九年级数学上册-弧长和扇形面积导学案新版新人教版
人教版初中数学九年级上册 22.4弧长和扇形面积 导学案
24.4.1弧长和扇形面积一、自主学习自学教材P111,思考下列内容:(1)半径为R的圆,周长是_________;(2)圆的周长可以看作是__ ___度的圆心角所对的弧;(3)1°圆心角所对弧长是__________ ;(4)n°圆心角所对弧长是__________;自学教材P112,思考下列内容:(1)半径为R的圆,面积是__________;(2)圆的面积可以看作是______度的圆心角所对的扇形;(3)圆心角为1°的扇形的面积是______;(4)圆心角为n°的扇形的面积是______ ;结论:弧长公式:若设⊙O半径为R,n°的圆心角所对的弧长为l,则;扇形面积公式:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则;二、自主练习(一)练习11、已知弧所对的圆周角为90°,半径是4,则弧长为多少?2、制造弯形管道时,要先按中心线计算“展直长度”(虚线的长度),再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)(二)练习21.扇形的弧长和面积都由_______、________决定.2.(当圆半径一定时)扇形的面积随着圆心角的增大而______。
3.圆心角是1800的扇形面积是圆面积的;圆心角是900的扇形面积是圆面积的;圆心角是2700的扇形面积是圆面积的;4.已知扇形的圆心角为120°,半径为2,则这个扇形的面积为多少?三、合作学习问题:扇形的弧长公式与面积公式有联系吗?结论:想一想:扇形的面积公式与什么公式类似?练习:已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm2四、巩固练习1. 75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是cm;2.一个扇形的弧长是20πcm,面积是240πcm²,则扇形的圆心角是°;3.如图,草坪上的自动喷水装置能旋转220°,它的喷灌区域是一个扇形,这个扇形的半径是20m.求它能喷灌的草坪的面积.(π取3.14,结果保留整数)五、加深拓展如图、水平放置的圆柱形排水管道的截面半径是0.6cm ,其中水面高0.3cm ,求截面上有水部分的面积。
最新人教版初中九年级上册数学《弧长和扇形面积》导学案
24.4.1 弧长及扇形面积姓名:班级:组别:评定等级【自主学习】(一)复习巩固:1.圆与圆的五种位置关系:、、、、 .2.已知两圆的半径分别3cm和2cm,若两圆没有公共点,则圆心距d的取值范围为()A. d>5或d<1B. d>5C. d<1D.1<d<5(二)新知导学1.弧长计算公式在半径为R的圆中,n0的圆心角所对的弧长l的计算公式为: l=2.扇形面积计算公式①定义:叫做扇形.②在半径为R的圆中,圆心角为n0的扇形面积的计算公式为:S扇形=由弧长l= 和S扇形= 可得扇形面积计算的另一个公式为:S扇形=【合作探究】已知:扇形的弧长为29πcm,面积为9πcm2 ,求扇形弧所对的圆心角.【自我检测】1.如果以扇形的半径为直径作一个圆,这个圆的面积恰好与已知扇形的面积相等,则已知扇形的中心角为()A.60°B.90°C.120°D.150°2.如果圆柱底面直径为6cm,母线长为4cm,那么圆柱的侧面积为()A.24πcm2B.36πcm2C.12πcm2D.48πcm23.圆锥的母线长为5cm,底面半径为3cm,则圆锥侧面展开图的面积是()A.254πcm2 B.30πcm2 C.24πcm2 D.15πcm24.如果正四边形的边心距为2,那么这个正四边形的外接圆的半径等于()A.2B.4C.2D.5.圆的外切正六边形边长与它的内接正六边形边长的比为()A.:3B. 2:3C.3:3D.:26.圆的半径为3cm,圆内接正三角形一边所对的弧长为()A.2πcm或4πcmB.2πcmC.4πcmD.6πcm7.在半径为12cm的圆中,150°的圆心角所对的弧长等于()A.24πcmB.12πcmC.10πcmD.5πcm8.如图,设AB=1cm,,则长为()A. B. C. D.9.圆锥的母线长为5cm,高为3cm,则其侧面展开图中,扇形的圆心角是()A.144°B.150°C.288°D.120°10.如图,已知菱形ABCD中,AC,BD交于O点,AC=23cm,BD=2cm,分别以 A,C为圆心,OA 长为半径作弧,交菱形四边于E,F,G,H四点.求阴影部分的面积.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
九年级数学上册 24.4 弧长和扇形面积教案 (新版)新人
弧长和扇形面积一、教学目标:1、理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算;2、经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。
3、通过介绍扇面的文化,渗透艺术文化熏陶和情感的教育。
二、教学重点和难点:重点:弧长和扇形面积公式的推导和有关的计算。
难点:弧长和扇形面积公式的应用。
三、教学方法:根据九年级学生的年龄特点和心理特征以及现有的知识水平,老师通过扇子文化导入,可以激发学生的学习兴趣。
在讲解新课时我主要采用启发式教学法,以问题链的形式,让学生通过探究由特殊到一般,自己得出n °圆心角所对弧长公式后,再利用类比方法得出n °圆心角所对扇形面积公式。
同时再启发学生用联系和发展的观点得出扇形面积的第二公式。
本节课设置多个练习,由简到难,重点巩固两个公式,培养和渗透学生几何建摸和几何推理应用意识,提高解决问题的能力和树立严谨的学习态度。
四、教学过程:情境导入:幻灯片展示:扇子文化:中国是世界上最早使用扇子的国家,并逐渐传入日本和欧洲的许多国家。
中国民间流传的活佛济公的形象,惹人喜爱,它头戴破僧帽,衣衫褴褛,手持破蒲扇,疯疯癫癫,却爱济困解难,助人为乐,可谓是家喻户晓的传奇人物。
三国时蜀相诸葛亮,足智多谋,风流倜傥,辅助刘备建立霸业,每每羽扇纶巾装束,羽扇常不离手,成了他身份和智慧的象征。
明代唐伯虎喜在扇面上作画题诗。
有时一把普遍的扇子,一经名家题诗作画而身价百倍。
在中国,最常见的是折扇。
(一学生朗读)幻灯片展示中国各种扇子,引出课题:弧长的扇形面积(一、)弧长:1、复习什么是弧?结合幻灯片演示。
2、探求新知:学生思考:(1)半径为R 的圆,周长是多少?圆的周长可以看作是多少度的圆心角所对的弧?(2)1°圆心角所对弧长是多少?(3)n °的圆心角所对的弧长是多少?教师提出问题,引导学生分析弧长和圆周长之间的关系,推导出n °的圆心角所对的弧长的计算公式。
人教版初三数学上册弧长与扇形面积导学案
《圆》第四节弧长和扇形面积导学案1【知识与技能】1、理解并掌握弧长及扇形面积的计算公式2、会利用弧长、扇形面积计算公式计算简单组合图形的周长【过程与方法】1、认识扇形,会计算弧长和扇形的面积2、通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知识的能力【情感、态度与价值观】1、通过对弧长及扇形的面积公式的推导,理解整体和局部2、通过图形的转化,体会转化在数学解题中的妙用【重点】弧长和扇形面积公式,准确计算弧长和扇形的面积【难点】运用弧长和扇形的面积公式计算比较复杂图形的面积学习过程:一、自主学习(一)复习巩固1、小学里学习过圆周长的计算公式、圆面积计算公式,那公式分别是什么?2、我们知道,弧长是它所对应的圆周长的一部分,扇形面积是它所对应的圆面积的一部分,那么弧长、扇形面积应怎样计算呢?(二)自主探究1、如图,某传送带的一个转动轮的半径为10cm1)转动轮转一周,传送带上的物品A被传送多少厘米?2)转动轮转1°,传送带上的物品A被传送多少厘米?3)转动轮转n°,传送带上的物品A被传送多少厘米?BBABB2、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm).3、上面求的是110°的圆心角所对的弧长,若圆心角为n ︒,如何计算它所对的弧长呢? 请同学们计算半径为3cm ,圆心角分别为180︒、90︒、45︒、1︒、n ︒所对的弧长。
