高中数学选修1-1(人教B版)第一章常用逻辑用语1.2知识点总结含同步练习题及答案

合集下载

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

q ”,那么
1 时,mx 2 − x + 1 = 0 无实数根; 4
1 ,则 mx 2 − x + 1 = 0 无实数根,真命题; 4
写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)若 m ⋅ n < 0 ,则方程 mx 2 − x + n = 0 有实数根; (2)若 m ⩽ 0 或 n ⩽ 0,则 m + n ⩽ 0 . 解:(1)逆命题:若方程 mx 2 − x + n = 0 有实数根,则 m ⋅ n < 0 ,假命题 ; 否命题:若 m ⋅ n ⩾ 0 ,则方程 mx2 − x + n = 0 没有实数根,假命题 ; 逆否命题:若方程 mx 2 − x + n = 0 没有实数根,则 m ⋅ n ⩾ 0 ,真命题. (2)逆命题:若 m + n ⩽ 0 ,则 m ⩽ 0 或 n ⩽ 0 ,真命题; 否命题:若 m > 0 且 n > 0,则 m + n > 0 ,真命题 ; 逆否命题:若 m + n > 0 ,则 m > 0 且 n > 0 ,假命题 .
因为 p 是 q 的充分不必要条件,所以 A ⫋ B.故
{ 1 + m ⩾ 10, 或{ 1 + m > 10, 1 − m < −2, 1 − m ⩽ −2,
解得 m ⩾ 9 ,故实数 m 的取值范围是 [9, +∞).
2.若则命题的四种形式 描述: 若则命题 命题的常见形式为“若 p 则 q ”,其中 p 叫做命题的条件, q 叫做命题的结论. 逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称 为互逆命题.其中一个命题称为原命题(original proposition),另一个称为原命题的逆命 题(inverse proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的逆命题 为“若 q ,则 p ”. 否命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么 这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negative proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的否命题为“若 ¬p ,则 ¬q ”. 逆否命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么 这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命

高中数学选修1-知识点清单集合

高中数学选修1-知识点清单集合

对称性
关于 x 轴、 y 轴、原点对称
离心率
e
c
b2
1 2 0 e 1
a
a
3、e 越大,椭圆越扁;e 越小,椭圆越圆。
2 = 2 + 2 二、双曲线
(
)
1、平面内与两个定点 F1 , F2 的距离之差的绝对值等于常数(小于 F1 F2 )的
点的轨迹称为双曲线.即: || MF1 | | MF2 || 2a, (2a | F1 F2 |) 。
若 f x 0 ,则函数 y f x 在这个区间内单调递减.
7、求函数 y f x 的极值的方法是:解方程 f x 0 .当 f x0 0 时:
1 如果在 x0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x0 是极大值(左增
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.
4、双曲线的几何性质:
焦点的位置
焦点在 x 轴上
焦点在 y 轴上
标准方程
x2 y 2
ห้องสมุดไป่ตู้
1 a 0, b 0
a 2 b2
y 2 x2
1 a 0, b 0
a 2 b2
范围
x a 或 x a , y R
右减);
2 如果在 x0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x0 是极小值(左减
右增).
8、① 注意极大值、极小值、极大值点和极小值点的区别;(极大值是一个函
数值,极大值点是一个点,包括横坐标和纵坐标)
② 极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质。

高中数学第一章常用逻辑用语1.2基本逻辑联结词1.2.2“非”(否定)教案新人教B版选修1_1

高中数学第一章常用逻辑用语1.2基本逻辑联结词1.2.2“非”(否定)教案新人教B版选修1_1

1.2.2“非”(否定)预习导航1.命题p的否定⌝p(1)“非”命题的表示及读法:对命题p加以否定,就得到一个新的命题,记作“⌝p”,读作“非p”或“p的否定”.(2)含有“非”的命题的真假判定:思考1对一个命题p提示:对一个命题p进行否定,否定的是此命题的结论.2.存在性命题的否定提示:存在性命题的否定是全称命题,其真假性与存在性命题相反,只需判断出原存在性命题的真假即可作出判断.3.全称命题的否定思考提示:不唯一,如“所有的菱形都是平行四边形”,它的否定是“并不是所有的菱形都是平行四边形”,也可以是“有些菱形不是平行四边形”.思考4省略全称量词的全称命题如何进行否定?提示:有的全称命题省略了全称量词,否定时要特别注意.例如,q:实数的绝对值是正数.将⌝q写成:“实数的绝对值不是正数”就错了.原因是q是假命题,⌝q也是假命题,这与q,⌝q一个为真一个为假相矛盾.正确的否定应为:“存在一个实数的绝对值不是正数.”为了避免出错,可用真值表加以验证.精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

高中数学人教B版选修1-1课件:1.3.2 命题的四种形式

高中数学人教B版选修1-1课件:1.3.2 命题的四种形式
第一章 常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式
1.3.2 命题的四种形式
1.了解四种命题的概念,会写出某命题的逆命题、否命 题 和逆否命题. 2.认识四种命题之间的关系以及真假性之间的关系.(重点) 3.利用命题真假的等价性解决简单问题.(难点、易错点)
知识点一、四种命题的概念
【答案】 1
题目类型三、等价命题的应用
证明:如果p2+q2=2,则p+q≤2. 【思路探究】 可以写出该命题的逆否命题,证明其逆否命 题正确,由原命题与其逆否命题的等价性可知原命题也正确.
证明:该命题的逆否命题为:若 p+q>2,则 p2+q2≠2. 因为 p2+q2≥12(p+q)2. 又因为 p+q>2,所以(p+q)2>4,所以 p2+q2>2, 即 p+q>2 时,p2+q2≠2 成立. 所以如果 p2+q2=2,则 p+q≤2 成立.
的函数是单调函数”,B错.逆否命题为“单调函数不是周期函
数,C错,所以选D.
(2)根据逆否命题的定义可知命题“若α=
π 4
,则tan
α=1”的
逆否命题是:若tan α≠1,则α≠4π.
【答案】 (1)D (2)若tan α≠1,则α≠π4
题目类型二、四种命题真假的判断
写出下列命题的逆命题、否命题、逆否命题,然后 判断真假.
3.互为逆否命题等价.当一个命题的真假不易判断时,可通 过判定其逆否命题的真假来判断.
有下列四个命题: ①“若b=3,则b2=9”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若c<1,则x2+2x+c=0有实根”的逆命题; ④“若A∩B=A,则A⊆B”的逆否命题. 其中真命题的个数是________.
(2)两个命题互为逆命题或互为否命题时,它们的真假性 没有关系 .

