机械设计原理-连杆机构课件

合集下载

机械设计全套课件 ppt课件

机械设计全套课件  ppt课件

凡具备上述(1)、(2)两个特征的实物组合体称为机构。 机器能实现能量的转换或代替人的劳动去做有用的机械功,而 机构则没有这种功能。
仅从结构和运动的观点看,机器与机构并无区别,它们 都是构件的组合,各构件之间具有确定的相对运动。因此,通 常人们把机器与机构统称为机械。
ppt课件
7
机械设计基础
绪论
如图1-1所示的内燃机,
图1-5(a)闭式运动链
机械设计基础
ppt课件
图1-5(a)开式运动链
16
• 将运动链中的一个构件固定,并且它的一个 或几个构件作给定的独立运动时,其余构件 便随之作确定的运动,此时,运动链便成为 机构。
• 机构的组成:
• 机 架:固定不动的构件
• 原动件:输入运动的构件
• 从动件:其余的活动构件
1)运动副:两构件之间直接接触并能产生一定的相对
运动的连接称为运动副。
运动副元素:两构件上直接参与接触而构成运动副的部分— —点、线或面。
2) 运动副的分类
平面
运 运动副 动 副
空间 运动副
机械设计基础
高副:点、线接触 低副:面接触
球面副 螺旋副
ppt课件
运动副 转动副
13
图1-2 转动副
图1-3 移动副
是由汽缸体1、活塞2、连杆3、曲轴4、 小齿轮5、大齿轮6、凸轮7、推杆8等系列 构件组成,其各构件之间的运动是确定的。
0.1.2 构件与零件
机构是由具有确定运动的单元体组成的,这 些运动单元体称为构件。
组成构件的制造单元体称为零件。 零件则是指机器中不可拆的一个最基本的 制造单元体。构件可以由一个或多个零件组成。
ppt课件
20
机械设计基础

机械原理第二章连杆机构(杨家军版)

机械原理第二章连杆机构(杨家军版)

3、平面连杆机构的应用
机械手
汽车中那些部位用到连杆机构
起重装置
§3-2 平面四杆机构的基本类型及应用
一、平面四杆机构的基本形式 1. 构件及运动副名称 构件名称:
连架杆——与机架连接的构件 曲柄——作整周回转的连架杆 摇杆——作来回摆动的连架杆 连杆——未与机架连接的构件 机架——固定不动的构件
α1 180° +θ t1 V2 ω = α = = = 180° -θ V1 2 t2 ω
连杆机构输出件具有急回特性的条件: 1)原动件等角速整周转动; 2)输出件具有正、反行程的往复运动; 3)极位夹角θ >0。
分析: 180° +θ K= 180° -θ
K≥1,K=1时无急回特性
设计具有急回特性的机构时,一般先根据使用要求给 定K值,则有 (K-1) θ=180° (K+1) θ= 0 θ≠0 θ↑,K↑,急回运动越明显,一般取K<2
●导杆机构(曲柄为主动件) ●导杆机构(摇杆为主动件)
α B2 ≡0°
3 2 1 3 A B VB2 D 4 FB2 1 2 FB3 B D VB2 FB2 FB1
机构压力角:在不计摩擦力、惯性力和重力的条件下, 机构中驱使输出件运动的力的方向线与输出件上受 力点的速度方向间所夹的锐角,称为机构压力角, 通常用α 表示。P50
传动角:压力角的余角。 通常用γ 表示.
F2 C
B
A
δ
D
γ F α
F1
vc
机构的传动角和压力角作出如下规定: γ min≥[γ ];[γ ]= 3060°; α max≤[α ]。 [γ ]、[α ]分别为许用传动角和许用压力角。
C
(2) 推广到导杆机构 结论:有急回特性,且极位夹角等于摆杆摆角,即