因此弧长的计算公式为l =__________________________4、如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形问:右图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为1︒的扇形面积是面积的几分之几?进而求出圆心角n 的扇形面积 如果设圆心角是n °的扇形面积为S ,圆的半径为r ,那么扇形的面积为S = ___ . 因此扇形面积的计算公式:S =———————— 或 S =——————————(三)、归纳总结:1、 叫扇形2、弧长的计算公式是 扇形面积的计算公式是(四)自我尝试:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
九年级数学上册 24.4.1 弧长和扇形面积导学案 新人教版(1)(2021年整理)
九年级数学上册24.4.1 弧长和扇形面积导学案(新版)新人教版(1) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册24.4.1 弧长和扇形面积导学案(新版)新人教版(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册24.4.1 弧长和扇形面积导学案(新版)新人教版(1)的全部内容。
24。
4.1弧长和扇形面积预习案一、预习目标及范围:1。
理解弧长和扇形面积公式的探求过程。
2.会利用弧长和扇形面积的计算公式进行计算.预习范围:P111-113二、预习要点1、圆的周长可以看作______度的圆心角所对的弧.1°的圆心角所对的弧长是_______。
2°的圆心角所对的弧长是_______。
4°的圆心角所对的弧长是_______。
……n°的圆心角所对的弧长是_______.2、什么叫扇形?3、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______。
设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______。
设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______。
……设圆的半径为R,n°的圆心角所对的扇形面积S扇形=_______。
4、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?三、预习检测1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积为_______.2、已知扇形的圆心角为300,面积为23cmπ,则这个扇形的半径R=____.3、已知扇形的圆心角为1500,弧长为20cmπ,则扇形的面积为__________.4、如图所示,分别以n边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为个平方单位.探究案一、合作探究活动内容1:探究1:弧长公式的推导思考:(1)半径为R的圆,周长是多少?2)1°的圆心角所对弧长是多少?(3)n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?(4) n°的圆心角所对弧长l是多少?明确; C=2πR ;2360180R Rππ=; n倍;180n Rlπ=探究2:扇形及扇形的面积由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.思考(1)半径为R 的圆,面积是多少?(2)圆心角为1°的扇形的面积是多少?(3)圆心角为n °的扇形的面积是圆心角为1°的扇形的面积的多少倍? (4)圆心角为n °的扇形的面积是多少?明确:S =πR 2;2360R π;n 倍;2360n R π探究3:扇形的弧长公式与面积公式有联系吗?11180221802n R R n R S R lR ππ=⋅=⋅⋅=扇形 活动2:探究归纳 1。
九年级数学上册 24.4 弧长和扇形面积导学案 (新版)新人教版-(新版)新人教版初中九年级上册数学
弧长和扇形面积学习目标:知识技能:掌握弧长和扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算数学思考:通过弧长和扇形面积公式的推导过程,发展学生分析问题、解决问题的能力情感态度:在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想学习重点:弧长,扇形面积公式的推导及应用学习难点:对图形的分析学习过程:一、复习回顾:半径为R的圆,它的周长是:L=半径为R的圆,它的面积是:S=二、合作探究:试探究下列问题:(1)圆的周长可以看作是度的圆心角所对的弧长。
(2)在同圆或等圆中,每一个 1°的圆心角所对的弧长有怎样的关系?(3) 1°的圆心角所对的弧长是圆周长的。
(4) n°的圆心角所对的弧长是圆周长的。
(5)怎样计算半径为R 的圆中,1°的圆心角所对的弧长l?(6)怎样计算半径为R 的圆中,2°的圆心角所对的弧长l?(7)怎样计算半径为R 的圆中,5°的圆心角所对的弧长l?(8)怎样计算半径为R 的圆中,n°的圆心角所对的弧长l?思考:弧长由那些量决定?三、应用新知:例1、制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算图中所示的管道的展直长度L(结果取整数).四、类比探究:(小组合作)1、类比弧长公式的探究过程,试推导半径为R,圆心角为n°的扇形面积S。
根据上面探究的得到的弧长l与扇形面积S的公式,你能用弧长l来表示扇形面积S吗?知识应用:例2:如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水面高 0.3 m,求截面上有水部分的面积(结果保留小数点后两位;π≈3.14,≈).五、小结:弧长和扇形面积公式是什么?你是如何得到这两个公式的?如何运用?2、弧长与圆周长、扇形面积与圆面积之间有什么联系?六、问题与反思:七、课堂检测:(20分)1、(3分)在半径为1的⊙O中,120°的圆心角所对的弧长是2、(3分)在半径为3的⊙O中,120°的圆周角所对的弧长是3、(3分)钟面上的分针长6cm,经过25分钟,分针在钟面上扫过的面积是4、(3分)一个扇形的圆心角是120°,它的面积是3πcm²,那么这个扇形的半径是5、(8分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是多少?。
数学九年级上册《弧长和扇形面积》导学案
数学九年级上册《弧长和扇形面积》导学案设计人:审核人:【学习目标】1、学会扇形的概念会应用n°的圆心角所对的弧长和扇形面积的计算公式。
2、通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。
3、通过对弧长和扇形的面积的运用,培养学生运用数学解决问题的成功经验和方法,树立学习数学的自信心。
【学习重点】熟练应用n°的圆心角所对的弧长和扇形面积的计算公式.【学习难点】灵活应用弧长和扇形面积的计算公式。
【学习方法】自学中总结出弧长和扇形面积的计算公式,研学中发现易错点并总结解决问题的规律和方法。
自学阅读课本111页至113页内容,独立完成下列问题。
1、什么叫弧长?。
弧长的计算公式为。
2、试计算教材图中管道的展直长度,即弧AB的长3、什么叫扇形?。
扇形面积的计算公式为。
4、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?5、新知应用:已知扇形的半径为50厘米,圆心角为60°,求此扇形的面积。
我的疑惑:研学1、2人对学:对子间交流自学成果,把疑惑的问题记录下来。
2、6人群学:由小组长负责,先确定要讨论的问题,再确立讨论顺序和规则,并安排记录讨论成果和疑问。