高二数学(人教B版)选修1-1全册课件1、1-2-1“且”与“或”

高二数学(人教B版)选修1-1全册课件1、1-2-1“且”与“或”
p∨qN⊆Z或{0}⊆N.
第一章 常用逻辑用语
(选修1-1)
(3)p∧q35是15的倍数且是7的倍数,
p∨q35是15的倍数或是7的倍数. [说明] 解答这类题目的关键是要正确地使用联结词,
人 教 B 版 数 学
并注意语法上的要求.
第一章 常用逻辑用语
(选修1-1)
[例2] 判断下列命题的真假. (1)2≤2. (2)等腰三角形顶角的平分线平分底边并且垂直于底 边.
第一章 常用逻辑用语
(选修1-1)
1.2
基本逻辑联结词
人 教 B 版 数 学
第一章 常用逻辑用语
(选修1-1)
人 教 B 版 数 学
第一章 常用逻辑用语
(选修1-1)
人 教 B 版 数 学
第一章 常用逻辑用语
(选修1-1)
1.知识与技能 了解含有“且”“或”的新命题的含义,能判断复合 命题的真假. 2.过程与方法
1 的取值范围为0,2∪[1,+∞).
第一章 常用逻辑用语
(选修1-1)
[说明] 本题以函数为载体将函数、不等式、简易逻
辑有机地结合在一起,要求c的范围,可先由条件p、q分别 求出c的范围;然后利用“p或q”为真,且“p且q”为假, 确定c的范围.
人 教 B 版 数 学
第一章 常用逻辑用语
第一章 常用逻辑用语
(选修1-1)
(2)用逻辑联结词“或”把命题p,q联结起来,就得到
一个新命题,记作 p∨q ,读作“ p或q ”.
人 教 B 版 数 学
3.含有逻辑联结词“且”与“或”的命题的真假规律 (真值表): p 真 真 q 真 假 p∧q 真 假 p∨q 真 真
假 假
真 假

高中数学高考核心考点提醒选修1-1 第一章 常用逻辑用语

高中数学高考核心考点提醒选修1-1 第一章  常用逻辑用语

高中数学高考核心考点提醒选修1-1 第一章常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体. ,x A x A∈∉。

元素特点:互异性、无序性、确定性。

关系子集x A x B A B∈⇒∈⇔⊆A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n 真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。

四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。

互为逆否的命题等价。

逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。

必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。

类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。

类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。

类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。

存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。

一、命题及其关系1.四种命题的相互关系:(既否条件又否结论)(先逆再否)(互换条件与结论)2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性,即原命题与逆否命题等价,逆命题与否命题等价。

人教新课标版数学高二B版选修1-1单元测试 第一章常用逻辑用语

人教新课标版数学高二B版选修1-1单元测试 第一章常用逻辑用语

本章测评(时间90分钟满分100分)一、选择题(共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1下列命题中是全称命题的是()A.圆有内接四边形B.3> 2C.3< 2D.若三角形的三边长分别为3,4,5,则这个三角形为直角三角形2已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确的两个命题的序号是()A.①与②B.③与④C.②与④D.①与③3设集合A={x|xx-1<0},B={x|0<x<3},那么“m∈A”是“m∈B”的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4若a,b∈R,则使|a|+|b|>1成立的充分不必要条件是()A.|a+b|≥1 B.|a|≥12且|b|≥12C.a≥1 D.b<-15在下列结论中,正确的为()A.“p∧q”为真是“p∨q”为真的充分必要条件B.“p∧q”为假是“p∨q”为真的充分非必要条件C.“p∨q”为真是“⌝p”为假的必要非充分条件D.“⌝p”为真是“p∧q”为假的必要非充分条件6命题“至少有一个点在函数y =kx (k ≠0)的图象上”的否定是( )A .至少有一个点在函数y =kx (k ≠0)的图象上B .至少有一个点不在函数y =kx (k ≠0)的图象上C .所有点都在函数y =kx (k ≠0)的图象上D .所有点都不在函数y =kx (k ≠0)的图象上7下列选项中,p 是q 的必要不充分条件的是( )A .p :a +c >b +d ,q :a >b 且c >dB .p :a >1,b >1,q :f (x )=a x -b (a >0,且a ≠1)的图像不过第二象限C .p :x =1,q :x 2=xD .p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数8设有两个命题:①关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;②函数f (x )=-(5-2a )x 是减函数,若命题有且只有一个真命题,则实数a 的取值范围是( )A .(-∞,-2]B .(-∞,2)C .(-2,2)D .(2,52) 9 “函数f (x )(x ∈R )存在反函数”是“函数f (x )在R 上为增函数”的( )A .充分而不必要条件B .充要条件C .必要而不充分条件D .既不充分也不必要条件10函数y =x 2+bx +c 在x ∈(0,+∞)上是单调函数的充要条件是( )A .b ≥0B .b ≤0C .b >0D .b <0二、填空题(本大题共5个小题,每小题4分,共20分.把答案填在题中的横线上) 11下面命题:①“x +y =5”是“x 2-y 2-3x +7y =10”的充分条件;②“a -b <0”是“a 2-b 2<0”的充分条件;③“a -b <0”是“a 2-b 2<0”的必要条件;④“两个三角形全等”是“两边和夹角对应相等”的充要条件.其中是真命题的有________.12给出下面两个命题:①如果集合P ,Q 满足P ∩Q =P ,则P Q ;②已知集合S ={x |x 2-x -2=0},集合T={x |tx -1=0},且T ⊄S ,则t =-1,t =12.那么这两个命题的真假情况为________. 13填写下列命题的否定形式:(1)a >0,或b ≤0.________.(2)三条直线两两相交.________.14设全集为U ,在下列条件中:①A ∪B =A ;②C U A ∩B =Φ;③C U A ⊆C U B ;④A ∪C U B =U .能作为B ⊆A 的充要条件的有________.15有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人采访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲未获奖,丙也未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话中有两句是对的,则获奖的歌手是________.三、解答题(本大题共4个小题,共40分.解答时应写出文字说明、证明过程或演算步骤)16(9分)写出下列命题的“⌝p ”命题,并判断它们的真假.(1)p :∀x ,x 2+4x +4≥0;(2)p :∃x ,x 2-4=0.17(10分)写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.18(10分)已知关于x 的方程(1-a )x 2+(a +2)x -4=0,a ∈R ,求:(1)方程有两个正根的充要条件;(2)方程至少有一个正根的充要条件.19(11分)给出下列命题:p :关于x 的不等式x 2+(a -1)x +a 2>0的解集是R ,q :函数y =lg(2a 2-a )x 是增函数.(1)若p ∨q 为真命题,求a 的取值范围.(2)若p ∧q 为真命题,求a 的取值范围.参考答案1解析:A中隐含全称量词“对任意一个”.答案:A2解析:①成立.若l⊥α,α∥β则l⊥β.又因为m⊂β,故l⊥m.②不成立,l与m也可能异面或相交.③成立,若l∥m,l⊥α,则m⊥α.又m⊂β,则α⊥β.④不成立,举反例即可知α与β可能相交.答案:D3解析:∵A={x|0<x<1},B={x|0<x<3},∴A≠B.当m∈A时,必有m∈B;而当m∈B时,m∈A不一定成立.答案:A4解析:当b<-1时,显然有|a|+|b|>1,反过来则不一定成立.答案:D5解析:“p∧q”为真“p∨q”为真,反之不然,“p∧q”为假/ “p∨q”为真,“⌝p”为假p为真p∨q为真,“p∧q”为假,p可真可假⌝p真.答案:C6答案:D7解析:∵p:a+c>b+d,q:a>b且c>d,∴p D/q,q p.对于选项B:p⇒q,q p,p是q的充分不必要条件.对于选项C:p⇒q,q p,p是q的充分不必要条件.对于选项D:p⇔q,p是q的充要条件.故选A.答案:A8解析:若x2+2ax+4>0对一切x∈R恒成立,则-2<a<2.若f(x)=-(5-2a)x是减函数,则a<2.若①真②假,则α∈Φ,若①假②真,则a≤-2.故选A.答案:A9答案:C10解析:用特殊值法求解:取b=0,y=x2+c,它在(0,+∞)显然递增,排除C、D;取c=0,b=-2,则y=x2-2x,则它在[0,1)上递减,在[1,+∞)上递增,因而在[0,+∞)上不单调,排除B.答案:A11解析:应用定义进行判断.答案:①④12解析:①是假命题,它忽略了P=Q这一特殊情况;②是假命题,它忽略了T=Φ时,也满足T⊄S,此时t=0.答案:①②为假命题13答案:(1)a≤0,且b>0(2)三条直线不都两两相交14答案:①②③④15解析:如果乙获奖,则甲、乙、丁所说的都是对的,这与只有两句是对的矛盾,所以乙未获奖.如果丙获奖,则只有甲和丙所说的是对的,符合题意.如果甲获奖,四人说的都是错的,所以甲未获奖.如果丁获奖,则仅有乙一人说的是对的,因此获奖的歌手是丙.答案:丙16分析:全称命题的否定是存在性命题;存在性命题的否定为全称命题.解:(1) ⌝p:x,x2+4x+4<0.因为x 2+4x +4=(x +2)2≥0恒成立,所以“⌝p ”命题为假命题;(2) ⌝p :x ,x 2-4≠0, 因当x =2时,22-4=0, 所以“⌝p ”命题为假命题. 17分析:根据四种命题的定义写出命题,判断真假时应注意命题间的关系.解:逆命题:若x =2且y =-1,则x -2+(y +1)2=0,真命题. 否命题:若x -2+(y +1)2≠0,则x ≠2或y ≠-1,真命题.逆否命题:若x ≠2或y ≠-1,则x -2+(y +1)2≠0,真命题. 18分析:先求出方程有两个实根的充要条件.再讨论x 2的系数及运用根与系数的关系分别求出要求的充要条件.解:(1)方程(1-a )x 2+(a +2)x -4=0有两个实根的充要条件是⎩⎪⎨⎪⎧ 1-a ≠0,Δ≥0,即⎩⎨⎧ a ≠1(a +2)2+16(1-a )≥0⎩⎪⎨⎪⎧a ≠1,a ≤2或a ≥10,即a ≥10或a ≤2且a ≠1. 设此时方程的两实根为x 1、x 2,有两个正根的充要条件是⎩⎪⎨⎪⎧ a ≠1a ≤2或a ≥10x 1+x 2>0x 1·x 2>0⎩⎪⎨⎪⎧ a ≠1,a ≤2或a ≥10,a +2a -1>0,4a -1>0,即1<a ≤2或a ≥10是方程有两个正根的充要条件.(2)由(1)知当1<a ≤2或a ≥10时方程有两个正根,当a =1时,方程化为3x -4=0,有一正根x =43,又方程有一正根一负根的充要条件是a <1,故方程至少有一个正根的充要条件是a ≤2或a ≥10.19分析:先求出p 为真时,a 的取值范围及q 为真时a 的取值范围,然后再求解(1)(2)两问题.解:若p 为真,则Δ=(a -1)2-4a 2<0,而3a 2+2a -1>0,a >13或a <-1. 若q 为真,则2a 2-a >1,a >1或a <-12. (1)若p ∨q 为真命题,则p 真q 假,或p 假q 真,或p 真q 真,设A ={a |p 真},B ={a |q 真},则p ∨q 为真的范围为A ∪B ={a |a >13或a <-12}. (2)若p ∧q 为真,则p 真,q 真,则p ∧q 为真的范围为A ∩B ={a |a >1或a <-1}.。