机械原理第五章 连杆机构设计

机械原理第五章 连杆机构设计

4. 曲柄滑块机构存在曲柄的条件
根据曲柄摇杆机构的演化过程及曲柄摇杆机构曲柄存在的 条件,机架为无穷大+偏距e,则有: 偏置曲柄滑块机构有曲柄的条件:
a
b
① a+e≤b; ② a为最短杆。
若偏距=0,则得对心曲柄滑块机构有曲柄的条件:
① a≤b; ② a为最短杆。
例5-1 图示铰链四杆机构,lBC=50mm,lCD=35mm, lAD=30mm,AD为机架,若为曲柄摇杆机构, 试讨论lAB的取值范围。
机械原理 第五章 平面连杆机构及其设计
§5-1 平面连杆机构的应用及传动特点
§5-2 平面四杆机构的类型和应用
§5-3 平面四杆机构的一些共性问题 §5-4 平面四杆机构的设计
§5-1 平面连杆机构的应用及传动特点
应用举例 如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、 汽车刮水器、缝纫机踏板机构、仪表指示机构等。
锻压机肘杆机构
可变行程滑块机构
汽车空气泵
单侧曲线槽导杆机构
3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘 机等。 4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构, 鹤式起重机等。
挖掘机
搅拌机构
鹤式起重机
二、平面连杆机构的缺点 1)运动副中的间隙会造成较大累积误差,运动精度较低。 2)多杆机构设计复杂,效率低。 3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。 多杆机构大都是四杆机构组合或扩展的结果。 六杆机构及六杆机构的实际应用 本章介绍四杆机构的分析和设计。
1)最短杆长度+最长杆长度≤其余两杆长度之和;(杆长条件) 2)组成该周转副的两杆中必有一杆为最短杆。 2. 铰链四杆机构存在曲柄的条件
1)各杆长度应满足杆长条件; 2)最短杆为连架杆或机架。

机械原理课件第5章 连杆机构设计

机械原理课件第5章 连杆机构设计

第五章 平面连杆机构及其设计 §5-1平面连杆机构的应用及传动特点§5-2平面四杆机构的类型和应用§5-3平面四杆机构的一些共性问题§5-4 平面四杆机构的设计1)低副便于加工、润滑;构件间压强小、磨损小、承载能力大、寿长;2)连杆机构型式多样,可实现转动、移动、摆动、平面复合运动等运动形式间的转换。

如:锻压机肘杆机构,单侧曲线槽导杆机构,汽车空气泵,可变行程滑块机构,等。

一、平面连杆机构的优点和应用平面连杆机构:各构件全部用低副联接而成的平面机构(低副机构).例如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、汽车刮水器、缝纫机踏板机构、仪表指示机构等。

曲柄滑块机构摆动导杆机构常见平面连杆机构:铰链四杆机构(雷达天线,飞剪,搅拌机)锻压机肘杆机构可变行程滑块机构3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘机等。

4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构,鹤式起重机等。

挖掘机搅拌机构鹤式起重机二、平面连杆机构的缺点1)运动副中的间隙会造成较大累积误差,运动精度较低。

2)多杆机构设计复杂,效率低。

3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。

多杆机构大都是四杆机构组合或扩展的结果。

本章介绍四杆机构的分析和设计。

六杆机构及六杆机构的实际应用一、 铰链四杆机构的基本型式和应用铰链四杆机构:全部用回转副联接而成的四杆机构。

连架杆——与机架相联的构件;周转副——组成转动副的两个构件作整周相对转动的转动副;曲柄1——作整周定轴回转的构件;摇杆3——作定轴摆动的构件;转动副摆转副(C、D)周转副(A、B)铰链四杆机构分为:曲柄摇杆机构、双曲柄机构和双摇杆机构。

1.曲柄摇杆机构铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲柄摇杆机构。

实现转动和摆动的转换。

雷达天线俯仰机构缝纫机踏板机构应用(动画演示):雷达天线俯仰角调整机构,飞剪机构,搅拌机构,摄影机抓片机构、缝纫机踏板机构等。

机械原理 第03章 连杆机构

机械原理 第03章 连杆机构

平面四杆机构具有急回特性的条件: (1)原动件作等速整周转动;
(2)输出件作往复运动;
(3)
0
B2
2.曲柄滑块机构中,原动件AB以 1等速转动 B 2 b B 1 C2 C3 a b 2 1 1 1 a B1 C2 C 3 C1 B1 H A
A
C1
4
4
H
B2
偏置曲柄滑块机构
对心曲柄滑块机构 H=2a, 0 ,无急回特性。
一.平面四杆机构的功能及应用
1 .刚体导引功能 2.函数生成功能 3.轨迹生成功能 轨迹生成功能 是指连杆上某点通过某一 预先给定轨迹 的功能。 连杆
§2-4 平面四杆机构运动设计的基本问题与方法
一.平面四杆机构的功能及应用
1 .刚体导引功能 3.轨迹生成功能 2.函数生成功能 4.综合功能 O1 D1 上剪刀 D2 下剪刀
(b>c) (2b)
'
B
1
a
A
b
c
d
4
D r 3
C b 3 c
a-d
B2
r2
d c a b (2a )
d b a c (2b')
由(1)及(2a' )(2b')可得
d+a
d a , d b, d c
铰链四杆机构的类型与尺寸之间的关系:
在铰链四杆机构中: (1)如果最短杆与最长杆的长度之和小于或等于其它两杆 长度之和 ——满足杆长和条件 且: 1 以最短杆的相邻构件为机架,则此机构为以最短杆 为曲柄的曲柄摇杆机构; 2 以最短杆为机架,则此机构为双曲柄机构;
2 4
摆动导杆 机构
导杆:
C 3

