实验六
实验六——常见非金属离子的定性检验
02
硫酸根干扰: 硫酸根也会与 硝酸银反应生成沉淀,但加 入过量硝酸银后,硫酸银沉 淀会转化为氯化银沉淀。因 此,在滴定前需加入足量硝 酸银,确保硫酸根完全转化 为硫酸银。
03
颜色干扰: 如果待测溶液有 颜色,可能会影响滴定终点 的判断。可采用电位滴定法 ,通过测量电位变化确定滴 定终点,消除颜色干扰。
硫酸根离子(SO4²⁻) 的检验:通常使用钡离 子与其反应生成白色沉 淀硫酸钡(BaSO4)。 若产生不溶于酸的白色 沉淀,则说明存在硫酸 根离子。
氯离子(Cl⁻)的检验: 一般利用硝酸银溶液, 氯离子与之反应生成白 色沉淀氯化银(AgCl) 。若产生不溶于硝酸的 白色沉淀,则证明有氯 离子的存在。
磷酸根离子
是磷肥的主要成分,也广泛存 在于土壤和水体中。
检验原理和方法概述
化学反应法:利用特定的化学试剂与非金属离子 发生反应,通过观察反应现象(如颜色变化、沉 淀生成等)来判断离子种类。如银盐法可用于检 测氯离子的存在。
电化学法:通过测量离子在电场作用下的迁移行 为来判断离子种类。如电位滴定法、电导法等。
常见非金属离子的定 性检验
目录
• 引言 • 硫酸根离子的检验 • 氯离子的检验 • 硝酸根离子的检验 • 碳酸根离子和碳酸氢根离子的检验 • 结论
01
引言
定性检验的目的和意义
确定离子种类
通过定性检验,可以明确样品中 存在哪些非金属离子,为后续分
析和研究提供依据。
保障生产安全
在化工生产中,某些非金属离子可 能对设备和工艺产生不良影响,通 过定性检验可以及时发现问题,确 保生产安全。
光谱法:利用非金属离子在特定波长下的吸收或 发射光谱进行识别。如原子吸收光谱法、荧光光 谱法等。
实验六
(2)悬滴法 (a)在洁净凹载玻片周围涂少许凡士林。 (b)在盖玻片中央滴一小滴菌液,或用接种环取 1—2环菌液置于中央。 (c)将凹玻片反转,使凹窝中心对准盖玻片上的 菌液滴,液滴不得与凹玻片接触,以接种环柄轻压 使盖玻片与凹玻片粘在一起,液滴处于封闭的小室 中,防止液滴干燥和气流的影响。 (d)小心将凹玻片翻转过来,使菌滴仍悬浮在盖 玻片下和凹窝中心。 (e)先用低倍镜找到悬滴边缘,再用高倍镜观察。 观察时光线要调得暗一些。
五、实验报告
接物镜 接物镜倍 目镜测微尺 镜台测微尺 数 格数 格数 低倍镜 高倍镜 油 镜
接目镜放大倍数: 接目镜放大倍数:_______________
1.结果 (1)将目镜测微尺校正结果填人下表:
目镜测微尺每 格代表的长 度/pm
五、实验报告
宽 长 微生物 目镜测微 名称 尺每格 (2)将各菌测定结果填人 下表: 代表的 长度 /µm 目镜测 宽度/ 目镜测 长度 µm /µm 微尺 微尺 格数 格数 大肠杆 菌 酿酒酵 母 金葡球 菌 菌体大 小范 围 /µm
三、实验器材 菌种:大ห้องสมุดไป่ตู้杆菌。 仪器或其他用具 、凡士林、凹载玻片、 盖玻片、镊子、显微镜等。
四、操作步骤 (1)压滴法 (A)制片:在载玻片上加一滴生理盐水,挑取一环 菌液与水混合,加一环万分之一的美蓝水溶液混匀。 用镊子夹一洁净的盖玻片,使其一边先接触菌液, 然后将整个盖玻片慢慢放下,注意不要产生气泡。 (B)镜检:先以低倍镜找到标本,再用高倍镜观察, 观察时光线要调得暗些。 有鞭毛细菌可做直线、波浪式或翻滚运动,两个细 胞之间出现明显的位移,区别与布朗运动。
细菌的运动性观察
一、目的要求 学习用压滴法和悬滴法观察细菌的运动性 二、实验原理
实验六 微生物细胞大小的测定
实验六微生物细胞大小的测定一、目的要求1.学会测微尺的使用和计算方法。
2.掌握酵母菌细胞大小测定的方法。
二、基本原理微生物细胞大小, 是微生物的形态特征之一,也是分类鉴定的依据之一。
由于菌体很小, 只能在显微镜下测量。