3、全班互动:由大组长主持,进行组间质疑,解决各小组的疑问。
中考聚焦如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O 的半径为2,∠P=60°,则图中阴影部分的面积为。
示学展示一:自学2 展示二:自学5检学基础题1、课本习题1、22、扇形的圆心角为120°,半径为6,则扇形的弧长是().提高题如图,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是______cm2课时作业1、扇形的弧长12∏㎝,半径为2㎝,扇形的面积______cm2。
2、已知已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm2,扇形的圆心角为______3、如图已知⊙O的半径OA=6,∠AOB=90°,则∠AOB所对的弧AB的长为( )A.2π B.3π C.6π D.12π4、如图AB切⊙O于点B,OA=2 3,AB=3,弦BC∥OA,则劣弧BC的弧长为( )A.33π B.32π C.π D.32π5、挂钟分针的长是10 cm,经过45分钟,它的针尖转过的弧长是( )A.15π2cm B.15π cmC.75π2cm D.75π cm6、如图在以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P 为切点,且AB=4,OP=2,连接OA交小圆于点E,则PE的长为( )A.π4B.π3C.π2D.π87、已知扇形的圆心角为150°,它所对应的弧长为20πcm,则此扇形的半径是__________cm,面积是________cm(结果保留π).。
最新人教版初中九年级数学上册《弧长和扇形面积》导学案
24.4弧长和扇形面积第1课时弧长和扇形面积一、新课导入1.导入课题:情景:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的问题.问题:怎样求一段弧的长度呢?这就是这节课我们所要研究的问题(板书课题).2.学习目标:(1)能推导弧长和扇形面积的计算公式.(2)知道公式中字母的含义,并能运用这些公式进行相关计算.3.学习重、难点:重点:弧长公式及扇形面积公式与应用.难点:阴影部分面积的计算.二、分层学习1.自学指导:(1)自学内容:教材第111页的内容.(2)自学时间:6分钟.(3)自学要求:注意公式的推导和记忆.(4)自学参考提纲:①圆的周长公式是什么?C=2πR.②弧有长度吗?弧的长度和它所在的圆周长有何关系?圆可以看作是360度的圆心角所对的弧.1°的圆心角所对的弧长是圆周长的几分之几?1360n°的圆心角所对的弧长是圆周长的几分之几?n360所以在半径为R的圆中,n°的圆心角所对的弧长l的公式是n R lπ=180.③由弧长公式可知,一条弧的弧长l、圆心角度数n和圆半径R,在这三个量中,已知其中的两个,就可求出第三个.如已知l 和n ,则R =l n π180;已知l 和R ,则n =l R π180.④计算图中弯道的“展直长度”. 解:由弧长公式,得AB 的长l π⨯⨯=100900180≈1570(mm).因此所要求的展直长度L=2×700+1×1570=2970(mm). 2.自学:学生结合自学指导进行自学. 3.助学: (1)师助生:①明了学情:关注学生对弧长公式的推导和变形过程. ②差异指导:根据学情进行指导. (2)生助生:小组内相互交流、研讨. 4.强化:(1)弧长公式、公式的书写格式及其变形.(2)有一段弯道是圆弧形的,道长是12米,弧所对的圆心角是81°,求这段圆弧的半径R (精确到0.1米).解:由n l R π=180得l R .n .π⨯==≈⨯180180128581314 (米).1.自学指导:(1)自学内容:教材第112页到第113页“练习”之前的内容. (2)自学时间:8分钟.(3)自学方法:完成自学参考提纲. (4)自学参考提纲:①圆的面积公式是什么?S =πR 2②什么叫扇形?扇形的面积和它所在的圆的面积有何关系? 圆的面积可以看作是圆心角为 360 度的扇形面积. 圆心角为1°的扇形的面积是圆的面积的几分之几?1360圆心角为n°的扇形的面积是圆的面积的几分之几?n 360所以在半径为R 的圆中,圆心角为n°的扇形的面积S 扇形的公式是扇形=n R S π2360.③试推导扇形的面积公式扇形S lR =12(这里的l 指扇形的弧长,R 指半径). 扇形n R n R S R lR ππ===21136021802. ④如图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m.求截面上有水部分的面积(精确到0.01m 2).a.怎样求圆心角∠AOD 的度数?在Rt △ADO 中,OD=OC-DC=0.3m,OA=0.6m.∴∠A=30°.∴∠AOD=60°.∴∠AOB=2∠AOD=120°.b.阴影部分的面积=扇形AOB 的面积-△AOB 的面积.c.写出本题的解答过程.解:如图,连接OA 、OB,作弦AB 的垂直平分线,垂足为D,交AB 于点C ,连接AC. ∵OC =0.6m,DC =0.3m,∴OD =OC-DC =0.3(m ).∴OD =DC.又AD ⊥DC,∴AD 是线段OC 的垂直平分线.∴AC =AO =OC.从而∠AOD =60°,∠AOB =120°.∴扇形有水部分的面积===()OABOABS SS.AB?OD ....m ππ-⨯--⨯⨯≈2212011060120630302236022. 2.自学:学生结合自学指导进行自学. 3.助学: (1)师助生:①明了学情:了解学生在推导扇形面积公式及求例2中∠AOD 时遇到的困难情况. ②差异指导:根据学情进行个别指导或分类指导. (2)生助生:小组内相互交流、研讨. 4.强化:(1)扇形面积公式及推导过程和公式的变形.(2)求不规则图形的面积的方法:转化为规则图形的面积和或差. (3)练习:已知正三角形ABC 的边长为a ,分别以A 、B 、C 为圆心,以12a 为半径的圆相切于点D 、 E 、F ,求图中阴影部分的面积S.解:连接AD,则AD ⊥BC, AD a =3.∴阴影扇形ABC AFEaS S S BC?AD a aππ⎛⎫⎪⎝⎭=-⨯=-⨯=-222160131233236048.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?掌握了哪些方法?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与性、小组交流协作能力和状况、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课从复习圆周长公式入手,根据圆心角与所对弧长之间的关系,推导出了弧长公式.后又用类比的方法,推出扇形面积,两个公式的推导中,都渗透着由“特殊到一般”,再由“一般到特殊”的辩证思想,然后由学生比较两个公式时,又很容易得出两者之间的关系,明确了知识间的联系.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)已知扇形的圆心角为120°,半径为6,则扇形的弧长是4π.2.(10分)75°的圆心角所对的弧长是2.5πcm,则此弧所在的圆半径是6cm.3.(10分)一个扇形的弧长为20πcm,面积是240πcm2,则扇形的圆心角是150°.4.(20分)如图是一段弯形管道,其中,∠O=∠O′=90°,中心线的两条圆弧半径都为1000mm,求图中管道的展直长度.(π取3.142)解:π⨯⨯+⨯≈901000300026142180(mm).答:图中管道的展直长度约为6142mm.5.(20分)草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.解:()S mππ⨯⨯==222202022003609.答:它能喷灌的草坪的面积为mπ222009.二、综合应用(20分)6.(20分)如图,扇形纸扇完全打开后,外侧两竹条AB、AC夹角为120°,AB的长为30cm,贴纸部分BD的长为20cm,求贴纸部分的面积.解:扇形ABCS ππ⨯⨯==212030300360(cm 2),扇形()ADE S ππ⨯⨯-==212030201003603(cm 2),∴贴纸扇形扇形ABC ADE S S S πππ=-=-=10080030033(cm 2).答:贴纸部分的面积是π8003cm 2.三、拓展延伸(共10分)7.(10分)正方形的边长为a ,以各边为直径在正方形内画半圆,求图中阴影部分的面积. 解:方法一:阴影()=a S a a a ππ⎡⎤⎛⎫=--- ⎪⎢⎥⎣⎦⎝⎭22222122. 方法二:阴影=a S a a ππ⎛⎫⎛⎫=⨯⨯-- ⎪ ⎪⎝⎭⎝⎭22241222. 答:图中阴影部分的面积为a π⎛⎫- ⎪⎝⎭212.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