机械原理课件第八章

机械原理课件第八章

A D B’ C’ B B’ C’ B
C
C
2) 已知机架AD=50mm的长度,又知连杆BC=30mm的 两个对应的位置,设计四杆机构。
C2
B2
B1
C1
2) 已知机架AD=50mm的长度,又知连杆BC=30mm的 两个对应的位置,设计四杆机构。
C2
B2
B1
C1
3)已知主动件AB的三个位置和连杆上点K所对应的三个 位置,确定连杆上铰链C的位置。
2)行程速比系数
当曲柄转过180°+θ 时,摇杆从C1D位置摆到C2D。 所花时间为t1 , 平均速度为V1,那么有:
t1 (180 ) / V1 C1C2 t1
C1C2 /(180 )
t2 (180 ) /
显然:t1 >t2
当曲柄以ω 继续转过180°-θ 时,摇杆从C2D,置 摆到C1D,所花时间为t2 ,平均速度为V2 ,那么有:
曲柄滑块机构
(1)克服死点的方法
1)利用安装飞轮加大惯性的方法,借惯性作用使机构闯过死点。 2)采用将两组以上的同样机构组合使用,且使各组机构的死点位置 相互错开排列的方法。 折叠桌的折叠机构
(2)死点的应用 例:飞机起落架收放机构
D A C B
(3)按给定的急回要求设计四杆机构
设计铰链四杆机构,设已知摇杆CD的长度LCD=75mm,行程速比系 数K=1.5,机架AD的长度LAD=100mm,摇杆的一个极限位置与机架间 的夹角为φ=45º ,试求曲柄LAB和连杆的长度LBC。
缺点:
① 运动链长,累积误差大,效率低; ② 惯性力难以平衡,动载荷大,不宜用于高速运动; ③ 一般只能近似满足运动规律要求。

机械原理第三章平面连杆机构及其设计

机械原理第三章平面连杆机构及其设计

b12
C1
B
B2
B1
b. 设计 b12
c12
A
B2
C1
C2
B1
A点所在线
A
D点所在线
D
C C2
D
★ 已知连杆两位置
c23
——无穷解。要唯一解需另加条件 ★ 已知连杆三位置
b23 B3
c23
——唯一解 ★ 已知连杆四位置
——无解 B3
b12 B2 B1
C1 C2
C3
AD
B2 B1
分析图3-20
C2 C1 B4
反平行四边形
车门开闭机构
3)、双摇杆机构
若铰链四杆机构的两连架杆均为摇杆, 则此四杆机构称为双摇杆机构。
双摇杆机构
双摇杆机构的应用 鹤式起重机机构
鹤式起重机
倒置机构:通过更换机架而得到的机构称为原机构的倒置机构。
变化铰链四杆机构的机架
C
B
整转副
2
(<360°)
(0~360°)
3
1
(0~360°)
(1)、取最短构件为机架时,得双曲柄机构。 (2) 、取最短构件的任一相邻构件为机架时,均得曲柄
摇杆机构。 (3)、取最短构件的对面构件为机架时,得双摇杆机构。
判断:所有铰链四杆机构取不同构件为机架时,都能演化成带 曲柄的机构。
例:图示机构尺寸满足杆长条件,当取不同构件为机架时 各得什么机构?
取最短杆相 邻的构件为 机架得曲柄 摇杆机构
最短杆为 机架得双 曲柄机构
取最短杆对 边为机架得 双摇杆机构
特殊情况:
如果铰链四杆机构中两个构件长度相等且均为最短杆 1、若另两个构件长度不相等,则不存在整转副。 2、若另两个构件长度也相等, (1)当两最短构件相邻时,有三个整转副。 (2)当两最短构件相对时,有四个整转副。