高中数学第一章常用逻辑用语逻辑联结词“且”“或”“非”知识归纳素材北师大版选修1-1

高中数学第一章常用逻辑用语逻辑联结词“且”“或”“非”知识归纳素材北师大版选修1-1

逻辑联结词“且”“或”“非”
1.基本概念: “或”、“且”、“非”称为逻辑联结词.
2.在判断复合命题的真假时,先确定复合命题的构成形成,同时要掌握以下规律:
ⅰ、“非”形式的复合命题的真假与命题的真假相反;
ⅱ、“或”形式的复合命题只有当命题与同时为假时才为假,否则为真;
ⅲ、“且”形式的复合命题只有当命题与同时为真时才真,否则为假。

3.写出一个命题的否定,往往需要对正面词语进行否定,要熟悉常用的正面叙述词语及它的否定形式,比如:“至少”、“最多”、以及“至少有一个是(不是)”、“最多有一个是(不是)”、“都是(不是)”、“不都是”等。

4.逻辑中的“或”与日常生活中的“或”是有区别的:“或”在日常生活中通常有两种解释: “不可兼有”和“可兼有”.例如:“今天晚上要有一个人在值班室接电话,你去或他去”(不可兼有),“今天下午要留人出黑板报,你留或他留”(可兼有).在数学上一般采用“可兼有”,如或. 生活中如果说“苹果是长在树上或长在地里”,就觉得不妥,但在逻辑中却是可以的且是真命题。

5.举出一些生活例子说明逻辑联结词中“或”与“且”的意义.
洗衣机在甩干时,如果“到达预定时间”或“机盖被打开”,就会停机,又如电子保险门在“钥匙插
入”且“密码正确”两个条件都满足时,才会开启.它们相应的电路是或门电路和与门电路
1。

2017-2018学年高一数学选修1-1全册同步导学案含答案【人教B版】

2017-2018学年高一数学选修1-1全册同步导学案含答案【人教B版】
思考2常见的全称量词有哪些?
提示:常见的全称量词除“所有”外,还有“一切”“每一个”“任一个”等.
特别提醒全称命题实际上是陈述某集合中所有元素都具有某种性质的命题.有时省去全称量词,但仍为全称命题.如“正方形都是平行四边形”,省去了全称量词“所有”.
3.存在量词与存在性命题
思考3如何判断一个命题是全称命题还是存在性命题?
3.3.2利用导数研究函数的极值
3.3导数的应用3.3.3导数的实际应用
1.1命题与量词
预习导航
课程目标
学习脉络
1.了解命题的定义.
2.理解全称量词与存在量词的意义.
3.会判断全称命题与存在性命题的真假.
1.命题
思考1数学中的定义、公理、定理与命题的关系是怎样的?
提示:数学中的定义、公理、定理都是命题,但命题与定理是有区别的:
(1)命题有真假之分,而定理都是真的;
(2)命题一定有逆命题,而定理不一定有逆定理.
名师点拨(1)并不是任何语句都是命题,只有能够判断真假的语句才是命题.一般地,祈使句、感叹句、疑问句都不是命题.
(2)有些语句尽管现在不能确定其真假,但随着时间的推移,总能判断其真假,这样的语句也是命题.
2.全称量词与全称命题
判断下列命题的真假:
(1)对角线互相垂直的四边形是菱形
(2)0是最小的自然数
(3)0既不是奇数,也不是偶数
(4)空集是任何非空集合的真子集
答案:(1)假(2)真(3)假(4)真
类题演练3
(2)疑问句,没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题.
(3)是假命题,数0既不是正数也不是负数.
(4)是假命题,没有考虑到“在两个三角形中,其他两边对应相等”的情况.