新人教版九年级数学上册导学案:24.4 弧长和扇形面积
优质文档︵新人教版九年级数学上册导学案:24.4 弧长和扇形面积课题24.4弧长和扇形面积课型探究课课时1 请同学们结合圆心面积S=πR2的公式,独立完成下题:1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.……5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.因此:在半径为R的圆中,圆心角n°的扇形______________________[来源学科网ZXXK]四、反馈提升已知如图所示, A B所在圆的半径为R,A B的长为3πR,⊙O′和OA、OB分别相切于点C、E,且与⊙O内切于点D,求⊙O′的周长.五、达标测评1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A.3πB.4πC.5πD.6π2.如图1所示,把边长为2的正方形ABC D的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为()A.1 B.πC.2D.2π(1) (2) (3)3.如图2所示,实数部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12πm B.18πm C.20πm D.24πm总结与反思本节课应掌握:1.n°的圆心角所对的弧长L=____________2.扇形的概念.3.圆心角为n°的扇形面积是S扇形=__________4.运用以上内容,解决具体问题.学法指导栏学习目标[来源:Z|xx|].了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.学习重点2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=2180n Rπ和扇形面积学习难点会应用这些公式解决一些题目.教师“复备栏”或学生“笔记栏”学习过程:一、情景引入或知识回顾请同学们回答下列问题.1.圆的周长公式是什么?__________________________________2.圆的面积公式是什么?_______________________________3.什么叫弧长?_____________________________________二、自主学习请同学们独立完成下题:设圆的半径为R,则:1.圆的周长可以看作______度的圆心角所对的弧.2.1°的圆心角所对的弧长是_______.3.2°的圆心角所对的弧长是_______.4.4°的圆心角所对的弧长是_______.……5.n°的圆心角所对的弧长是_______.根据同学们的解题过程,我们可得到:n°的圆心角所对的弧长为__________制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即AB的长(结果精确到0.1mm)提示:要求AB的弧长,圆心角知,半径知,只要代入弧长公式即可.制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即AB的长(结果精确到0.1mm)提示:要求AB的弧长,圆心角知,半径知,只要代入弧长公式即可.三、问题探究在一块空旷的草地上有一根柱子,柱子上拴着一条长5m•的绳子,绳子的另一端拴着一头牛,如图所示:(1)这头牛吃草的最大活动区域有多大?(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?__________________________________________________________。
人教版九年级数学上册《24.4.1弧长和扇形面积》导学案
数学九年级上<24.4弧长和扇形面积>导学案【学习目标】知识与技能:1、掌握弧长和扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;过程与方法:通过弧长和扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力;情感与态度:在弧长和扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想.学习重点:弧长,扇形面积公式的导出及应用.学习难点:弧长,扇形面积公式的灵活应用.一、探究活动1:(前置性作业)已知⊙O半径为R,求圆心角n°的弧长温馨提示:圆周长C=2πR;则1°圆心角所对弧长= ;n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;所以n°圆心角所对弧长= .探究活动2:已知⊙O半径为R,求圆心角n°的扇形面积温馨提示:圆面积S=πR2;圆心角为1°的扇形的面积= ;圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;所以圆心角为n°的扇形的面积=.探究活动3:扇形的面积公式与弧长公式有联系吗?请结合弧长公式和扇形的面积公式推导S扇形= l R新知盘点:预习质疑:二、合作探究:㈠交流展示㈡学以致用1.在半径为1cm 的圆中,120°的圆心角所对的弧长是___________。
2.在⊙O 中,如果120°的圆心角所对的弧长是ccm 34,则⊙O 的半径是___________。
3.⊙O 的半径为3cm ,弧长为2πcm 的弧所对圆心角度数是___________;9.如图80504,正方形边长为a ,弧的半径为a ,阴影部分面积为( )。
A 、(π-1)a 2B 、(π2 -1)a 2C 、12( π-1) a 2D 、14(π-12) a 24.如图,⊙O 的半径为10cm 。
(1)如果∠AOB=120°,求弧AB 的长及扇形AOB 的面积;(2)已知弧BC=25cm ,求∠COB 的度数。
数学人教版九年级上册弧长和扇形面积(第一课时)导学案
人教版九年级上导学案课题:24.4弧长和扇形面积(第一课时:弧长)教学目标:1、学生通过探究弧长和圆周长之间的关系,得出弧长计算公式. 2、理解弧长计算公式的三个量,已知其中任意两个量,会求出第三个量. 3、通过学习弧长公式与圆周长公式的关系,感悟辩证唯物主义的观点。
教学重难点:公式的导出及应用 教学过程: 一、创设情景1.回顾圆的周长公式________2.如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗?二、探究新知上面求的是的圆心角900所对的弧长,若圆心角为n 0,如何计算它所对的弧长呢?请同学们计算半径为 R ,圆心角分别为1800、900、450、n 0所对的弧长。