机械原理-连杆机构设计图解法_一_

机械原理-连杆机构设计图解法_一_
连杆机构设计(图解法)
连杆机构设计(图解法)
按给定连杆位置设计四杆机构 按给定两连架杆对应的角位移设计四杆机构
按给定的急回要求设计四杆机构
按给定连杆位置设计四杆机构
按给定连杆位置设计四杆机构
给定连杆三个位置,设计四杆机构
B1
A1
E1
A
2
E2
A3
B2
A0
B0
E3
B3
A0 A1 B1 B0就是所求机构的第一个位置。
m12
N1 M2
n12
M1 M0
动平面上任选两个参考点 M、N——动铰链
N2
12 12
P12
N0
m12上任选M0—定铰链
n12上任选N0—定铰链
引导平面由E1到E2的位置的 四杆机构有无数
两连架杆上动铰链和定铰链与极连线的夹角 相等∠M1 P12 M0= ∠N1 P12 N0= θ 12/2
方法:半角转动法
方法:半角转动法
原理
N1 M1 M2 E1 E2 N2
动平面由E1到E2的位置过程中,动 平面上任意一点都可以视为绕某点 P12转θ 12
P12——转动极(极)
θ 12——有向转动角
E1、E2两个位置一经确定,P12、 θ 12就确定与选择的参考点无关
12
P12
转动极P12 的求法
m12
N1 M2
n12
M1
连接P12M1和P12M2,所夹 的角即为转动角θ 12
N2
12 12
P12
连接P12 N1和P12 N2 ,所 夹的角也为转动角θ 12 ∠M1 P12 M2= ∠N1 P12 N2= θ 12
动平面由E1到E2的位置可由四杆机构实现

机械原理四连杆机构全解

机械原理四连杆机构全解
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天效的回转力矩, 显然Pt越大越好。而P在垂直于vc方向的 分力Pn=Psin则为无效分力,它不仅无 助于从动件的转动,反而增加了从动件 转动时的摩擦阻力矩。因此,希望Pn越 小越好。由此可知,压力角越小,机 构的传力性能越好,理想情况是=0, 所以压力角是反映机构传力效果好坏的 一个重要参数。一般设计机构时都必须 注意控制最大压力角不超过许用值。
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。 有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
图4-3a所示为缝纫机的踏板机构, 图b为其机构运动简图。摇杆3(原动 件)往复摆动,通过连杆2驱动曲柄1 (从动件)做整周转动,再经过带传 动使机头主轴转动。
图4-3 缝纫机的踏板机构
曲柄摇杆机构的主要特性有。
急回 压力与传动角 死点
1.急回运动
如图4-4所示为一曲柄摇杆机构, 其曲柄AB在转动一周的过程中,有两 次与连杆BC共线。在这两个位置,铰 链中心A与C之间的距离AC1和AC2分别 为最短和最长,因而摇杆CD的位置C1D 和C2D分别为其两个极限位置。摇杆在 两极限位置间的夹角称为摇杆的摆角。

机械原理 第2章-连杆机构

机械原理 第2章-连杆机构

图2-8a
图2-8b
内燃机内的核心构件活塞、连杆、曲轴和缸套就 是曲柄滑块机构。其活塞就是滑块,缸体就相当 于上图的机架,它的制造要求十分精密。
22
2、导杆机构
图2-9(a)就是和图2-8一样的曲柄滑块机构。但如果改AB杆(1杆)为 机架,就变为图(b)所示的导杆机构。在图(b)中,杆4称为导杆,滑 块3相对导杆滑动并一起绕 A点转动,通常把杆2作为原动件。在图(b) 中,由于L1<L 2,两连架杆2 和4 均可相对于机架 1整周回转,称为曲柄转 动导杆机构或转动导杆机构。 但图(b)中如果L1>L2,则图(b)就变成为图2-10了,此时连架杆4 就只能往复摆动,称为曲柄摆动导杆机构或摆动导杆机构。摆动导杆机 构在牛头刨床中应用较多,其简图见右下图。
〖1〗最短杆的对边作为机架,两连架杆就是二个摇杆。 〖2〗这时最短杆与最长杆长度之和不论小于或大于其余两杆长度之和都只 能得到双摇杆机构,且有,如果最短杆和最长杆长度之和大于其余两杆长 度之和,无论哪个构件作机架都只能得到双摇杆机构。
18
(3)双摇杆机构的应用
双摇杆机构有广泛的应用。如下面二图中都是由摇杆机构组成,它们 都是把最短边BC的对边AD作机架。请注意它们的运动轨迹,对左图鹤式 起动机,它能使E点沿水平线EE’移动,这对吊放物体很有利;而对于右 图飞机起落架,放下时ABC成一线,保证了稳定,收起时轮胎成水平,节 约了空间。这些设计十分巧妙,这是我们要学习的。
图2-2e
图2-2e1
图2-2e2 机车车轮联动机构
16
(3)双曲柄机构的应用 双曲柄机构也有一定的应用,如下面惯性筛就是一种, 但用的最多是平行四边形机构,所以又叫平行双曲柄机构。 下面的摄影平台升降机构,就是利用了平行四边形机构运 动中,构件始终保持水平的特点,使人站在上面不觉得倾 斜。