人教版高中数学选修1-1第一章单元测试(一)-含答案

人教版高中数学选修1-1第一章单元测试(一)-含答案

2018-2019学年选修1-1第一章训练卷常用逻辑用语(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题:"若0x ,0y ,则0xy",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A .1B .2C .3D .42.命题“若A B ,则AB ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A .0B .2C .3D .43.给定空间中的直线l 及平面α,条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知p :若a A ,则b B ,那么命题p 是()A .若a A ,则b B B .若a A ,则b B C .若bB ,则aAD .若bB ,则aA5.命题“p且q ”与命题“p 或q ”都是假命题,则下列判断正确的是()A .命题“非p ”与“非q ”真假不同B .命题“非p ”与“非q ”至多有一个是假命题C .命题“非p ”与“q ”真假相同D .命题“非p 且非q ”是真命题6.已知a ,b 为任意非零向量,有下列命题:①|a |=|b |;②22a b ;③2aa b ,其中可以作为a b 的必要非充分条件的命题是()A .①B .①②C .②③D .①②③7.已知A 和B 两个命题,如果A 是B 的充分不必要条件,那么“A ”是“B ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若向量,3x xR a,则“4x”是“5a”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.下列全称命题中,正确的是()A .,x y 锐角,sin sin s )n (i x y x y B .,x y 锐角,sin cos c )s (o x y x y C .,x y 锐角,cos sin c )s (o x y x y D .,x y锐角,cos cos s )n (i xy xy10.以下判断正确的是()A .命题“负数的平方是正数”不是全称命题B .命题“x Z ,32xx ”的否定是“x Z ,32xx ”C .“=2”是“函数()sin y x为偶函数”的充要条件D .“0b”是“关于x 的二次函数2f xaxbx c 是偶函数”的充要条件此卷只装订不密封班级姓名准考证号考场号座位号11.已知命题p :函数log 05()3f x x .的定义域为(-∞,3);命题q :若k<0,则函数()k h x x 在(0,)上是减函数,对以上两个命题,下列结论中正确的是()A .命题“p 且q ”为真B .命题“p 或q ”为假C .命题“p 或q ”为假D .命题“p ”且“q ”为假12.已知向量),(x y a ,co ()s ,sin b,其中x y R ,,,若4ab ,则2a b成立的一个必要不充分条件是()A .λ>3或λ<-3B .λ>1或λ<-1C .-3<λ<3D .-1<λ<1二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.“对顶角相等”的否定为________,否命题为________.14.令221:0p x ax x ,如果对xR ,p x 是真命题,则a 的取值范围是________.15.试写出一个能成为2()(0)21aa 的必要不充分条件________.16.给定下列结论:①已知命题p :?x ∈R ,tanx =1;命题q :?x ∈R ,210x x .则命题“p q ”是假命题;②已知直线1l :ax +3y -1=0,2l :x +by +1=0,则12l l 的充要条件是3a b;③若1sin 2,1sin3,则tan α=5tan β;④圆224210xyx y与直线12yx ,所得弦长为2.其中正确命题的序号为________(把你认为正确的命题序号都填上).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知命题p :?非零向量a 、b 、c ,若0a b c,则bc .写出其否定和否命题,并说明真假.18.(12分)给定两个命题P :对任意实数x 都有210axax 恒成立;Q :关于x的方程20xx a有实数根.如果P ∧Q 为假命题,P ∨Q 为真命题,求实数a的取值范围.19.(12分)求证:一元二次方程22100ax x a有一个正根和一个负根的充分不必要条件是a<-1.20.(12分)已知p:2290x x a,q:22430680x xx x,且p是q的充分条件,求实数a的取值范围.21.(12分)给出命题p:“在平面直角坐标系xOy中,已知点P(2cosx+1,2cos2x +2)和Q(cosx,-1),?x∈[0,π],向量OP与OQ不垂直.”试判断该命题的真假并证明.22.(12分)已知ab≠0,求证:a+b=1的充要条件是33220a b ab a b.2018-2019学年选修1-1第一章训练卷常用逻辑用语(一)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】B【解析】由题得原命题“若0x,0y,则0xy ”是真命题,所以其逆否命题也是真命题.逆命题为:“若0xy,则0x,0y ”,是假命题,所以否命题也是假命题,所以四个命题中,真命题的个数为2.故答案为B .2.【答案】B 【解析】可设1,2A,1,2,3B,满足AB ,但A B ,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真.3.【答案】C【解析】直线l 与平面α内两相交直线垂直?直线l 与平面α垂直,故选C .4.【答案】A【解析】命题“若p ,则q ”的否定形式是“若p ,则q ”.故选A .5.【答案】D【解析】p 且q 是假命题?p 和q 中至少有一个为假,则非p 和非q 至少有一个是真命题.p 或q 是假命题?p 和q 都是假命题,则非p 和非q 都是真命题.故选D .6.【答案】D【解析】由向量的运算即可判断.7.【答案】B【解析】由于“A?B ,A /B ”等价于“A B ,A /B ”,故“A ”是“B ”的必要不充分条件.故选B .8.【答案】A【解析】由“4x ”,得)3(4,a ,故5a;反之,由5a ,得4x .所以“4x ”是“5a”的充分而不必要条件.故选A .9.【答案】D 【解析】由于cos cos c (os sin sin )x y x y x y ,而当,x y锐角时,0cos 1y ,sin 1x,所以cos cos cos sin sin cos s (in )xy x y x yxy ,故选项D 正确.10.【答案】D【解析】A 为全称命题;B 中否定应为x Z ,320xx ;C 中应为充分不必要条件.D 选项正确.11.【答案】 D【解析】由题意知p 真,q 假.再进行判断.12.【答案】 B 【解析】由已知1b ,∴44a b,224xy.又∵22cos sinsin4sin 4x y xy a b ,由于2a b成立,则24,解得λ>2或λ<-2,这是2a b 成立的充要条件,因此2a b成立的一个必要不充分的条件是λ>1或λ<-1.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】对顶角不相等若两个角不是对顶角,则它们不相等【解析】“对顶角相等”的否定为“对顶角不相等”,否命题为“若两个角不是对顶角,则它们不相等”.14.【答案】1a【解析】由已知xR ,2210axx 恒成立.显然0a不合题意,所以0440aa?1a .15.【答案】1a (不惟一)【解析】2()(0)21a a 的解集记为B ={1|a a且a ≠2},所找的记为集合1Aa a ,则BA ,B /A .16.【答案】①③【解析】对于①易知p 真,q 真,故命题p q 假,①正确;对于②1l 与2l 垂直的充要条件应为a +3b =0;对于③利用两角和与差的正弦公式展开整理即得;对于④可求得弦长为455,④错.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】p :?非零向量a 、b 、c ,若0abc,使bc .p 为真命题.否命题:?非零向量a 、b 、c ,若0a b c,则b c .否命题为真命题.18.【答案】1,0,44.【解析】命题P :对任意实数x 都有210axax恒成立,则“a =0”,或“a>0且240aa ”.解得0≤a<4.命题Q :关于x 的方程20xx a 有实数根,则140a,得14a.因为P ∧Q 为假命题,P ∨Q 为真命题,则P ,Q 有且仅有一个为真命题,故PQ 为真命题,或P Q 为真命题,则0414aa a或或0414a a,解得a<0或144a.所以实数a 的取值范围是1,0,44.19.【答案】见解析.【解析】一元二次方程22100axx a有一个正根和一个负根的充要条件是:4401a a ,并且10a,从而a<0.有一个正根和一个负根的充分不必要条件应该是{a|a<0}的真子集,a<-1符合题意.所以结论得证.20.【答案】a ≤9.【解析】由2243068x x xx,得1324x x,即2<x<3.∴q :2<x<3.设290|2Ax xx a ,B ={x|2<x<3},∵p q ,∴q?p .∴B?A .∴2<x<3包含于集合A ,即2<x<3满足不等式2290xxa.∴2<x<3满足不等式292ax x .∵当2<x<3时,222981819818192229,21616488xx xx x,即2819928x x,∴a ≤9.21.【答案】见解析.【解析】命题p 是假命题,证明如下:由OP 和OQ 不垂直,得cosx(2cosx +1)-(2cos2x +2)≠0,变形得:22cos cos 0xx ,所以cosx ≠0或1cos 2x.而当0,x时,cos 2,1cos32,故存在2x或3x,使向量OP OQ 成立,因而p 是假命题.22.【答案】见解析.【解析】必要性:∵a +b =1,∴b =1-a ,∴32332232111a bab a b a a a a aa323222133120aaaaaaa aa.充分性:∵33220abab ab,即22220a b a ab baab b,∴2210aab ba b ,又ab≠0,即a≠0且b≠0,∴22223024b ba ab b a,只有1a b.综上可知,当ab≠0时,a+b=1的充要条件是33220a b ab a b.。