图23.3.1图23.3.2三、结论:1.弧长公式是2.已知弧长、圆心角,求半径,公式可以变形为3.已知弧长、半径,求圆心角,公式可以变形为四、知识应用1.已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度.(结果保留π)2.半径为3cm,弧长是π2cm,该弧所对的圆心角是多少度?3.圆心角为3000,所对的弧长为π10m,求该圆的半径.4.半径为2m,圆心角为60030',其所对的弧长是多少m?(结果保留π)五、例题讲解例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(结果取整数)注意问题:1.圆心角出现含30’,怎么办?也就是说圆心角n 代进去算的那个数是以“度”为单位的“度数”. 2.公式中有三个量n 、R 、l ,已知任意两个量,可以求第三个量. 六、拓展提高1.正三角形ABC 中,AB=1,正三角形ABC 在一条直线上作无滑动的滚动,若滚动一周,求点A 经过的路径的长2.秋千拉绳长3米,静止时踩板离地面0.5米,荡秋千时 在最高处A 、B 踩板离地面2米,求该秋千从点A 到点B 所荡过的圆弧长。
新人教版九年级数学上册导学案:24.4.1弧长和扇形面积(2)
新人教版九年级数学上册导学案:24.4.1弧长和扇形面积(2)学习目标1.认识圆锥的母线,知道圆锥侧面积的探究过程.2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题.预习导学一、知识链接:1、写出n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点。
2.为了防止雨水,一些烟囱的顶部要加盖一顶帽子.图1是一个烟囱帽,怎样计算这种圆锥形的烟囱帽侧面的面积呢?二、探究新知::1、圆锥的母线是____________________2、圆锥的侧面展开图是图形。
3.若圆锥的母线长为l,底面圆的半径为r,则圆锥的侧面积可表示为,圆锥的全面积为。
4、圆柱的侧面展开图是什么图形?若圆柱底面圆的半径为r,圆柱的高为h,则圆柱的侧面积可表示为,全面积可表示为。
学以致用1.圆锥的底面直径是80cm,母线长90cm,它的侧面展开图的圆心角是圆锥的全面积是。
2.已知圆锥的母线长13cm,高12cm,,则它的底面半径r为.3.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的表面积是__________(用含 的代数式表示)4.如图,圆锥形的烟囱帽的底面积直径是80cm,母线长是50cm,制作100【学法指导】把自制的圆锥的侧面展开,小组内相互指一指圆锥的母线、底面圆的周长与展开图中扇形的半径、弧长之间的关系.【温馨提示】熟练掌握圆锥的母线、高、底面半径三者之间的关系.个这样的烟囱帽至少需要 平方米的铁皮?5.在Rt △ABC 中,∠C=90°,AC=3,BC=4,把它分别沿三边所在的直线旋转一周,求所得的三个几何体的全面积。
6、如图,一个几何体是从高为4m ,底面半径为3cm•的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,求这个几何体的表面积.巩 固 提 升1、已知圆锥的底面半径为1cm ,母线长为3cm ,则其全面积为( )。
人教版九年级上册数学《弧长和扇形面积》教学导学案
24.4弧长和扇形面积( 第 2 课时 )教课内容1.圆锥母线的观点.2.圆锥侧面积的计算方法.3.计算圆锥全面积的计算方法.4.应用它们解决实质问题.教课目的认识圆锥母线的观点,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.经过设置情形和复习扇形面积的计算方法探究圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实质问题.重难点、要点1.要点:圆锥侧面积和全面积的计算公式.2.难点:探究两个公式的由来.3.要点:你经过剪母线变为面的过程.教具、学具准备准备好的圆锥。
教课过程一、复习引入1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.2.赏识图片,抽象出几何体------ 圆锥幻灯片2)二、探究新知活动一:同学们取出自制的圆锥,谈谈你对圆锥的认识。
圆锥是由一个侧面﹝曲面﹞和一个底面﹝圆﹞构成的。
﹝幻灯片3﹞活动二:对圆锥的再认识:母线、圆锥的高。
思虑:圆锥的母线和圆锥的高有什么性质?﹝圆锥的母线长都相等;圆锥的高垂直于底面圆﹞。
﹝幻灯片4﹞假如用 r 表示圆锥底面的半径, h 表示圆锥的高线长, 表示圆锥的母线长,那么 r,h, 之间h l222r +h = l r5﹞有如何的数目关系呢?﹝幻灯片练习:填空 : 依据以下条件求值(此中r、h、分别是圆锥的底面半径、高线、母线长)﹝幻灯片 6﹞圆锥的侧面睁开图是一个扇形。
A﹝幻灯片 7﹞B O C其侧面睁开图扇形的半径 =母线的长 l ;侧面睁开图扇形的弧长=底面周长;S 侧 =π rl(r 表示圆锥底面的半径, l表示圆锥的母线长);全面积 = rL+r2﹝幻灯片 8—幻灯片 10﹞要求:不要死记公式,造作业一定画出侧面睁开图的表示图。
练习: (1) 已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母长为_______(2)已知一个圆锥的底面半径为 12cm,母线长为 20cm,则这个圆锥的侧面积为 _________ ,全面积为 _______。
弧长和扇形面积(教案、导学案、课后反思)
24.4弧长和扇形面积第1课时弧长和扇形面积【知识与技能】经历探索弧长计算公式的过程,培养学生的探索能力.了解弧长计算公式,并会应用弧长公式解决问题,提高学生的应用能力.【过程与方法】通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力.【情感态度】通过对弧长和扇形面积公式的推导,理解整体和局部的关系.通过图形的转化,体会转化在数学解题中的妙用.【教学重点】弧长和扇形面积公式,准确计算弧长和扇形的面积.【教学难点】运用弧长和扇形面积公式计算比较复杂图形的面积.一、情境导入,初步认识问题1 在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只羊,问:(1)这只羊的最大活动面积是多少?(2)如果这只羊只能绕过柱子n°角,那么它的最大活动面积是多少?问题2 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题.如图,根据图中的数据你能计算AB的长吗?求出弯道的展直长度.【教学说明】通过这样两个实际问题引入有关弧长和扇形面积的计算,从而引入课题。
同时,这也是本节中最常见的两种类型.二、思考探究,获取新知1.探索弧长公式思考 1 你还记得圆的周长的计算公式吗?圆的周长可以看作多少度的圆周角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角所对的弧长多少?分析:在半径为R的圆中,圆周长的计算公式为:C=2πR,则:圆的周长可以看作360°的圆心角所对的弧;∴1°的圆心角所对的弧长是:1/360·2πR=πR/180;2°的圆心角所对的弧长是:2/360·2πR=πR/90;4°的圆心角所对弧长是:4/360·2πR=πr/45;∴n°的圆心角所对的弧长是:l=nπR/180;由此可得出n°的圆心角所对的弧长是:l=nπR/180.【教学说明】①在应用弧长公式进行计算时,要注意公式中n的意义,n表示1°圆心角的倍数,它是不带单位的;②公式可以按推导过程来理解记忆;③区分弧、弧度、弧长三个概念,度数相等的弧,弧长不一定相等;弧长相等的弧也不一定是等弧,而只有在同圆或等圆中才可能是等弧.小练习:①应用弧长公式求出上述弯道展直的长度.②已知圆弧的半径为50cm,圆心角为60°,求此圆弧的长度.答案:①500π+140(mm) ②50π/3(cm)2.扇形面积计算公式如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.思考2 扇形面积的大小与哪些因素有关?(学生思考并回答)从扇形的定义可知,扇形的面积大小与扇形的半径和圆心角有关.扇形的半径越长,扇形面积越大;扇形的圆心角越大,扇形面积越大.思考3若⊙O的半径为R,求圆心角为n°的扇形的面积.