《曲柄连杆机构》课件

《曲柄连杆机构》课件

可靠性原则
确保曲柄连杆机构在各种工况下都能稳定、 可靠地工作。
经济性原则
在满足功能和效率的前提下,尽可能降低曲 柄连杆机构的设计和制造成本。
曲柄连杆机构的优化方法
数学建模
建立曲柄连杆机构的数学模型,以便进行数 值分析和优化设计。
拓扑优化
改变曲柄连杆机构的内部结构,以实现更好 的刚度和强度。
尺寸优化
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
按连杆数目分类
三杆曲柄连杆机构
包括一个曲柄、一个连杆和一根轴。 这种机构结构简单,常用于一些简单 的机械装置中。
四杆曲柄连杆机构
由四个构件组成,包括一个曲柄、一 个连杆、一根轴和一根导杆。这种机 构在汽车等复杂机械中应用广泛,可 以实现复杂的运动轨迹。
按曲轴的形式分类
直列式曲柄连杆机构
曲轴的各曲拐按直线排列,这种机构结构紧凑,适用于小缸径发动机。
对易损件如轴承、密封圈等进行定期更换 。
对曲柄连杆机构的参数进行定期检查和调 整,确保机构运行正常。
PART 05
曲柄连杆机构的发展趋势 与展望
曲柄连杆机构的新材料、新工艺、新技术
总结词
介绍曲柄连杆机构在材料、工艺和技术方面的创新和突破,以及这些创新对机构性能和 效率的影响。
详细描述
随着科技的不断发展,曲柄连杆机构在材料、工艺和技术方面也在不断创新和突破。例 如,采用高强度轻质材料可以减小机构的质量和惯性,提高其动态响应性能;采用先进 的表面处理技术可以提高机构的耐磨性和耐腐蚀性,延长其使用寿命;采用智能传感器
观察法
观察曲柄连杆机构的外观和运行状况 ,判断是否存在故障。

机械设计基础第五版平面连杆机构ppt课件

机械设计基础第五版平面连杆机构ppt课件
(1)低副中存在间隙,精度低
(2)不容易实现精确复杂的运动规律
2、分类:
平面连杆机构 空间连杆机构
平面连杆机构常以构件数命名:
四杆机构、 多杆机构
本章重点内容是介绍四杆机构。
装配过程
动画
动画
2.1平面连杆机构的基本类型及其应用
一、铰链四杆机构 ❖ 结构特点:四个运动副均为转动副 ❖ 组成:机架、连杆、连架杆
e
2、导杆机构
(1)、演化过程 曲柄滑块机构中,当将曲柄改为机架时,就演化成导
杆机构。
(2)、类型
转动导杆机构 L1<L2 L1 :机架长度
摆动导杆机构 L1>L2
L2 :曲柄长度
➢应用实例
简易刨床
牛头刨床机构
3、摇块机构与定块机构
曲柄滑块机构
B
BB 11 11
B B
1112
2B B
2
B 1A 11
l1≤ l2 l1≤ l3 l1≤ l4 AB为最短杆
存在一个曲柄的条件: 1.最长杆与最短杆的长度之和≤其他两杆长度之和--
称为杆长条件。 2.曲柄为最短杆。 此时,铰链A为整转副。 若取BC为机架,则结论相同,可知铰链B也是整转副。
可知:当满足杆长条件时,其最短杆参与构成的转动 副都是整转副。
则由△CB1D可得:三角形任意两边之和大于第三边
l1+ l4 ≤ l2 + l3
则由△CB2D可得: l2≤(l4 – l1)+ l3 → l1+ l2 ≤ l3 + l4
最长杆与最短杆的 长度之和≤其他两 杆长度之和
l3≤(l4 – l1)+ l2 → l1+ l3 ≤ l2 + l4