用来测量微生物细胞大小的工具有目镜测微尺和镜台测微尺。
镜台测微尺是中央部分刻有精确等分线的载玻片。
一般将1mm等分为100格(或2mm等分为200格),每格长度等于0.01mm(即106μm)。
是专用于校正目镜测微尺每格长度的。
目镜测微尺是一块可放在接目镜内的隔板上的圆形小玻片, 其中央刻有精确的刻度, 有等分50小格或100小格两种, 每5小格间有一长线相隔。
由于所用接目镜放大倍数和接物镜放大倍数的不同, 目镜测微尺每小格所代表的实际长度也就不同, 因此,目镜测微尺不能直接用来测量微生物的大小, 在使用前必须用镜台测微尺进行校正, 以求得在一定放大倍数的接目镜和接物镜下该目镜测微尺每小格的相对值, 然后才可用来测量微生物的大小。
三、器材枯草芽孢杆菌染色玻片标本, 目镜测微尺, 镜台测微尺, 显微镜, 擦镜纸, 香柏油等。
四、操作步骤1. 目镜测微尺的标定(1)放置目镜测微尺取出接目镜, 旋开接目镜透镜, 将目镜测微尺的刻度朝下放在接目镜筒内的隔板上(图Ⅳ-4, B), 然后旋上接目透镜, 最后将此接目镜插入镜筒内(图Ⅳ-4, C)。
(2)放置镜台测微尺将镜台测微尺置于显微镜的载物台上, 使刻度面朝上。
(3)校正目镜测微尺先用低倍镜观察, 对准焦距, 当看清镜台测微尺后, 转动接目镜, 使目镜测微尺的刻度与镜台测微尺的刻度平行, 移动推动器, 使目镜测微尺和镜台测微尺的某一区间的两对刻度线完全重合, 然后计数出两对重合线之间各自所占的格数(图Ⅳ-6)。
根据计数得到的目镜测微尺和镜台测微尺重合线之间各自所占的格数, 通过如下公式换算出目镜测微尺每小格所代表的实际长度。
目镜测微尺每小格长度(μm)=同法校正在高倍镜和油镜下目镜测微尺每小格所代表的长度。
最新实验六(实验报告)
最新实验六(实验报告)实验目的:本次实验旨在探究特定物质在不同条件下的反应特性,以及通过实验数据分析物质的性质和变化规律。
通过对实验过程的观察和结果的记录,加深对理论知识的理解,并提高实验操作技能。
实验材料:1. 试样:待测物质样品2. 试剂:所需的化学反应试剂3. 仪器:天平、烧杯、量筒、滴定管、温度计、pH计、光谱仪等实验步骤:1. 准备阶段:根据实验要求,准确称取适量的试样和试剂,准备好所有实验仪器。
2. 实验操作:按照实验指导书的步骤,进行化学反应操作,记录下每个步骤的具体条件,如温度、pH值、反应时间等。
3. 数据收集:对反应过程中产生的数据进行收集,包括但不限于颜色变化、沉淀形成、气泡产生等。
4. 结果分析:根据收集到的数据,分析反应过程中物质的变化,以及反应的动力学特征。
5. 结论撰写:根据实验结果,撰写实验结论,总结物质的性质和反应特点。
实验结果:1. 反应速率:通过观察和记录,发现在特定条件下,反应速率与预期相符,具体数据见附录。
2. 产物分析:实验中产生的主要产物为X和Y,通过光谱分析确认了其结构。
3. 副反应:在实验过程中,未观察到明显的副反应现象。
4. 影响因素:实验中发现温度和pH值对反应速率有显著影响。
实验讨论:本次实验中,反应的速率和产物与理论预测基本一致,但在实际操作中存在一定的误差,可能的原因包括实验操作的不精确、环境条件的波动等。
未来可以通过改进实验方法和控制实验条件来减少误差。
结论:通过本次实验,我们成功地研究了特定物质在不同条件下的反应特性,并通过数据分析得到了物质的性质和反应规律。
实验结果对理解相关化学反应机制具有重要意义,并为进一步的实验研究提供了基础。
实验6-人血永久涂片
实验六:观察人血永久涂片一、实验目的:能够运用显微镜观察人血永久涂片,识别红细胞、白细胞和血小板。
二、操作步骤:操作内容操作细则取用器材1、一手握镜臂,一手托镜座,镜筒向前,镜臂向后,将显微镜从显微镜箱中取出;将显微镜安放在实验台距身前边缘7cm左右处,略偏左。