【教学说明】此问题有一定的难度,目的是引导学生迁移推导弧长公式的方法步骤,利用迁移方法探究新问题,归纳结论.小练习:①如果扇形的圆心角是230°,那么这个扇形的面积等于这个扇形所在圆的面积的23/36.②扇形面积是它所在圆的面积的23,这个扇形的圆心角的度数是240°;③扇形的面积是S,它的半径是r,这个扇形的弧长是:2S/r.【教学说明】这几个小练习是帮助学生理解扇形面积公式的推导,加深对公式以及扇形面积和弧长之间的转化关系的记忆.三、典例精析,掌握新知例1(教材112页例2)如图,水平放置的圆柱形排水管道的截面半径为0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m2).解:连接OA、OB,作弦AB的垂线OD交AB于点C.∵OC=0.6,DC=0.3,∴OD=OC-DC=0.3在Rt△OAD中,OA=0.6,OD=0.3,由勾股定理可知:3Rt △OAD中,OD=1/2OA.∴∠OAD=30°,∠AOD=60°,∴∠AOB=120°.∴有水部分的面积为:S=S扇形OAB -S△OAB=0.12π-12×0.63×0.3≈0.22(m2).例2如图,⊙O1半径是⊙O2的直径,C是⊙O1上一点,O1C交⊙O2于点B,若⊙O1的半径等于5cm,AC的长等于⊙O1周长的110,则AB的长是cm.分析:由AC的长是⊙O1周长的1/10可知:∠AO1C=36°,∠AO2B=2∠AO1B=72°,O2A=5/2,∴AB的长l=72π/180×5/2=π.【教学说明】例1是求弓形面积,弓形面积是扇形面积与三角形面积的差或和,因此掌握了扇形面积公式,弓形面积就迎刃而解了,例2是结合弧长公式和圆有关知识进行求解.可由学生合作交流完成.四、运用新知,深化理解完成教材第113页练习3个小题.【教学说明】这几个练习较为简单,可由学生自主完成,教师再予以点评.五、师生互动,课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?【教学说明】教师先提出问题,然后师生共同回顾,完善认知.1.布置作业:从教材“习题24.4”中选取.2.完成练习册中本课时练习的“课后作业”部分.本节课从复习圆周长公式入手,根据圆心角与所对弧长之间的关系,推导出了弧长公式.后又用类比的方法,推出扇形面积,两个公式的推导中,都渗透着由“特殊到一般”,再由“一般到特殊”的辩证思想,再由学生比较两个公式时,又很容易得出两者之间的关系,明确了知识间的联系.24.4弧长和扇形面积第1课时弧长和扇形面积一、新课导入1.导入课题:情景:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的问题.问题:怎样求一段弧的长度呢?这就是这节课我们所要研究的问题(板书课题).2.学习目标:(1)能推导弧长和扇形面积的计算公式.(2)知道公式中字母的含义,并能运用这些公式进行相关计算.3.学习重、难点:重点:弧长公式及扇形面积公式与应用.难点:阴影部分面积的计算.二、分层学习1.自学指导:(1)自学内容:教材第111页的内容.(2)自学时间:6分钟.(3)自学要求:注意公式的推导和记忆.(4)自学参考提纲:①圆的周长公式是什么?C=2πR.②弧有长度吗?弧的长度和它所在的圆周长有何关系?圆可以看作是360度的圆心角所对的弧.1°的圆心角所对的弧长是圆周长的几分之几?1360n°的圆心角所对的弧长是圆周长的几分之几?n360所以在半径为R的圆中,n°的圆心角所对的弧长l的公式是n R lπ=180.③由弧长公式可知,一条弧的弧长l、圆心角度数n和圆半径R,在这三个量中,已知其中的两个,就可求出第三个.如已知l 和n ,则R =l n π180;已知l 和R ,则n =l Rπ180. ④计算图中弯道的“展直长度”.解:由弧长公式,得AB 的长l π⨯⨯=100900180≈1570(mm). 因此所要求的展直长度L=2×700+1×1570=2970(mm).2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学生对弧长公式的推导和变形过程.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)弧长公式、公式的书写格式及其变形.(2)有一段弯道是圆弧形的,道长是12米,弧所对的圆心角是81°,求这段圆弧的半径R (精确到0.1米).解:由n l R π=180得l R .n .π⨯==≈⨯180180128581314 (米).1.自学指导:(1)自学内容:教材第112页到第113页“练习”之前的内容.(2)自学时间:8分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①圆的面积公式是什么?S =πR 2②什么叫扇形?扇形的面积和它所在的圆的面积有何关系?圆的面积可以看作是圆心角为 360 度的扇形面积.圆心角为1°的扇形的面积是圆的面积的几分之几?1360圆心角为n°的扇形的面积是圆的面积的几分之几?n 360所以在半径为R 的圆中,圆心角为n°的扇形的面积S 扇形的公式是扇形=n R S π2360. ③试推导扇形的面积公式扇形S lR =12(这里的l 指扇形的弧长,R 指半径). 扇形n R n R S R lR ππ===21136021802. ④如图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m.求截面上有水部分的面积(精确到0.01m 2).a.怎样求圆心角∠AOD 的度数?在Rt △ADO 中,OD=OC-DC=0.3m,OA=0.6m.∴∠A=30°.∴∠AOD=60°.∴∠AOB=2∠AOD=120°.b.阴影部分的面积=扇形AOB 的面积-△AOB 的面积.c.写出本题的解答过程.解:如图,连接OA 、OB,作弦AB 的垂直平分线,垂足为D,交AB 于点C ,连接AC. ∵OC =0.6m,DC =0.3m,∴OD =OC-DC =0.3(m ).∴OD =DC.又AD ⊥DC,∴AD 是线段OC 的垂直平分线.∴AC =AO =OC.从而∠AOD =60°,∠AOB =120°.∴扇形有水部分的面积===()OAB OAB S S S .AB?OD ....m ππ-⨯--⨯⨯≈2212011060120630302236022. 2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生在推导扇形面积公式及求例2中∠AOD 时遇到的困难情况. ②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)扇形面积公式及推导过程和公式的变形.(2)求不规则图形的面积的方法:转化为规则图形的面积和或差.(3)练习:已知正三角形ABC 的边长为a ,分别以A 、B 、C 为圆心,以12a 为半径的圆相切于点D 、 E 、F ,求图中阴影部分的面积S.解:连接AD,则AD ⊥BC, AD a =3.∴阴影扇形ABC AFEa S S S BC?AD a a ππ⎛⎫ ⎪⎝⎭=-⨯=-⨯=-222160131233236048. 三、评价 1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?掌握了哪些方法?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与性、小组交流协作能力和状况、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课从复习圆周长公式入手,根据圆心角与所对弧长之间的关系,推导出了弧长公式.后又用类比的方法,推出扇形面积,两个公式的推导中,都渗透着由“特殊到一般”,再由“一般到特殊”的辩证思想,然后由学生比较两个公式时,又很容易得出两者之间的关系,明确了知识间的联系.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)已知扇形的圆心角为120°,半径为6,则扇形的弧长是4π.2.(10分)75°的圆心角所对的弧长是2.5πcm ,则此弧所在的圆半径是6cm.3.