高中数学选修1-1知识点及课本例题

高中数学选修1-1知识点及课本例题

第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。

2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。

其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。

(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。

(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。

3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。

>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。

例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。

例4证明:若022=x,则0=+yx。

-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。

这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。

2、充要条件一般地,如果既有qq⇒,就记作qp⇔。

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)(3)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)(3)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.已知命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭,命题p 的否定是( ) A .1,04xx R ⎛⎫∃∈> ⎪⎝⎭ B .1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭C .1,04xx R ⎛⎫∀∈≤ ⎪⎝⎭D .1,04xx R ⎛⎫∀∉≤ ⎪⎝⎭3.已知命题:0p a ∃≥,20a a +<,则命题p ⌝为( )A .0a ∀≥,20a a +≤B .0a ∀≥,20a a +<C .0a ∀≥,20a a +≥D .0a ∃<,20a a +< 4.命题“x R ∀∈,210x x +-<”的否定是( )A .x R ∃∈,210x x +->B .x R ∃∈,210x x +-≥C .x R ∀∈,210x x +-≥D .x R ∀∈,210x x +->5.已知命题2:,21>0p x R x ∀∈+,则命题p 的否定是( ) A .2,210x R x ∀∈+≤ B .2,21<0x R x ∀∈+ C .2,21<0x R x ∃∈+D .2,210x R x ∃∈+≤6.设a 、b ∈R ,则“a b >”是“()20a b b ->”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.已知直线,m n ,平面,αβ,n αβ=,m ∥α,m n ⊥,那么“m ⊥β”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 8.命题“210x x x ∀>->,”的否定是( )A .21,0x x x ∃≤->B .21,0x x x ∀>-≤C .21,0x x x ∃>-≤D .21,0x x x ∀≤-> 9.设非空集合,M N 满足M N N =,则( )A .0,x N ∃∈ 有x M ∉B .,x N ∀∉有x M ∈C .0,x M ∃∉ 有0x N ∈D .,x N ∀∈有x M ∈10.命题:p “0,,sin cos 2x x x π⎛⎫∀∈< ⎪⎝⎭”的否定p ⌝为( ) A .0,,sin cos 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin cos 2x x x π⎛⎫∀∈> ⎪⎝⎭C .0000,,sin cos 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin cos 2x x x π⎛⎫∃∉≥ ⎪⎝⎭11.命题“,sin 0x x R x e ∃∈+>”的否定为( ) A .,sin 0x x R x e ∀∈+< B .,sin 0x x R x e ∀∈+≤ C .,sin 0x x R x e ∃∈+<D .,sin 0x x R x e ∃∈+≤12.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin3πB .13C .2D .π二、填空题13.命题“2,0x R x x ∀∈+>”的否定是___________.14.已知命题():1,p x ∃∈+∞,24x >,则命题p ⌝为__________. 15.若“x ∃∈R ,220x x a ++<”是假命题,则实数a 的取值范围是________. 16.若“[]1,2,0x x a ∃∈-≤”是假命题,则实数a 的取值范围是__________. 17.命题“0,21x x ∀>>”的否定____________. 18.下列五个命题中正确的是_____.(填序号)①若ABC 为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则2a b =;②若cos cos a A b B =,则ABC 是等腰三角形;③若a b <,x ∈R ,则b b x a a x+<+; ④设等差数列{}n a 的前n 项和为n S ,若202011S S -=,则20211S >; ⑤函数2()f x =的最小值为2.19.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下:甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是________. 20.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,给出下列命题:①若//,m n αα⊂,则//m n ; ②若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ;③若,,//αβαβ⊥⊂n m ,则m n ⊥; ④ ,,,αγβγαβγ⊥⊥⋂=⊂m n ,则m n ⊥. 其中真命题是__________.三、解答题21.已知命题p :x R ∀∈,2210x ax -+>,命题q :函数(21)y a x =-单调递增, (1)若命题p 为真命题,求实数a 的取值范围;(2)若命题q 为真命题,求实数a 的取值范围;(3)若命题p q ∧是假命题,命题p q ∨是真命题,求实数a 的取值范围; 22.已知命题p :22310x x -+≤和命题q :2(21)(1)0x a x a a -+++≤ (1)若12a =,且p 和q 都是真命题,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.23.已知命题:“{}|22x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设关于x 的不等式()()80x a x a ---<的解集为N ,若“x ∈N ”是“x M ∈”的必要条件,求a 的取值范围.24.已知:集合2{|320},M x R x x =∈-+≤集合{|132}N x R m x m =∈+≤≤- (1)若“”x M ∈是“”x N ∈的充分不必要条件,求m 的取值范围. (2)若M N M ⋃=,求m 的取值范围.25.设p :对任意的x ∈R 都有22x x a ->,q :存在0x R ∈,使20220x ax a ++-=,如果命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.26.