机械原理_第2章 连杆机构Thinsong

机械原理_第2章 连杆机构Thinsong

(4)双曲柄机构的其他类型
1)平行四边形机构:两相对构件互相平行,呈平行四 边形的双曲柄机构。
案例:单盘秤机构、火车车轮联动装置等
平行四边形机构 单盘秤机构
正平行双曲柄机构:对边平行且相等 特点:主、从动曲柄匀速且相等 运动不确定现象:
2)反平行四边形机构:两相对构件长度相等,一对构 件互相平行的双曲柄机构。 应用案例:公共汽车的车门开关机构
Page
54
一.运动特性
(一)、运动副为整转副的条件(曲柄存在条件)
机构中具有整转副的构件是关键构件,因为只有这样才有 可能用电机等连续转动的装置来驱动。
Page
55
设:一曲柄摇杆机构ABCD,各杆长为a、b、c、d,AB 为曲柄
则在曲柄整周回转的过程中必会通过与机架AD平行的 两位置 ,即杆1和杆4拉直共线和重叠共线,如所示
顺序通过给定的各个位臵 图中,要求连杆依次占据
B1C1 、 B2C2 、 B3C3 ,当 AB
B3 B1 1 A C1 2 C3
C2
沿 逆时针 转动可以满足要
求,但沿顺时针转动,则 不能满足连杆预期的次序 要求。
3
D
B2 4
二. 传力特性
1. 压力角与传动角
压力角: 在不计摩擦力、重力、惯性力的条件下,机构中驱使输出件运 动的力的方向线与输出件上受力点的速度方向线所夹的锐角 压力角的余角 C B Fn
在实际工作机械中,平面四杆机构还远远不能满足需要,生产实践 中,常常采用多种不同外形、结构和特性的四杆机构,都可以认为是 平面四杆机构的演化形式。
常用的的演化方法:
(1)转动副转化为移动副;(2)取不同的构件作机架; (3)变换构件的形态;(4)扩大转动副和移动副的尺寸。

机械原理 平面连杆机构及设计课件

机械原理 平面连杆机构及设计课件

仿真分析
利用计算机仿真软件对机构进行模拟分析, 评估其性能。
实验测试
通过实际测试机构的性能,与理论分析进行 对比验证。
优化算法
采用遗传算法、粒子群算法等智能优化算法 ,对机构参数进行优化。
04
平面连杆机构的运 动分析
机构运动的基本方程
01
平面连杆机构的基本运动方程是 根据机构的运动学和动力学特性 建立的,它描述了机构中各构件 之间的相对运动关系。
刚度对机构性能的影响
刚度不足会导致机构运动失 真、振动等问题,影响其正 常工作。
06
平面连杆机构的实 例分析
曲柄摇杆机构的实例分析
曲柄摇杆机构是一种常见的平面连杆机构,它由曲柄、摇杆、连杆和机架组成。 曲柄旋转,通过连杆传递运动给摇杆,使摇杆在一定范围内摆动。
实例:缝纫机脚踏板机构。缝纫机脚踏板机构就是一个典型的曲柄摇杆机构的应 用。当脚踏板转动时,通过连杆将运动传递给摇杆,使机头上下摆动,完成缝纫 工作。
应力分析
通过计算机构各构件在工作状态下的应力分布,评估其强度是否 满足设计要求。
疲劳强度
考虑机构在循环载荷作用下的疲劳强度,预测其使用寿命。
可靠性分析
基于概率论和统计学方法,评估机构在各种工作条件下的可靠性。
机构的刚度分析
刚度定义
刚度表示机构抵抗变形的能 力。
刚度分析方法
通过有限元分析、实验测试 等方法,评估机构的刚度性 能。
双曲柄机构的实例分析
双曲柄机构由两个曲柄、连杆和机架组成。两个曲柄同时旋 转,通过连杆传递运动,使另一个曲柄产生相对的旋转运动 。
实例:飞机起落架机构。飞机起落架机构中的前轮转向机构 就是一个双曲柄机构的应用。当飞机滑行时,双曲柄机构使 前轮左右摆动,实现飞机的前轮转向。