安装镜头2、安装好物镜和目镜。
对光3、转动粗准焦螺旋,使镜筒上升。
4、转动转换器,使低倍物镜正对通光孔。
5、转动遮光器,选择较大光圈对准通光孔。
6、左眼注视目镜内,右眼睁开,用手转动反光镜(要能根据光线强弱选择镜面),看到明亮视野。
用低倍镜观察人血永久涂片7、用洁净的纱布将人血永久涂片擦干净后放在载物台上,使涂片尽量正对通光孔的中心,用压片夹固定。
8、两眼从一侧注视物镜;双手顺时针方向转动粗准焦螺旋;使镜筒徐徐下降,直到物镜头接近涂片为止。
9、两眼睁开,左眼注视目镜;双手逆时针方向转动粗准焦螺旋,使镜筒慢慢上升,直至看到物像;若物像不在视野中央,移动装片使物像移到视野中央。
识别红细胞、白细胞和血小板10、能够清晰的看到物像,并能分辨出红细胞、白细胞和血小板,必要时可转动细准焦螺旋。
整理器材11、实验结束后,先提升镜筒,取下人血永久涂片、目镜,盖上镜头盖,转动转换器,把两物镜偏到通光孔两旁,使镜筒降到最低位置,反光镜竖立存放,显微镜外表用纱布擦拭,镜头用擦镜纸擦拭,将显微镜放回显微镜箱。
12、整理好仪器,清理好桌面,将人血永久涂片放回原处并合理存放废品(整理不到位要扣分)。
三、操作注意事项1、安放显微镜中的“7cm”是指距身前的边缘,而非实验台左侧边缘,这个距离与手掌的宽度相仿;2、手绝对不能接触目镜和物镜镜头的玻璃部分,镜头只能用擦镜纸擦拭;3、不能用手扳物镜转换镜头,要转动转换器(安装镜头的部位,大金属圆盘);4、对光后会看到视野特别明亮,打开实验台上的灯对光后甚至会很耀眼;5、对光后,不能移动显微镜;6、不能单手转动准焦螺旋,尽量不在高倍镜下转粗准焦螺旋;7、安放涂片时,需要用两个压片夹压住涂片;8、由于血液中白细胞的数量最少,需要学生认真的全方位的观察人血永久涂片;9、区分开杂质和红细胞、白细胞、血小板。
实验六--帧同步
实验六 帧同步一、实验目的1.掌握集中插入式帧同步码识别器工作原理。
2.掌握同步保护原理。
3.掌握假同步、漏同步、捕捉态〔失步态〕、维持态〔同步态〕概念。
二、实验原理在时分复用通信系统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码。
帧同步码可以集中插入,也可以分散插入。
本实验系统中帧同步码为7位巴克码,集中插入到每帧的第2至第8个码元位置上。
帧同步模块的原理框图如图6-1所示。
本模块使用+5v 电压。
从总体上看,本模块可分为巴克码识别器及同步保护两部分。
巴克码识别器包括移位寄存器、相加器和判决器,图6-1中的其余部分完成同步保护功能。
移位寄存器由两片74175组成,移位时钟信号是位同步信号。
当7位巴克码全部进入移位寄存器时,U50的4321,,,Q Q Q Q 及U51的432,,Q Q Q 都为1,它们输入到相加器U52的数据输入端D0~D6,U52的输出端Y0、Y1、Y2都为1,表示输入端为7个l 。
假设100012 Y Y Y 时,表示输入端有4个l ,依此类推,012Y Y Y 的不同状态表示了U52输入端为1的个数。
判决器U53有6个输入端。
IN2、IN1、IN0分别与U52的Y2、Y1、Y0相连,L2、L1、L0与判决门限控制电压相连,L2、L1已设置为1,而L0由同步保护部分控制,可能为1也可能为0。
在帧同步模块电路中有三个发光三极管指示灯P1、P2、P3与判决门限控制电压相对应,即从左到右与L2、L1、L0一一对应,灯亮对应1,灯熄对应0。
判决电平测试点TH 就是L0信号,它与最右边的指示灯P3状态相对应。
当L2L1L0=111时门限为7 ,三个灯全亮,TH 为高电平;当L2L1L0=110时门限为6,P1和P2亮,而P3熄,TH 为低电平。
