABC=180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.5、 (1)25BAD∠=︒;(2)14EDC∠=︒.【解析】【分析】(1)根据三角形内角和定理可求出50BAC∠=︒,然后利用角平分线进行计算即可得;(2)根据垂直得出90AED∠=︒,然后根据三角形内角和定理即可得.(1)解:∵54B∠︒=,76C∠︒=,∴180180547650BAC B C∠=︒-∠-∠=︒-︒-︒=︒,∵AD是角平分线,∴1252BAD BAC∠=∠=︒,∴25BAD∠=︒;(2)∵DE AC⊥,∴90AED∠=︒,∴180180907614EDC AED C∠=︒-∠-∠=︒-︒-︒=︒,∴14EDC∠=︒.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.。
2021-2022学年度强化训练华东师大版七年级数学下册第9章多边形定向测评试题(含解析)
七年级数学下册第9章多边形定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为()A.3454a︒+B.2603a︒+C.3454a︒-D.2603a︒-2、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是()A.3cm B.6cm C.10cm D.12cm3、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A .两点确定一条直线B .两点之间,线段最短C .三角形具有稳定性D .三角形的任意两边之和大于第三边4、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°5、如图,CM 是ABC 的中线,4cm AM =,则BM 的长为( )A .3cmB .4cmC .5cmD .6cm6、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A .0根B .1根C .2根D .3根7、下列长度的三条线段能组成三角形的是( )A .3 4 8B .4 4 10C .5 6 10D .5 6 118、已知三角形的两边长分别为4cm和10cm,则下列长度的四条线段中能作为第三边的是()A.15cm B.6cm C.7cm D.5cm9、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是()A.10 B.8 C.7 D.410、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A.7 B.8 C.9 D.10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.2、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.3、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.4、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.5、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,点E 是AD 上一点,连接BE .求证:BED C ∠>∠.2、如图,AD EF ,12180∠+∠=︒.请从以下三个条件:①DG 平分ADC ∠,②C CAD ∠=∠,③B BAD ∠=∠中选择一个作为条件,使DG AB ,你选的条件是______(填写序号).并说明理由.3、如图,BD ⊥AC ,∠1=∠2,∠C =66°,求∠ABC 的度数.4、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.5、如图:已知AB∥CD,BD平分∠ABC,AC平分∠BCD,求∠BOC的度数.∵AB∥CD(已知),∴∠ABC+ =180°().∵BD平分∠ABC,AC平分∠BCD,(已知),∴∠DBC=12∠ABC,∠ACB=12∠BCD(角平分线的意义).∴∠DBC+∠ACB=12()(等式性质),即∠DBC+∠ACB=°.∵∠DBC+∠ACB+∠BOC=180°(),∴∠BOC=°(等式性质).-参考答案- 一、单选题1、A【解析】【分析】根据题意设,ABD ACD βθ∠=∠=,根据三角形内角和公式定理βθ+,进而表示出α,进而根据三角形内角和定理根据()1803BDC βθ∠=︒-+即可求解【详解】解:∵∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,设,ABD ACD βθ∠=∠=,∴3,3DBC DCB βθ∠=∠=180A ABC ACB ∠+∠+∠=︒即44180αβθ++=︒454αβθ∴+=︒-∴()1803BDC βθ∠=︒-+31803454544αα⎛⎫=︒-⨯︒-=︒+ ⎪⎝⎭ 故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.2、C【解析】【分析】设第三根木棒的长度为x cm ,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm ,则9393,xx612,所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.3、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.4、B【解析】【分析】根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.【详解】解:∵AB∥CD,∠A=45°,∴∠A =∠DOE =45°,∵∠DOE =∠C +∠E ,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.5、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM 是ABC 的中线,4cm AM =,∴BM = 4cm AM =,故选:B .【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.6、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.7、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.8、C【解析】【分析】根据三角形的三边关系可得104104x -<<+,再解不等式可得答案.【详解】解:设三角形的第三边为xcm ,由题意可得:104104x -<<+,即614x <<,故选:C .【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m 的最大值.