《机械原理》连杆机构

《机械原理》连杆机构
第八章 平面连杆机构
基本内容: 1)平面连杆机构的定义、类型及应用; 2)四杆机构的基本型式及演化; 3)平面四杆机构的基本特性; 4)平面四杆机构的运动设计(尺寸综合)。
连杆机构的定义: 由若干个刚性构件用低副(转动副、移动副)
连接而成的机构—连杆机构,又称为低副机构。 用四个转动副连接而成的四杆机构—铰链四杆机
图(a) :对心曲柄滑块机构。
偏距 e 等于零。滑块 C 的行程等于2 lAB ;往
返的平均速度也相同。 图(b):偏置曲柄滑块机构。
偏距 e 不等于零。滑块 C 的行程不等2 lAB ;
往返的平均速度也不相同。
3. 取不同的构件为机架
(1)曲柄滑块机构
杆2长度>杆1长度,形
成转动导杆机构;
杆2长度<杆1长度,形
lA DlBC lC D lAB
2)若AB为最长杆
lAD lAB lCD lBC
lAB80mm lAB12m0m
结论: 8m 0 m lAB 12 m0m
(3)若欲成为双摇杆机构,则应分析两种情况: 1)机构各杆件长度满足“杆长之和条件”,但
以最短杆的对边为机架; 2)机构各杆件长度不满足“杆长之和条件”。 *本题只存在第二种情况。
法确定:(1)曲柄和连杆的长度
的 min 。
lAB,lBC
;(2)机构
拟设计一偏置曲柄滑块机构。已知滑块行
程 H50 m,m偏距 e20mm ,k1.5,试用图
解法确定:
((21))曲 曲柄 柄和 为连 原杆 动的 件长时度机构lA 的B, lmBaC,x;m ax;
(3)滑块为原动件时机构的死点位置。
D 时 lAB 的取值范围。
解: lA B lB C lC D lA D 0 lA B 7 m 0m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2.1 运动特性 1.转动副为整转副的条件-----铰链四杆机构有曲柄的条件
C2
B
l2
C C1 l3
l1
B2 A
l4
B1
D
C2
B
l2
C C1 l3
l1
B2 A
l4
B1
D
在ΔB1C1D中,根据三角形任意两边之差必
l3 l2 l4 l1
小于等于第三边,可得:
l2 l3 l4 l1
(1)
移项可得:
l1 l3 l4 l2
l1 l2 l4 l3
(2)
C2
B
l2
C C1 l3
l1
B2 A
l4
B1
D
l1 l3 l4 l2
l1 l2 l4 l3
(2)
在ΔB2C2D中,根据三角形任意两边之和必大于等于 第三边,可得:
l1
l4
l2
l3
(3)
以上三式两两相加并化简可得: l1 l2 l1 l3 l1 l4 (4)
铰链四杆机构曲柄存在条件: 1、曲柄为最短杆; 2、最短杆与最长杆长度之和小于或等于其余两杆长度之和
满足上述条件时,取不同的构件为机架时,可 得三种不同性质的铰链四杆机构
取最短杆的邻杆为机架 ---曲柄摇杆机构
取最短杆的对杆为机架 ---双摇杆机构
取最短杆为机架 ---双曲柄机构 图10
“最短构件与最长构件的长度之和 小于或等于其余两构件长度之和” 是必要条件, 如果不满足此条件, 无论取那个构件作为机架,都不存 在曲柄。
铰链四杆机构的三种基本型式 曲柄摇杆机构:指两连架杆一为曲柄,一为摇杆的铰链四杆机构。
双曲柄机构:指两个连架杆都是曲柄的铰链四杆机构。若机构中相对两杆平行 且相等,则成为平面四边形机构。
惯性筛
双摇杆机构:指两个连架杆都是摇杆的铰链四杆机构。
4.1.2 平面四杆机构的演化
由四杆机构的基本型式通过演化可以得到其它多种 结构型式。 常用的演化方法有 1、转动副变移动副 曲柄摇杆 cos1 b2 c2 a2 d 2 2ad cos
2bc
BCD cos1 b2 c2 a2 d 2 2ad cos
2bc
1)当∠BCD <900时,γ =∠BCD,则γmin =∠BCDmin ,
由公式可知,当φ = 00时,有∠BCDmin 。即曲柄与机架重
合共线时,机构将出现最小值。
最小传动角的确定
图示铰链四杆机构中,原动件为
AB。各杆长度为:a、b、c、d。
由图可见,γ 与
机构的∠BCD有关。 在ΔABD和ΔBCD中,
B
11 a A
F2
2b
C
F
c
F1vc
3
4d D
由余弦定理得:
BD2 a2 d 2 2ad cos BD2 b2 c2 2bc cos BCD
4.1.1平面四杆机构的基本型式
全部运动副为转动副的四杆机构称为铰链四杆 机构
连杆
视频:2
连架杆 机架
平面四杆机构的基本型式 曲柄——作整周运动的构件 摇杆——作摆动的构件。
铰链四杆机构根据连架杆的运动形式不同分为:
○ 曲柄摇杆机构(视频1) ○ 双曲柄机构(视频2) ○ 双摇杆机构(视频3)
4 扩大移动副的尺寸
曲柄摇杆机构
偏心盘机构
(视频8) 機械原理視頻 连杆(1-2).avi
4.2 平面连杆机构的工作特性
平面连杆机构具有传递和变换运动,实现力 的传递和变换功能,前者称为平面连杆机构的运 动特性,后者称为平面连杆机构的传力特性。
了解了这些特征,对于正确选择连杆机构的 类型,进而进行机构设计具有重要指导意义。
第四章 连杆机构
连杆机构:由若干个构件通过低副连接而组 成,又称为低副机构。
平面连杆机构:所有构件均在相互平行的平 面内运动的连杆机构。
空间连杆机构:所有构件不全在相互平行的 平面内运动的连杆机构。
由于平面连杆机构不仅应用广泛,而且还往 往是多杆机构的基础;所以这里重点介绍平 面连杆机构.
4.1 平面连杆机构的类型
B
11 a A
F2
2b
C
F
f
c
3
F1vc
4d D
A
C1 D
视频1
BCD cos1 b2 c2 a2 d 2 2ad cos
2bc
2)当∠BCD >900时,γ =1800-∠BCD,则γmin =
1800-∠BCDmax ,由公式可知,当φ = 1800时,
有∠BCDmax 。即曲柄与机架拉值共线时,机构将出现
视频11