设a R ∈,命题p :∃[]1,2x ∈,满足()11>0a x --,命题q :∀x R ∈,2++1>0ax x .(1)若命题p q ∧是真命题,求a 的范围;(2)()p q ⌝∧为假,()p q ⌝∨为真,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案.解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.B解析:B 【分析】根据命题的否定的定义,写出命题的否定,然后判断. 【详解】命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭的否定是:1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭. 故选:B . 3.C解析:C 【分析】根据特称命题的否定可得出结论. 【详解】命题p 为特称命题,该命题的否定为:0p a ⌝∀≥,20a a +≥. 故选:C.4.B解析:B 【分析】根据全称命题的否定是特称命题即可得正确答案. 【详解】命题“x R ∀∈,210x x +-<”的否定是x R ∃∈,210x x +-≥ 故选:B5.D解析:D 【分析】根据命题的否定的定义写出命题的否定,再判断. 【详解】命题2:,21>0p x R x ∀∈+的否定是2,210x R x ∃∈+≤. 故选:D .6.C解析:C 【分析】利用充分条件、必要条件的定义结合不等式的基本性质、特殊值法判断可得出结论.充分性:取0b =,由0a b >=,则()20a b b -=,充分性不成立;必要性:()20a b b ->,则0b ≠,且0a b ->,则a b >,必要性成立.因此,“a b >”是“()20a b b ->”的必要不充分条件. 故选:C.7.C解析:C 【分析】若m ⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的判定定理可得α⊥β, 若α⊥β,在平面α内找到与m 平行的直线m ',根据面面垂直的性定定理可得m ⊥β,再根据充要条件的定义可得答案. 【详解】 若m ⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ', 又m ⊥β,∴m '⊥β, 又∵m '⊂α,∴α⊥β, 若α⊥β,过直线m 作平面γ,交平面α于直线m ',∵//m α,∴//m m ', ∵m n ⊥,∴m n '⊥, 又∵α⊥β,α∩β=n , ∴m β'⊥,∴m β⊥, 故“m ⊥β”是“α⊥β”的充要条件,【点睛】关键点点睛:根据面面垂直的判定定理以及性质定理求解是解题关键.8.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C9.D解析:D 【分析】根据交集的结果可得N M ⊆,分析选项,即可得答案. 【详解】 因为MN N =,所以N M ⊆,所以,x N ∀∈有x M ∈. 故选:D10.C解析:C 【分析】根据命题否定的定义写出命题的否定,然后判断. 【详解】根据命题否定的概念知,p ⌝为002x π⎛⎫∃∈ ⎪⎝⎭,,00sin cos x x ≥,故选:C .11.B解析:B 【分析】根据特称命题的否定变换形式即可得出结果. 【详解】特称命题的否定为全称命题,故“,sin 0x x R x e ∃∈+>”的否定为“,sin 0xx R x e ∀∈+≤”,故选:B .12.B解析:B根据已知条件得出实数a 的取值范围,由此可得出合适的选项. 【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 32π=.故满足条件的选项为B. 故选:B.二、填空题13.【分析】根据全称命题的否定的结构形式写出即可【详解】命题的否定为故答案为:解析:2,0x R x x ∃∈+≤【分析】根据全称命题的否定的结构形式写出即可. 【详解】命题“2,0x R x x ∀∈+>”的否定为“2,0x R x x ∃∈+≤”故答案为:2,0x R x x ∃∈+≤14.【分析】根据含一个量词命题否定的定义即可求得答案【详解】命题则为:故答案为:解析:()21,,4x x ∀∈+∞≤【分析】根据含一个量词命题否定的定义,即可求得答案. 【详解】命题():1,p x ∃∈+∞,24x >,则p ⌝为:()21,,4x x ∀∈+∞≤.故答案为:()21,,4x x ∀∈+∞≤15.【分析】根据题意可知命题是真命题可得出由此可求得实数的取值范围【详解】由于命题是假命题则该命题的否定是真命题解得因此实数的取值范围是故答案为: 解析:[)1,+∞【分析】根据题意可知,命题“x R ∀∈,220x x a ++≥”是真命题,可得出0∆≤,由此可求得实数a 的取值范围, 【详解】由于命题“x ∃∈R ,220x x a ++<”是假命题,则该命题的否定“x R ∀∈,220x x a ++≥”是真命题,440a ∴∆=-≤,解得1a ≥.因此,实数a 的取值范围是[)1,+∞. 故答案为:[)1,+∞.16.【分析】由题转化为命题为真命题即恒成立故可求解实数的取值范围【详解】由题转化为命题为真命题即恒成立又在上单调递增所以故故答案为:解析:()1+∞, 【分析】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立,故可求解实数a 的取值范围. 【详解】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立, 又y x =在[]1,2上单调递增,所以min 1y =,故1a <.故答案为:()1+∞, 17.【解析】试题分析:命题的否定是:考点:命题的否定 解析:0,21x x ∃>≤【解析】试题分析:命题“0,21x x ∀>>”的否定是:0,21xx ∃>≤.考点:命题的否定.18.①④【分析】利用三角函数恒等变换公式和正弦定理余弦定理判断①②由不等式的性质判断③根据等差数列前项和与等差数列性质判断④应用基本不等式判断⑤【详解】①∵∴∴又为锐角∴由正弦定理和①正确;②∵由正弦定解析:①④ 【分析】利用三角函数恒等变换公式和正弦定理、余弦定理判断①②,由不等式的性质判断③,根据等差数列前n 项和与等差数列性质判断④,应用基本不等式判断⑤. 【详解】①∵()sin 12cos 2sin cos cos sin B C A C A C +=+,∴sin 2sin cos sin cos sin()sin cos sin B B C A C A C A C B +=++=+,∴2sin cos sin cos B C A C =,又C 为锐角,cos 0C ≠,∴2sin sin B A =,由正弦定理和2b a =.①正确;②∵cos cos a A b B =,由正弦定理得sin cos sin cos A A B B =,即2sin cos 2sin cos A A B B =,sin 2sin 2A B =,又,A B 是三角形内角,∴22A B =或22180A B +=︒,∴A B =或90A B +=︒,ABC 是等腰三角形或直角三角形,②错;③0x =时,b b x a a x+=+,不等式不成立,③错误; ④∵{}n a 是等差数列,202011S S -=,∴2320201a a a +++=,220202019()12a a +=,2202022019a a +=, ∴120212021220202021()2021202122021()122220192019a a S a a +==+=⨯=>,④正确;⑤22()2f x ===≥=,=,即241x +=时,等号成立,但2441x +≥>,因此不等式中等号不成立,2不是()f x 的最小值(可利用单调性得最小值为52).⑤错. 故答案为:①④ 【点睛】本题考查命题的真假判断,考查正弦定理、三角函数的恒等变换,不等式的性质,等差数列的性质与前n 项和,考查基本不等式求最值的条件.需要掌握的知识点较多,属于中档题.19.