当U52输入端为l 的个数〔即U53的IN2 IN1 IN0〕大于或等于判决门限于L2L1L0,识别器就会输出一个脉冲信号。
6--免疫扩散实验-20141211动医
双向免疫扩散凝胶染色图
2. 若凝胶中抗原、抗体是特异性的,则形成 抗原抗体复合物,在两孔之间出现清晰致 密的白色沉淀线,为阳性反应。若在72小 时内仍未出现沉淀线则为阴性反应。实验 时至少要做一阳性对照。出现阳性对照与 备检样品的沉淀线发生融合,才能确定待 检样品为真正阳性。 3. 用梅花孔也可检测抗血清的效价,操作时 将抗原置于中心孔,抗血清倍比稀释后置 于周围孔,以出现沉淀带的血清最高稀释 倍数为该血清的琼扩效价。
实验六 免疫扩散实验(双向双扩散)
一、实验目的
检测抗牛血清白蛋白抗体水平。 以牛血清白蛋白双向双扩散试验为例,掌 握双向双扩散试验的原理、操作方法及结 果的判定。
二、实验原理
双向双(相)扩散简称双扩散(double diffusion in two dimension),此法是一种定 性试验。可溶性抗原与相应的抗体在琼脂 凝胶中各自向四周扩散,如果抗原和抗体 相对应,则在二者比例适当处形成白色沉 淀线;若抗原和抗体无关就不会出现沉淀 线。此试验可以检测抗原或抗体的纯度, 滴定抗体的效价,以及用已知抗原(抗体) 检测和分析未知抗体(抗原)。
6. 阴阳性定性检测:中央孔加抗原,外周孔 分别加待测血清,要设立阴性血清和阳性 血清对照。 7. 扩散:加样完毕后,将琼脂板放于湿盒内, 保持一定的湿度,置于37℃温箱中扩散 24~48小时观察结果。
阳性 血清
图1
五、结果判定
1. 用以检测抗原或比较抗原差异时,将抗血 清置中心孔,将待测抗原或需比较的抗原 置于周围相邻孔。若出现沉淀带完全融合, 证明为同种抗原;若二者有部分相连,表 明二者有共同抗原决定簇;若二条沉淀线 相互交叉,说明二者抗原完全不同。
双向双(相)扩散 (double diffusion in two dimension)
实验6 验证机械能守恒定律
实验六验证机械能守恒定律验证机械能守恒定律。
1.在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能保持不变。
若物体某时刻瞬时速度为v,下落高度为h,则重力势能的减少量为mgh,动能的增加量为12m v2,看它们在实验误差允许的范围内是否相等,若相等则验证了机械能守恒定律。
2.速度的测量:做匀变速直线运动的物体某段位移中间时刻的瞬时速度等于这段位移的平均速度。
计算打第n点速度的方法:测出第n点与相邻前后点间的距离x n和x n+1,由公式v n=x n+x n+12T计算,或测出第n-1点和第n+1点与起始点的距离h n-1和h n+1,由公式v n=h n+1-h n-12T算出,如图所示。
铁架台(含铁夹),打点计时器,学生电源,纸带,复写纸,导线,毫米刻度尺,重物(带纸带夹)。
1.安装置:如图所示,将检查、调整好的打点计时器竖直固定在铁架台上,接好电路。
2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手提着纸带使重物静止在靠近打点计时器的地方。
先接通电源,后松开纸带,让重物带着纸带自由下落。
更换纸带重复做3~5次实验。
3.选纸带:分两种情况说明(1)用12m v2n=mgh n验证时,应选点迹清晰,且第1、2两点间距离接近2 mm的纸带。
若第1、2两点间的距离大于2 mm,则可能是由于先释放纸带后接通电源造成的。
这样,第1个点就不是运动的起始点了,这样的纸带不能选。
(2)用12m v2B-12m v2A=mgΔh验证时,处理纸带时不必从起始点开始计算重力势能的大小,这样,纸带上打出的起始点O后的第一个0.02 s内的位移是否接近2 mm,以及第一个点是否清晰也就无关紧要了,实验打出的任何一条纸带,只要后面的点迹清晰,都可以用来验证机械能守恒定律。