曲柄摇杆机构 双曲柄机构 曲柄摇杆机构 双摇杆机构

曲柄滑块机构 导杆机构
摇块机构
定块机构 (直动滑杆机构)
3. 变换构件形态 两个移动副的四杆机构 ①若选择构件2或4为机架时,就 是正弦机构; ②若改取构件3为机架,则为双滑块 机构; ③当取构件1为机架时,便演化为 双转块机构。
视频13
k
v2 v1
c1c2 / t2 c1c2 / t1
t1 t2
1 2
180 180-
或:
=180 k 1
k 1
结论:当θ≠0时,机构具有急回运动特性,θ角愈 大,K值愈大,急回运动特性愈显著。
3.运动连续性 1、运动连续性:当主动件连续运动时,从动件也能连续占据预定 的各个位置,称为机构具有运动的连续性。
2 . 急回运动特性
在曲柄等速回转情况下,由于α1=180°+θ,α2=180°-θ, 所以t1>t2,摇杆往复摆动的平均速度为V2>V1.把摇杆的这种往 复摆动快慢不同的运动称为急回运动。 急回运动的程度可以用行程速比系数K来衡量:
C C1
C2
l2
B
l3
ψ
φ1
l1 θ
B1
l4
A
D
φ2
B2
行程速比系数
最大值。
2C
B
1 1
vc F
3
maCx 2
A
4
D B2
A
D
视频1
机构的死点位置
1.死点
图示曲柄摇杆机构,摇杆 CD为主动件,当机构处于连杆 与从动曲柄共线的两个位置时, 出现了传动角γ=o。的情况。 这时主动件CD通过连杆作用于 从动件AB上的力恰好通过其回 转中心,所以不能使构件AB转 动而出现“顶死”现象。机构的 此种位置称为死点。
4.2.2 传力特性
1、压力角α
在不计重力、 摩擦力、惯性力的 条件下,机构中输 出件所受主动力的 方向线与该受力点 的绝对速度方向线 所夹的锐角。
B
2
1 1 A
4
F2
C F
F1
3
V
D
2、传动角γ
压力角的余角,
γ=900-α。
min
α越小, γ越大,则机构传力性能越好。
常用传动角的大小和变化来衡量机构传力 性能的好坏。设计时通常要求γmin≥40°, 对于高速和大功率的传动机械, γmin≥50°。
相关文档
最新文档