乙【解析】四人供词中乙丁意见一致或同真或同假若同真即丙偷的而四人有两人说的是真话甲丙说的是假话甲说乙丙丁偷的是假话即乙丙丁没偷相互矛盾;若同假即不是丙偷的则甲丙说的是真话甲说乙丙丁三人之中丙说甲乙两解析:乙 【解析】四人供词中,乙、丁意见一致,或同真或同假,若同真,即丙偷的,而四人有两人说的是真话,甲、丙说的是假话,甲说“乙、丙、丁偷的”是假话,即乙、丙、丁没偷,相互矛盾;若同假,即不是丙偷的,则甲、丙说的是真话,甲说“乙、丙、丁三人之中”,丙说“甲、乙两人中有一人是小偷”是真话, 可知犯罪的是乙.【点评】本体是逻辑分析题,应结合题意,根据丁说“乙说的是事实”发现,乙、丁意见一致,从而找到解题的突破口,四人中有两人说的是真话,因此针对乙、丁的供词同真和同假分两种情况分别讨论分析得出结论.20.②③④【分析】利用线面关系逐一分析即可【详解】对于①若则或异面故错误;对于②由线面平行的判定定理知:若且则故正确;对于③由面面平行的性质定理以及线面垂直的性质定理可知:若则故正确;对于④设在面内任取解析:②③④ 【分析】利用线面关系逐一分析即可.【详解】对于①,若//,m n αα⊂,则//m n 或,m n 异面,故错误; 对于②,由线面平行的判定定理知:若,//αβ⋂=m m n , 且,n n αβ⊄⊄,则//,//αβn n ,故正确;对于③,由面面平行的性质定理以及线面垂直的性质定理可知: 若,,//αβαβ⊥⊂n m ,则m n ⊥,故正确; 对于④,设,a b αγβγ==,在面γ内任取点O ,作,OA a OB b ⊥⊥,由,αγβγ⊥⊥,得OA α⊥,OB β⊥, 故OA m ⊥,OB m ⊥,则m γ⊥, 又γ⊂n ,则m n ⊥,故正确; 故答案为:②③④ 【点睛】本题考查了命题的真假判断、线面之间的位置关系、面面平行的性质定理、线面垂直的性质定理,考查了考生的空间想象能力,属于基础题.三、解答题21.(1)()1,1-;(2)1,2⎛⎫+∞ ⎪⎝⎭;(3)[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦.【分析】(1)由x R ∀∈,2210x ax -+>恒成立,利用判别式法求解. (2)根据函数(21)y a x =-单调递增,由210a ->求解.(3)根据命题p q ∧是假命题,命题p q ∨是真命题,则由p 、q 一真一假求解. 【详解】(1)因为命题p 为真命题,即x R ∀∈,2210x ax -+>恒成立, 所以2440a ∆=-<, 解得11a -<<,所以实数a 的取值范围是()1,1-.(2)若命题q 为真命题,即函数(21)y a x =-单调递增, 则210a ->, 解得12a >, 所以实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭. (3)因为命题p q ∧是假命题,命题p q ∨是真命题,所以p 、q 一真一假,①若p 真、q 假,则1112a a -<<⎧⎪⎨≤⎪⎩,解得112a -<≤; ②若p 假、q 真,则1112a a a ≤-≥⎧⎪⎨>⎪⎩或,解得1a ≥; 综上:[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦22.(1)112x ≤≤;(2)102a ≤≤. 【分析】 (1)由一元二次不等式可得命题p :112x ≤≤,命题q :1322x ≤≤,即可得解; (2)由命题间的关系转化条件为112xx ⎧⎫≤≤⎨⎬⎩⎭ {}1x a x a ≤≤+,即可得解. 【详解】 不等式22310x x -+≤即()()2110x x --≤,解得112x ≤≤, 不等式2(21)(1)0x a x a a -+++≤即()()10x a x a ---≤,解得1a x a ≤≤+,则命题p :112x ≤≤,命题q :1a x a ≤≤+, (1)当12a =时,命题p :112x ≤≤,命题q :1322x ≤≤, 若p 和q 都是真命题,则112x ≤≤; (2)因为p 是q 的充分不必要条件,所以112xx ⎧⎫≤≤⎨⎬⎩⎭ {}1x a x a ≤≤+, 所以1211a a ⎧≤⎪⎨⎪+≥⎩且等号不同时成立,解得102a ≤≤, 所以实数a 的取值范围为102a ≤≤. 23.(1)164⎡⎫-⎪⎢⎣⎭,;(2)124⎡⎫--⎪⎢⎣⎭,. 【分析】 (1)利用参数分离法将m 用x 表示,结合二次函数的性质求出m 的取值范围,从而可求集合M ;(2)若x ∈N 是x M ∈的必要条件,则M N ⊆即可得到不等式,从而求出参数的取值范围;【详解】解:(1)由题意可知20x x m --=,所以221124m x x x ⎛⎫=-=-- ⎪⎝⎭,因为{}|22x x x ∈-<<,所以21116244x ⎛⎫⎡⎫--∈- ⎪⎪⎢⎝⎭⎣⎭,,即164m -≤<,则实数m 的取值集合M=164⎡⎫-⎪⎢⎣⎭,; (2)由()()80x a x a ---<,可得()8N a a =+,,因为“x N ∈”是“x M ∈”的必要条件,所以M N ⊆,则1486a a ⎧<-⎪⎨⎪+≥⎩,解得124a -≤<-,所以a 的取值范围为124⎡⎫--⎪⎢⎣⎭,. 【点睛】本题考查必要条件求参数的取值范围,一般可根据如下规则判断计算:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对的集合与p 对应集合互不包含. 24.(1){|0}m m ≤;(2)1{|}2m m ≥.【分析】 (1)首先解出集合{|12}M x x =≤≤,由条件可知M N ≠⊂,列不等式求m 的取值范围;(2)由条件可知N M ⊆,再分N =∅和N ≠∅两种情况列式求m 的取值范围.【详解】解:(1){|12}M x x =≤≤,因为“”x M ∈是“”x N ∈的充分不必要条件,所以M N ≠⊂. 即:01113222m m m m ≤⎧+≤⎧⎪⇒⎨⎨-≥≤⎩⎪⎩,(等号不能同时取)0m ∴≤ 故m 的范围为{|0}m m ≤(2)因为,M N M =所以N M ⊆①当N =∅时:132m m +>-,23m >所以 ②当N ≠∅时:2132311032212m m m m m m m ⎧≤⎪+≤-⎧⎪⎪+≥⇒≥⎨⎨⎪⎪-≤⎩⎪≥⎩, 即1223m ≤≤ 综上可得:m 的范围为1{|}2m m ≥【点睛】本题考查根据充分必要条件,以及集合的包含关系求参数的取值范围,重点考查转化与化归思想,计算能力,属于基础题型. 25.[)(2,1)1,a ∈--+∞【解析】 试题分析:先根据恒成立得 22a x x <-最小值,得p ,再根据方程有解得q ,根据命题p q ∨为真,命题p q ∧为假,得,p q 一真一假,最后分类求实数a 的取值范围. 试题由题意:对于命题p ,∵对任意的2,2x R x x a ∈->,∴1440a ∆=+<,即:1p a <-;对于命题q ,∵存在x R ∈,使2220x ax a ++-=,∴()224420a a ∆=--≥,即:1q a ≥或2a ≤-. ∵p q ∨为真,p q ∧为假,∴,p q 一真一假,①p 真q 假时,21a -<<-, ②p 假q 真时,1a ≥.综上,()[)2,11,a ∈--⋃+∞.26.(1)322a <<;(2)3(,2],22⎛⎫-∞-⋃ ⎪⎝⎭. 【分析】(1)由命题p q ∧是真命题,则需命题p 为真命题且q 为真命题,建立关于a 的不等式组,可得答案;(2)由()p q ⌝∧为假,()p q ⌝∨为真p ⇒、q 同时为假或同时为真,分p 假q 假和p 真q 真,建立关于a 的不等式组,可得a 的取值范围;【详解】 (1)命题p 真时,则()1>0211>0a a -⎧⎨--⎩或()10111>0a a -<⎧⎨⨯--⎩, 得3>2a ; q 真,则240a -<,得22a -<<,所以p q ∧真,322a <<; (2)由()p q ⌝∧为假,()p q ⌝∨为真p ⇒、q 同时为假或同时为真,若p 假q 假,则3222a a a ⎧≤-⎪⎨⎪≤-≥⎩或,得2a ≤-,若p 真q 真,则3>222a a ⎧⎪⎨⎪-<<⎩,所以,322a <<, 综上2a ≤-或322a <<. 故a 的取值范围是3(,2],22⎛⎫-∞-⋃ ⎪⎝⎭.【点睛】本题考查根据复合命题的真假求参数的范围的问题,属于基础题.。