1.测量计算在起始点标上0,在以后各计数点依次标上1、2、3…,用刻度尺测出对应下落高度h1、h2、h3…。
实验六、配合物的生成、性质与应用
实验六、配合物的生成、性质与应用一、实验目的1、了解几种不同类型的配合物的生成,比较配合物与简单化合物和复盐的区别.2、了解影响配合平衡移动的因素。
3、了解螯和物的形成条件。
4、熟悉过滤和试管的使用等基本操作。
二、实验原理由中心离子(或原子)和一定数目的中性分子或阴离子通过形成配位共价键相结合而成的复杂结构单元称配合单元,凡是由配合单元组成的化合物称配位化合物。
在配合物中,中心离子已体现不出其游离存在时的性质。
而在简单化合物或复盐的溶液中,各种离子都能体现出游离离子的性质。
由此,可以区分出有否配合物存在。
配合物在水溶液中存在有配合平衡:M n+ + aL—→ Ml a n-a配合物的稳定性可用平衡常数KΘ稳来衡量。
根据化学平衡的知识可知,增加配体或金属离子浓度有利于配合物的形成,而降低配体或金属离子浓度有利于配合物的解离.因此,弱酸或弱碱作为配体时,溶液酸碱性的改变会导致配合物的解离。
若有沉淀剂能与中心离子形成沉淀反应,则会减少中心离子的浓度,使配合平衡朝解离的方向移动,最终导致配合物的解离。
若另加入一种配体,能与中心离子形成稳定性较好的配合物,则又可能使沉淀溶解.总之,配合平衡与沉淀平衡的关系是朝着生成更难解离或更难溶解的物质的方向移动.中心离子与配体结合形成配合物后,由于中心离子的浓度发生了改变,因此电极电势数值也改变,从而改变了中心离子的氧化还原能力。
中心离子与多基配体反应可生成具有环状结构的稳定性很好的螯和物。
很多金属螯和物具有特征颜色,且难溶于水而易溶于有机溶剂.有些特征反应长用来作为金属例子的鉴定反应.三、仪器和药品仪器:试管,试管架,离心试管,漏斗,漏斗架,白瓷点滴板,离心机,滤纸药品: 2 mol·L—1 H2SO4;2mol·L—1NH3·H2O,6mol·L—1 NH3·H2O ,0.1 mol·L-1 NaOH,2mol·L—1NaOH.0。
试验六三轴试验
实验六:三轴试验一、基本原理三轴剪切试验是用来测定试件在某一固定周围压力下的抗剪强度,然后根据三个以上试件,在不同周围压力下测得的抗剪强度,利用莫尔-库仑破坏准则确定土的抗剪强度参数。
三轴剪切试验可分为不固结不排水试验(UU )、固结不排水试验(CU )以及固结排水剪试验(CD )。
1、不固结不排水试验:试件在周围压力和轴向压力下直至破坏的全过程中均不允许排水,土样从开始加载至试样剪坏,土中的含水率始终保持不变,可测得总抗剪强度指标U C 和U φ;2、固结不排水试验:试样先在周围压力下让土体排水固结,待固结稳定后,再在不排水条件下施加轴向压力直至破坏,可同时测定总抗剪强度指标CU C 和CU φ或有效抗剪强度指标C ′和φ′及孔隙水压力系数;3、固结排水剪试验:试样先在周围压力下排水固结,然后允许在充分排水的条件下增加轴向压力直至破坏,可测得总抗剪强度指标d C 和d φ。
二、试验目的1、了解三轴剪切试验的基本原理;2、掌握三轴剪切试验的基本操作方法;3、了解三轴剪切试验不同排水条件的控制方法和孔隙压力的测量原理;4、进一步巩固抗剪强度的基本理论。
三、试验设备1、三轴剪力仪(分为应力控制式和应变控制式两种)。
(1)三轴压力室:压力室是三轴仪的主要组成部分,它是由一个金属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压力室底座通常有3个小孔分别与围压系统以及体积变形和孔隙水压力量测系统相连。
(2)轴向加荷传动系统:采用电动机带动多级变速的齿轮箱,或者采用可控硅无级调速,根据土样性质及试验方法确定加荷速率,通过传动系统使土样压力室自下而上的移动,使试件承受轴向压力。