【详解】解:条线段的长分别是4,4,m ,若它们能构成三角形,则4444m -<<+,即08m <<又m 为整数,则整数m 的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.10、D【解析】【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°, ∴正多边形的边数=36036=10. 故选:D .【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.二、填空题1、720°##720度【解析】【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为()()180218062720n ︒⨯-=︒⨯-=︒;故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.2、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.3、40°【解析】【分析】根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程∠A+2∠A+∠A+20°=180°,求出即可.【详解】解:∵∠B是∠A的2倍,∠C比∠A大20°,∴∠B=2∠A,∠C=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,∴∠A=40°,故答案为:40°.【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.4、76 ##76度【解析】【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.【详解】解:∵∠BOC=128°,∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABC +∠ACB =2(∠OBC +∠OCB )=104°,∴∠A =180°﹣(∠ABC +∠ACB )=180°﹣104°=76°.故答案为:76°.【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是180︒是解决本题的关键.5、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B ∠=∠+∠ ,∴B ACD A ∠=∠-∠ ,∵∠ACD =75°,∠A =45°,∴30B ∠=︒ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.三、解答题1、见详解【解析】【分析】根据等角的余角性质得出∠BAD =∠C ,再根据∠BED 是△ABE 的外角,得出∠BED >∠BAD =∠C 即可.【详解】证明:∵90BAC ∠=︒,∴∠BAD +∠DAC =90°,∵AD BC ⊥,∴∠DAC +∠C =90°,∴∠BAD =∠C ,∵∠BED 是△ABE 的外角,∴∠BED >∠BAD =∠C ,∴∠BED >∠C .【点睛】本题考查直角三角形两锐角互余,等角的余角性质,三角形外角性质,掌握直角三角形两锐角互余,等角的余角性质,三角形外角性质,在证明不等关系中经常利用等量转化方法是解题关键.2、①或③,理由见解析.【解析】【分析】首先根据AD EF ,12180∠+∠=︒,得到1BAD ∠=∠,然后根据平行线的判定定理逐个判断求解即可.【详解】解:∵AD EF ,∴2180BAD ∠+∠=︒,∵12180∠+∠=︒,∴1BAD ∠=∠,当选择条件①DG平分ADC∠时,∴1ADG∠=∠,∴ADG BAD∠=∠,∴DG AB,故选择条件①可以使DG AB;当选择条件②C CAD∠=∠时,∵1∠=∠+∠,BAG BAD CAD∠=∠+∠,AGD C∴BAG AGD∠=∠,同旁内角相等,不能证明两直线平行,∴选择条件②不可以使DG AB;当选择条件③B BAD∠=∠时,∵1BAD∠=∠,∴1B∠=∠,∴DG AB,故选择条件③可以使DG AB,综上所述,使DG AB,可以选的条件是①或③.故答案为:①或③.【点睛】此题考查了平行线的性质和判定定理,三角形外角的性质和角平分线的概念,解题的关键是熟练掌握平行线的性质和判定定理.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.3、69°【解析】【分析】利用三角形的内角和定理先求出∠2、∠CBD的度数,再利用角的和差关系求出∠ABC的度数.【详解】解:∵BD ⊥AC ,∴∠ADB =∠BDC =90°.∵∠1=∠2,∠C =66°, ∴∠1=∠2=12∠ADB =45°,∠CBD =∠ADB ﹣∠C =24°.∴∠ABC =∠2+∠CBD=45°+24°=69°.【点睛】本题考查了三角形的内角和定理,掌握三角形的内角和等于180°是解决本题的关键.4、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠,从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.5、∠BCD ,两直线平行,同旁内角互补,∠ABC +∠BCD ,90,三角形内角和等于180°,90【解析】【分析】根据题意利用AB ∥CD 得∠ABC +∠BCD =180;等式的性质得∠DBC +∠ACB =12(∠ABC +∠ACD ),进而由三角形内角和为180°得∠BOC =90°.【详解】解:∵AB ∥CD (已知),∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补),∵BD 平分∠ABC ,AC 平分∠BCD (已知),∴∠DBC =12∠ABC ,∠ACB =12∠BCD (角平分线定义),∴∠DBC +∠ACB =12(∠ABC +∠BCD )(等式性质),即∠DBC +∠ACB =90°,∴∠DBC +∠ACB +∠BOC =180°(三角形内角和等于180°),∴∠BOC =90°(等式性质),故答案为:∠BCD ,两直线平行,同旁内角互补,∠ABC +∠BCD ,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学下能力测试题(六)
班级_______ 姓名____________
一、填空题
1、如果∠A =35°18′,那么∠A 的余角等于_____;
2、如图①,直线a 、b 被直线c 所截(即直线c 与直线a 、b 都相交), 且a ∥b ,若∠1=118°,则∠2的度数=_____;
3、一个角的补角比这个角的余角大___度;
4、如图③:A 、O 、B 是直线,∠EOB=∠DOF=900,OB 平分∠DOC ,则图中与∠DOE 互余的角有 ,与∠DOE 互补的角有 。
5、如图,①如果12∠=∠,那么根
据 , 可得 // ;
如果180DAB ABC ∠+∠=︒,那么根据 , 可得 // .