高中数学 第一章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课件 新人教B版

高中数学 第一章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课件 新人教B版

1.命题“2 不是质数”的构成形式是( ) A.p∧q B.p∨q C.﹁p D.以上答案都不对 答案:C
2.若 p 是真命题,q 是假命题,则( ) A.p∧q 是真命题 B.p∨q 是假命题 C.﹁p 是真命题 D.﹁q 是真命题 答案:D
3.命题“∃x∈R,f(x)<0”的否定是( ) A.∃x∉R,f(x)≥0 B.∀x∉R,f(x)≥0 C.∀x∈R,f(x)≥0 D.∀x∈R,f(x)<0 答案:C 4.命题“对任意实数 x,都有 x2-2x+2>0”的否定为 __________________. 答案:存在实数 x,使得 x2-2x+2≤0
复习课件
高中数学 第一章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课 件 新人教B版选修1-1
第一章 常用逻辑用语
1.2.2 “非”(否定)
第一章 常用逻辑用语
1.了解逻辑联结词“非”的含义. 2.理解“非” 与集合中的“补集”的关系. 3.掌握对含一个量词的命题 进行否定.
解决此类问题要依据命题的否定形式进行否定.注意常用 词语的否定词语不能写错.
写出下列命题的否定: (1)对任意的 x∈R,x3+x2+1≤0; (2)p:2 和 4 都是偶数; (3)q:有些自然数的平方是正数. 解:(1)否定为:∃x∈R,x3+x2+1>0; (2)﹁p:2 和 4 不都是偶数; (3)﹁q:任意自然数的平方都不是正数.
1.“非”的含义 逻辑联结词“非”(也称为“_否__定__”)的意义是由日常语言 中 的 “ 不 是 ”“ 全 盘 否 定 ”“ 问 题 的 反 面 ” 等 抽 象 而 来 的.
2.命题 p 的否定(非 p)
一般地,对命题 p 加以否定,就得到一个新的命题,记作 ﹁__p___,读作“_非__p_”或“_p_的__否__定__”.

高中数学选修1_1全册习题(答案详解)

高中数学选修1_1全册习题(答案详解)

目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

高中数学选修1-1第一章课后习题解答

高中数学选修1-1第一章课后习题解答

新课程标准数学选修1—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题. 否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+--()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题. 否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径. 可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1).3、(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(3)1≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等. 逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n +∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x y y ∈是有理数}.6、(1)32≠; (2)54≤; (3)00,0x R x ∃∈≤;(4)存在一个正方形,它不是平行四边形.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题:描述:例题:3.复合命题的否定“且”的否定
“或”的否定
四、课后作业 (查看更多本章节同步练习题,请到快乐学)
写出下列命题的否定,并判断真假. 
(1),;(2) 所有的正方形都是矩形;
(3) 至少有一个实数 ,使得 .解:(1),.因为 , 恒成立,故不存在 , 使得 成立,故 为假命题;(2) 至少存在一个正方形不是矩形.是假命题.(3),.
因为当 时,,故 为假命题.
p :∀x ∈R +2x +2>0x 2q :r :x 0+1=0x 30¬p :∃∈R x 0+2+2⩽0x 20
x 0∀x ∈R +2x +2=(x +1+1⩾1>0x 2)2∈R x 0+2+2⩽0x 20
x 0¬p ¬q :¬r :∀x ∈R +1≠0x 3x =−1+1=0x 3¬r ¬(p ∧q )=(¬p )∨(¬q )
¬(p ∨q )=(¬p )∧(¬q )命题 " 且 " 的否定是______.
解: 或 .
a ⩾5
b ⩾2a <5b <2若 , 是两个简单命题,且 " 或 " 的否定是真命题,则必有( )
A. 真 真 B. 假 假 C. 真 假 D. 假 真解:B
因为 " 或 " 的否定是真命题,则 " 或 "为假命题,故 , 都为假命题.
p q p q p q p q p q p q p q p q p q 若命题 ,则 为( )
A. 且 B. 或 C. 且 D. 解:B
因为命题 ,所以 且 ,故命题 或 .
p :x ∈A ∩B ¬p x ∉A x ∉B x ∉A x ∉B x ∈A x ∉B x ∉A ∪B p :x ∈A ∩B x ∈A x ∈B ¬p :x ∉A x ∉B 答案:1. 若命题 :任意 ,,则该命题的否定是 A .任意 B .任意 C .存在 D .存在 C
p x ∈R 2−1>0x 2()
x ∈R ,2−1<0x 2x ∈R ,2−1⩽0x 2x ∈R ,2−1⩽0
x 2x ∈R ,2−1>0
x 22. 已知命题 ,则 是 A .B . 或 p :x ∈A ∪B ¬p ()
x ∉A ∩B
x ∉A x ∉
B
高考不提分,赔付1万元,关注快乐学了解详情。

答案:C . 且 D .C
x ∉A x ∉B
x ∈A ∩B
答案:3. 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题 是"甲降落在指定范围", 是"乙降落在指定范围",则命题"至少有一位学员没有降落在指定范围"可表示为 A .B .C .D .A
p q ()
(¬p )∨(¬q )
p ∨(¬q )(¬p )∧(¬q )
p ∨q
答案:4. 如果命题" 且 "是假命题,"非 " 是真命题,那么 A .命题 一定是真命题B .命题 一定是真命题C .命题 一定是假命题
D .命题 可以是真命题也可以是假命题
D
p q p ()
p q q
q。

相关文档
最新文档