(3)轴向压力测量系统:通常的试验中,轴向压力由测力计(测力环或称应变圈等等)来反映土体的轴向荷重,测力计为线性和重复性较好的金属弹性体组成,测力计的受压变形由百分表测读。
轴向压力系统也可由荷重传感器来代替。
(4)周围压力稳压系统:采用调压阀控制,调压阀当控制到某一固定压力后,它将压力室的压力进行自动补偿而达到周围压力的稳定。
高中化学实验 实验6 溶液的配制与标定
高中化学实验实验6 溶液的配制与标定高中化学实验-实验6溶液的配制与标定实验6溶液的制备和校准一、实验目的1.掌握常用容量仪器的一般清洗方法和标准溶液的制备方法。
2.学习量筒、容量瓶和移液管的正确使用。
3.掌握用标准物质校准酸碱溶液的方法。
4.掌握滴定管的准备、滴定操作和确定滴定终点的方法。
5.熟悉酸碱指示剂的选择和终点的颜色变化。
二、实验原理1.标准溶液:标准溶液是指浓度准确已知并可用来滴定的溶液,一般采用直接法或间接法来配制。
通常,只有基准物质才能用直接法配制标准溶液,而其他的物质只能用间接法配制。
基准物质应符合下列要求:①试剂的组成应与它的化学式完全相符;②试剂的纯度在99.9%以上;③ 试剂一般应稳定;④ 试剂最好具有较大的摩尔质量。
直接法:准确称取一定量的基准物质,溶解后,定量的转移至一定体积的容量瓶中,稀释定容,摇匀。
溶液的浓度可通过计算直接得到。
间接法:首先制备与所需浓度相似的溶液,然后用标准物质(或用标准物质校准的标准溶液)校准其准确浓度。
2.酸碱标准溶液的配制:一般的酸碱因含有杂质、潮解和吸附等问题,不能直接配制准确浓度的溶液,通常先配成近似浓度的溶液,然后再用适当的基准物质进行标定。
本实验中所用到的naoh固体易吸收空气中的co2和水分,浓盐酸易挥发,浓度不确定,因此酸碱标准溶液常用间接法进行配制。
由于酸碱标准溶液是用间接法配制的,其标准浓度必须用标准物质校准。
只要校准任何一种酸碱溶液的浓度,就可以根据滴定分析的计量关系计算另一种溶液的浓度。
如滴定反应为na2c o3+2hcl2nacl+co2↑+h2o当测量点(也称为理论终点)时,滴定分析的测量关系为C(Na2CO3)V(Na2CO3)=1/2C(HCl)V(HCl)(3-26)3.酸标准溶液浓度的标定:无水碳酸钠和硼砂等常用作标定酸的基准物质。
用碳酸钠做基准物时,先于180℃干燥2~3h,然后置于干燥器内冷却备用。
标定反应如下:na2co3+2hcl2nacl+co2↑+h2o当反应达到化学计量点时,溶液的ph为3.9,可用甲基橙作指示剂。
实验六 验证机械能守恒定律
结束
(3)实验结果显示 ΔEp>ΔEk,那么造成这一现象的主
摩擦阻力造成的机械能损失 。 要原因是___________________________
考查实验误差分析 因空气阻力、纸带与限位孔间的阻力、滑轮轴间阻力做负功, 使系统重力势能的减少量大于系统动能的增加量。
验证机械能守恒定律
验证机械能守恒定律
结束
(3)从打 O 点到打 B 点的过程中,重物下落 hB,重力势能减少, 则重物的重力势能变化量 ΔEp=-mghB。动能增加,则动能的
1 1 1 hC-hA2 hC-hA2 2 变化量 ΔEk=2mvB -0=2m -0=2m 2T 。 2T
验证机械能守恒定律
结束
A.按照图示的装置安装器件; B.将打点计时器接到电源的直流输出端上; C.用天平测出重物的质量; D.释放纸带,同时接通电源开关打出一条纸带; E.测量打出的纸带上某些点之间的距离; F. 根据测量的结果计算重物下落过程中减少的重力势能是否等 于增加的动能。 其中没有必要进行或者操作不恰当的步骤是________。(将其选 项对应的字母填在横线处)
验证机械能守恒定律
结束