(10分)一个扇形的弧长为20πcm ,面积是240πcm 2,则扇形的圆心角是150°.4.(20分)如图是一段弯形管道,其中,∠O=∠O′=90°,中心线的两条圆弧半径都为1000mm,求图中管道的展直长度.(π取3.142)解:π⨯⨯+⨯≈901000300026142180(mm ). 答:图中管道的展直长度约为6142mm.5.(20分)草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m ,求它能喷灌的草坪的面积.解:()S m ππ⨯⨯==222202022003609. 答:它能喷灌的草坪的面积为m π222009. 二、综合应用(20分)6.(20分)如图,扇形纸扇完全打开后,外侧两竹条AB 、AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,求贴纸部分的面积. 解:扇形ABC S ππ⨯⨯==212030300360 (cm 2), 扇形()ADE S ππ⨯⨯-==212030*********(cm 2), ∴贴纸扇形扇形ABC ADE S S S πππ=-=-=10080030033(cm 2). 答:贴纸部分的面积是π8003cm 2. 三、拓展延伸(共10分)7.(10分)正方形的边长为a ,以各边为直径在正方形内画半圆,求图中阴影部分的面积.解:方法一:阴影()=a S a a a ππ⎡⎤⎛⎫=--- ⎪⎢⎥⎣⎦⎝⎭22222122. 方法二:阴影=a S a a ππ⎛⎫⎛⎫=⨯⨯-- ⎪ ⎪⎝⎭⎝⎭22241222. 答:图中阴影部分的面积为a π⎛⎫- ⎪⎝⎭212.。
人教版-数学-九年级上册- 弧长和扇形面积(1) 导学案1
1.(江西省2008年)如图, AB 为圆⊙o 的直径,弦CD垂直AB于点E,交AC于点C,OF垂直AC于点F.(1)请写出三条与BC有关的正确结论;(2)当∠D=300,BC=1时,求圆中阴影部分的面积.2.如图所示,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,已知AB=10,求圆环的面积。
变式训练:已知大⊙0与小⊙P 内含,AB 是小圆的切线,切点为C,OP 平行于AB ,已知AB=10,求阴影部分的面积。
当堂达标促学课堂检测1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ). A .3π B .4π C .5π D .6π2、如图所示,把边长为2的正方形ABCD 的一边放在定直线L 上,按顺时针方向绕点D 旋转到如图的位置,则点B 运动到点B ′所经过的路线长度为( ) A .1 B .π C .2 D .2πCB AO F DEBACP OBAC(A')DlB'C'(第2题图)(第3题图)(第4题图)3、如图所示,OA=30B,则A D的长是B C的长的_____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB为120,OC 长为8cm,CA长为12cm,则阴影部分的面积为。
5、(2008常州)已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm2,扇形的圆心角为______°.6、(2007山东济宁)如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,则图中阴影部分的面积为。
7、如图,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,求图中阴影部分的面积。
(第6题图)(第7题图)一课一得ACOB。
九年级数学上册 24.4.2 弧长和扇形面积导学案 (新版)新人教版(1)
24.4.2 弧长和扇形面积预习案一、预习目标及范围:1.经历圆锥侧面积的探索过程.2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题预习范围:P99-100二、预习要点1、什么是圆锥的母线?2、圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?若圆锥的母线长为l,底面圆的半径为r,则圆锥的侧面积可表示为,圆锥的全面积为。
3、圆柱的侧面展开图是什么图形?若圆柱底面圆的半径为r,圆柱的高为h,则圆柱的侧面积可表示为,全面积可表示为。
三、预习检测1.若圆锥的底面半径r=4cm,高线h=3cm,则它的侧面展开图中扇形的圆心角是——度。
2.如图,若圆锥的侧面展开图是半圆,那么这个展开图的圆心角是__ _度;圆锥底半径 r与母线a的比r:a = _ __ .3.把一个用来盛爆米花的圆锥形纸杯沿母线剪开,可得一个半径为24cm,圆心角为118°的扇形.求该纸杯的底面半径和高度(结果精确到0.1cm).探究案一、合作探究活动内容1:探究1:圆锥及相关概念—圆锥的形成我们把连接圆锥的顶点S和底面圆上任一点的连线SA,SB等叫做.圆锥有无数条母线,它们都.从圆锥的顶点到圆锥底面圆心之间的距离是.归纳:如果用r表示圆锥底面的半径, h表示圆锥的高线长, l表示圆锥的母线长,那么r、h、l 之间数量关系是:填一填:根据下列条件求值(其中r、h、l分别是圆锥的底面半径、高线、母线长)(1)l = 2,r=1 则h=_______.(2) h =3, r=4 则 l =_______.(3) l = 10, h = 8 则r=_______.5;6探究2:圆锥的侧面展开图思考:圆锥的侧面展开图是什么图形?问题:1.沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?2.圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?。
其侧面展开图扇形的半径=母线的长l,侧面展开图扇形的弧长=底面周长2r活动2:探究归纳1.圆锥的侧面积计算公式(r表示圆锥底面的半径, l 表示圆锥的母线长 )2.圆锥的全面积计算公式活动内容2:典例精析例1 如图所示的扇形中,半径R=10,圆心角θ=144°,用这个扇形围成一个圆锥的侧面.(1)则这个圆锥的底面半径r= .(2)这个圆锥的高h= .答案:例2、蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为35m2,高为3.5m,外围高为1.5m的蒙古包,至少需要多少平方米的毛毡(精确到1m2)?解:二、随堂检测1 .圆锥的底面半径为3cm ,母线长为6cm ,则这个圆锥侧面展开图扇形的圆心角是_______.2 .一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为_____ .3.已知圆锥的底面的半径为3cm ,高为4cm ,则它的侧面积是 ,全面积是 .4.(1)在半径为10的圆的铁片中,要裁剪出一个直角扇形,求能裁剪出的最大的直角扇形的面积?(2)若用这个最大的直角扇形恰好围成一个圆锥,求这个圆锥的底面圆的半径? (3)能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.AC②O参考答案预习检测:1.2882. 180;1:23. 半径约为7.9cm,高约为22.7cm.随堂检测1. 180o2. 10cm3. 15πcm2;24πcm24. 解:(1)连接BC,则BC=20,∵∠BAC=90°,AB=AC,∴AB=AC=∴S扇形=(29050;360ππ⨯=(2)圆锥侧面展开图的弧长为:90180π⨯r ∴=(3)延长AO交⊙O于点F,交扇形于点E,EF=最大半径为.r <∴不能.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.4弧长和扇形面积
第1课时弧长和扇形面积
一、新课导入
1.导入课题:
情景:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的问题.