②当 // 时,
根据 , 得180C ABC ∠+∠=︒;
当 // 时,
根据 ,得3C ∠=∠.
6、 已知:如图,AB ∥CD ,EF 分别交于AB 、CD 于E 、F ,EG 平分∠AEF ,FH 平分∠EFD 。
求证: EG ∥FH
证明:∵ AB ∥CD(已知)∴ ∠AEF=∠EFD (____ __)
∵ EG 平分∠AEF ,FH 平分∠EFD (____ _ _),
图③
A B
C
D
G H
E
F
D B C
A 1
E
2 3
∴∠____ __=
21∠AEF , ∠___ ___=2
1
∠EFD(角平分线定义)∴ ∠____ __=∠_____ ∴ EG ∥FH(____ __)
二、选择题
1、如果一个角的补角是150°,那么这个角的余角的度数是( ) A 30° B 60° C 90° D 120°
2、(1)如果直线,,c b b a ⊥⊥那么a ∥c (2)如果两个角不相等,那么这两个角不是对顶角(3)两条直线被第三条直线所截,同位角相等(4)如果直线c b a ,⊥∥b ,那么a ∥c (5)两条直线平行,同旁内角相等;(6)邻补角的角平分线所在的两条直线互相垂直 (7)两条直线相交,所成的四个角中,一定有一个是锐角
以上说法正确的有几个( )
A 、1个
B 、2个
C 、3个
D 、4个 3、下列语句中,正确的是( )
A 、相等的角一定是对顶角
B 、互为补角的两个角不相等
C 、两边互为反向延长线的两个角是对顶角
D 、交于一点的三条直线形成3对对顶角 4、下列语句中,正确的是:
A 、两条直线相交所成的角叫做对顶角
B 、有公共顶点,且有一条边公共的两个角叫邻补角
C 、同位角相等,内错角相等
D 、有公共顶点,且大小相等的两个角是对顶角 5、下列语句中,错误的是:( )
A 、一条直线有且只有一条垂线
B 、不相等的两个角一定不是对顶角
C 、直角的补角必是直角
D 、如果两个角是邻补角,那么这两个角的平分线组成的图形是直角 6、如图6,在∠1、∠2、∠3、∠4中,内错角是:( ) A 、∠1与∠4 B 、∠2与∠4 C 、∠1与∠3 D 、∠2与∠3
A
B
C
D
O
1
2
7、如图7所示的∠1~∠9这九个角中,同位角,内错角,同旁内角的对数分别是:( )
图6
图7
图8
A 、四、四、二
B 、四、四、四
C 、六、四、四
D 、六、四、二
8、如图8,115︒
∠=,90AOC ︒
∠=,点B 、O 、D 在同一直线上, 则2∠的度数为( )
A 、 75︒
B 、15︒
C 、105︒
D 、165︒
三、解答下列各题
1、 一个角的余角比它的补角
2
9
还多1︒,求这个角.
2、已知互余两角的差为20︒,求这两个角的度数.
3、如图,在四边形ABCD 中,已知∠B =60°,∠C =120°,由这些条件你能判断哪两条直线平行?说说你的理由。
4、如图,已知∠1=30°,∠B =60°,AB
⊥AC ,
⑴∠DAB +∠B =_____;
⑵AB 与CD 平行吗?AD 与BC 平行吗?为什么?
A C D
B 1
5、如图,∠1=∠2,能判断AB ∥DF 吗?为什么? 若不能判断AB ∥DF ,你认为还需要再添加的一个条件是什么呢?写出这个条件,并说明你的理由。
6、如图⑧,BC ∥DE ,小颖用圆规分别画出∠ABC 、∠ADE 的角平分线BG 、DH ,想一想,小颖所画的这两条射线BG 和DH 会平行吗?为什么? (请你先用圆规画出这两条角平分线)
7、在下图中,已知直线AB 和直线CD 被直线GH 所截,交点分别为E 、F 点,AEF EFD ∠=∠、则 (1)写出//AB CD 的根据;
(2)若ME 是AEF ∠的平分线, FN 是EFD ∠的平分线, 则EM 与FN 平行吗?若平行,试写出根据.
A
B
C D E 1 2
B A D E
C A B C
D M N
E F
H
G。