(2)为求出弹簧的弹性势能,还需要测量________。 A.弹簧原长 B.当地重力加速度 C.滑块(含遮光片)的质量 (3)增大 A、O 之间的距离 x,计时器显示时间 t 将________。 A.增大 B.减小 C.不变
验证机械能守恒定律
结束
解析:(1)滑块离开弹簧后做匀速直线运动,故滑块的速 s 率 v= t 。 1 2 (2)根据功能关系, 弹簧的弹性势能 Ep=2mv , 所以要求 弹性势能,还需要测得滑块的质量,故选项 C 正确。 (3)弹簧的形变量越大,弹性势能越大,滑块离开弹簧时 的速度越大,滑块从 B 运动到 C 的时间越短,故 x 增大 时,计时器显示时间 t 将变小,故选项 B 正确。 s 答案:(1)v= t (2)C (3)B
实验六-水样中pH值的测定
实验六-水样中pH 值的测定一、实验目的1、了解pH 值的直接电位法测定原理及方法;2、掌握酸度计的使用方法。
二、实验原理由pH 玻璃电极(指示电极)和饱和甘汞电极(参比电极)插入溶液中组成测定pH 值的原电池。
在一定条件下,电池电动势E 是试液中pH 值的线性函数。
测量E 时,若参比电极接正,则E = K + 0.059pH (25℃)上述能斯特公式中的K 值包括饱和甘汞电极电位、内参比电极电位、玻璃膜的不对称电位及参比电极与溶液间的液接电位,它难于用理论方法计算出来,但在一定得实验条件下是常数。
通常需要用与待测溶液pH 值接近的标准缓冲溶液进行校正,以抵消K 值对测量的影响。
其原理是:当电极对分别插入pH s 标准缓冲溶液和pH x 未知溶液中,电动势E s 和E x 分别为E s = K + 0.059pH s (25℃)E x = K + 0.059pH x (25℃)两式相减,得059.0059.0E pH E E pH pH s s x s x ∆+=-+= (25℃)在酸度计上,pH 示值按照ΔE/0.059分度,此分度值只适用于温度为25℃时。
为适应不同温度下的测量,需进行温度补偿。
在实际测定中,先将“温度补偿”旋钮调至溶液的温度处,然后将电极对插入已知pH s 的标准缓冲溶液中,用“定位”旋钮将仪器示值调节到pH s 的数值处,这叫“定位”校正(将K 值抵消)。
进行“温度补偿”和“定位”校正后,电极插入pH x 的试液中,仪器就可以直接显示出pH x 的测定值。
pH x 值的设定误差决定于pH s 的正确配置、两电极的性能及酸度计的情况。
一般说来,用一种标准溶液校正仪器后,再去测另一种标准溶液,若测定值与第二种标准溶液的pH 标准值误差小于允许值,则符合要求,否则应检查不准确的原因。
三、仪器与试剂1. 仪器pHS-2F 酸度计(1台)、pH 复合电极(1支)、塑料小烧杯(50mL 3只)2. 试剂pH 标准缓冲溶液:pH =4.01(0.05mol •L -1 KHC 8H 4O 4 溶液)、pH =6.86(0.025mol •L -1 KH 2PO 4 和0.025mol •L -1 Na 2HPO 4 的混合溶液)、pH =9.18(0.01mol •L -1 Na 2B 4O 7 •10H 2O 溶液);各种未知水样。
实验6 二氧化碳相对分子质量的测定
实验六二氧化碳相对分子质量的测定一、实验目的1.了解气体相对密度法测定CO2气体相对分子质量的原理和方法;2. 了解气体的净化和枯燥的原理和方法;3.熟练掌握启普发生器的使用;学会气压记的使用技术。
4. 进一步稳固称量操作方法和掌握天平的使用。
5.了解误差的概念,学习实验结果误差的分析。
二、实验用品仪器:启普发生器、洗气瓶、锥形瓶〔250ml〕、分析天平、台秤、气压计、量筒〔100ml〕、大烧杯药品:浓硫酸、盐酸〔6mol·L-1〕、大理石〔或石灰石〕、NaHCO3〔饱和〕材料:橡皮管、导气管、橡皮塞三、根本操作启普发生器1、组成:葫芦状的玻璃容器,球形漏斗,带旋塞的导气管2、原理:启普发生器用作不需加热、由块状固体与液体反响制取难溶性气体的发生装置。