问题:怎样求一段弧的长度呢?
这就是这节课我们所要研究的问题(板书课题).
2.学习目标:
(1)能推导弧长和扇形面积的计算公式.
(2)知道公式中字母的含义,并能运用这些公式进行相关计算.
3.学习重、难点:
重点:弧长公式及扇形面积公式与应用.
难点:阴影部分面积的计算.
二、分层学习
1.自学指导:
(1)自学内容:教材第111页的内容.
(2)自学时间:6分钟.
(3)自学要求:注意公式的推导和记忆.
(4)自学参考提纲:
①圆的周长公式是什么?C=2πR.
②弧有长度吗?弧的长度和它所在的圆周长有何关系?
圆可以看作是360度的圆心角所对的弧.
1°的圆心角所对的弧长是圆周长的几分之几?1
360
n°的圆心角所对的弧长是圆周长的几分之几?n
360
所以在半径为R的圆中,n°的圆心角所对的弧长l的公式是
n R
l
π
=
180
.
③由弧长公式可知,一条弧的弧长l、圆心角度数n和圆半径R,在这三个量中,已知其中
的两个,就可求出第三个.
如已知l 和n,则R =l n π180;已知l 和R,则n =l R
π180. ④计算图中弯道的“展直长度”.
解:由弧长公式,得AB 的长l π⨯⨯=100900180
≈1570(mm). 因此所要求的展直长度L=2×700+1×1570=2970(mm).
2.自学:学生结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:关注学生对弧长公式的推导和变形过程.
②差异指导:根据学情进行指导. (2)生助生:小组内相互交流、研讨.
4.强化:
(1)弧长公式、公式的书写格式及其变形.
(2)有一段弯道是圆弧形的,道长是12米,弧所对的圆心角是81°,求这段圆弧的半径R (精确到0.1米).
解:由n l R π=180
得l R .n .π⨯==≈⨯180180128581314 (米).
1.自学指导:
(1)自学内容:教材第112页到第113页“练习”之前的内容.
(2)自学时间:8分钟.
(3)自学方法:完成自学参考提纲.
(4)自学参考提纲:
①圆的面积公式是什么?S =πR 2
②什么叫扇形?扇形的面积和它所在的圆的面积有何关系?
圆的面积可以看作是圆心角为 360 度的扇形面积.
圆心角为1°的扇形的面积是圆的面积的几分之几?1360
圆心角为n°的扇形的面积是圆的面积的几分之几?n 360
所以在半径为R 的圆中,圆心角为n°的扇形的面积S 扇形的公式是扇形=n R S π2360. ③试推导扇形的面积公式扇形S lR =12
(这里的l 指扇形的弧长,R 指半径). 扇形n R n R S R lR ππ===21136021802
. ④如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m.求截面上有水部分的面积(精确到0.01m 2).
a.怎样求圆心角∠AOD 的度数?
在Rt △ADO 中,OD=OC-DC=0.3m,OA=0.6m.∴∠A=30°.∴∠AOD=60°.
∴∠AOB=2∠AOD=120°.
b.阴影部分的面积=扇形AOB 的面积-△AOB 的面积.
c.写出本题的解答过程.
解:如图,连接OA 、OB,作弦AB 的垂直平分线,垂足为D,交AB 于点C,连接AC. ∵OC =0.6m,DC =0.3m,∴OD =OC-DC =0.3(m ).∴OD =DC.又AD ⊥DC,∴AD 是线段OC 的垂直平分线.∴AC =AO =OC.从而∠AOD =60°,∠AOB =120°.
∴扇形有水部分的面积===()OAB OAB S S S .AB?OD ....m ππ-⨯--⨯⨯≈2212011060120630302236022
. 2.自学:学生结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生在推导扇形面积公式及求例2中∠AOD 时遇到的困难情况. ②差异指导:根据学情进行个别指导或分类指导.
(2)生助生:小组内相互交流、研讨.
4.强化:
(1)扇形面积公式及推导过程和公式的变形.
(2)求不规则图形的面积的方法:转化为规则图形的面积和或差.
(3)练习:已知正三角形ABC 的边长为a,分别以A 、B 、C 为圆心,以12a 为半径的圆相切于点D 、 E 、F,求图中阴影部分的面积S.
解:连接AD,则AD ⊥BC, AD a =3. ∴
阴影扇形ABC AFE
a S S S BC?AD a a ππ⎛⎫ ⎪⎝⎭=-⨯=-⨯=-2
22160131233236048
. 三、评价
1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?掌握了哪些方法?还有什么疑惑?
2.教师对学生的评价:
(1)表现性评价:点评学生学习的主动参与性、小组交流协作能力和状况、存在的问题等.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):本节课从复习圆周长公式入手,根据圆心角与所对弧长之间的关系,推导出了弧长公式.后又用类比的方法,推出扇形面积,两个公式的推导中,都渗透着由“特殊到一般”,再由“一般到特殊”的辩证思想,然后由学生比较两个公式时,又很容易得出两者之间的关系,明确了知识间的联系.
(时间:12分钟满分:100分)
一、基础巩固(70分)
1.(10分)已知扇形的圆心角为120°,半径为6,则扇形的弧长是4π.
2.(10分)75°的圆心角所对的弧长是2.5πcm ,则此弧所在的圆半径是6cm.
3.(10分)一个扇形的弧长为20πcm ,面积是240πcm 2,则扇形的圆心角是150°.
4.(20分)如图是一段弯形管道,其中,∠O=∠O′=90°,中心线的两条圆弧半径都为1000mm,求图中管道的展直长度.(π取3.142)
解:π⨯⨯+⨯≈901000300026142180
(mm ). 答:图中管道的展直长度约为6142mm.
5.(20分)草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.
解:()S m ππ⨯⨯==222202022003609
. 答:它能喷灌的草坪的面积为m π222009
. 二、综合应用(20分)
6.(20分)如图,扇形纸扇完全打开后,外侧两竹条AB 、AC 夹角为120°,AB 的长为30cm,贴纸部分BD 的长为20cm,求贴纸部分的面积. 解:扇形ABC S ππ⨯⨯==212030300360 (cm 2), 扇形()ADE S ππ⨯⨯-==212030*********
(cm 2), ∴贴纸扇形扇形ABC ADE S S S πππ=-=-=10080030033
(cm 2). 答:贴纸部分的面积是π8003
cm 2
. 三、拓展延伸(共10分)
7.(10分)正方形的边长为a,以各边为直径在正方形内画半圆,求图中阴影部分的面积.
解:方法一:阴影()=a S a a a ππ⎡⎤⎛⎫=--- ⎪⎢⎥⎣⎦⎝⎭
22222122. 方法二:阴影=a S a a ππ⎛⎫⎛⎫=⨯⨯-- ⎪ ⎪⎝⎭⎝⎭2
2241222. 答:图中阴影部分的面积为a π⎛⎫- ⎪⎝⎭
212.。