启普发生器常用于制取氢气、二氧化碳、硫化氢气体。
启普发生器使用非常方便,使用时,只要翻开活塞,酸即进入中间球内,与固体接触而产生气体。
停顿使用时,只要关闭活塞,气体就会把酸从中间球压入下球及球形漏斗内,使固体与酸不再接触而停顿反响。
可供较长时间反复使用。
3、使用方法〔1〕装配——在球形漏斗颈部及旋塞处均应涂上凡士林,插好球形漏斗和玻璃旋塞,转动几次,使装配严密。
〔2〕检查气密性——开启旋塞,从球形漏斗口注水至充满半球体时,关闭旋塞。
继续加水,待水从漏斗管上升到漏斗球体内,停顿加水。
在水面处做一记号,静置片刻,如水面不下降,证明不漏气,可以使用。
〔3〕加试剂——在葫芦状容器的狭窄处垫一些玻璃棉或橡皮套,再参加块状或较大颗粒的固体试剂,均匀置于球形漏斗颈的周围后,塞上带导气管的单孔塞。
固体量不可太多,以不超过中间球体容积的1/3为宜。
液体从球形漏斗中参加,直至进入容器后又刚好浸没固体试剂,此时关闭导气管上的旋塞待用。
〔4〕发生气体——使用时,翻开活塞即可。
停顿使用时,关闭气体逸出导管的活塞,气体的压力使液体与固体别离即使反响停顿发生;翻开活塞,气体又重新产生。
实验6-微生物的生理生化反应
实验六微生物的生理生化反应1、实验目的探究菌株在碳源同化、氮源利用、乙醇发酵和抗生素效价分析等方面不同的生长特性,观察并简要分析不同微生物的生理生化特征及其形成机理。
2、实验过程简述2.1 培养基与试剂准备2.1.1碳源同化培养基准备碳源为葡萄糖、半乳糖、蔗糖、麦芽糖、乳糖、棉籽糖、蜜二糖、纤维二糖、海藻糖、松三糖、可溶性淀粉、α-甲基葡萄糖苷的YNB 培养基,放入一根杜氏管。
2.1.2氮源同化培养基准备氮源为硫酸铵,尿素,蛋白胨,硝酸钾,无氮源YNB 的固体、液体培养基。
2.1.3 乙醇发酵用种子培养基:YPD 培养基2.1.4乙醇发酵用发酵培养基葡萄糖,酵母粉,蛋白胨,尿素,磷酸二氢钾,硫酸镁,氯化钙。
2.1.5抗生素效价测定用培养基:LB 培养基2.1.6青霉素:用pH 6.0 磷酸缓冲液配制,浓度为100 mg/ml,0.22μm 孔径过滤灭菌。
2.2 微生物的碳源同化和发酵1、从菌体斜面接一环菌于1 ml 无菌水中,室温静置2 h。
2、取200 μl 菌悬液,分别转接于含杜氏管的小试管中,静置培养48 h。
3、每24 h 观察记录生长和产气情况。
4、根据实验结果判断不同菌株对不同碳源的同化或发酵。
2.3 微生物的氮源利用1、从菌体斜面接一环菌于1 ml 无菌水中,室温静置2 h。
2、取200μl 菌悬液,分别转接于上述培养基小试管中,30℃或37℃静置培养48 h。
3、各取20μl 菌悬液,分别划线于不同氮源的固体平板上,待菌液被吸收后,培养皿倒置,静置培养48 h。
4、每24 h 观察记录生长情况,48 h 测定液体培养物的OD 600。
5、根据实验结果判断不同菌株对不同氮源的利用能力或偏好性。
2.4 酵母菌的乙醇发酵1、种子液培养:将酿酒酵母从菌种斜面上接一接种环至YPD 种子培养基中,30℃,200rpm,培养18 h。
2、乙醇发酵:按照10%(v/v)的比例将培养好的种子液接入100 ml 发酵培养基中,用无菌塑料布将封口密封,30℃,静置培养,每24 h 手摇1 次,发酵3-4 d。
实验6 电位差计测电压
实验六 利用电位差计测量电压一、实验目的1.理解并掌握电位差计的工作原理;2.掌握用箱式电位差计测量电压的方法。
二、实验器材直流稳压电源、电阻箱一个、滑线变阻器一个、万用表一个、箱式直流电位差计一只, 导线等。
三、实验原理如图所示, 标准电压Es=1.0186V, 调节滑动变阻器1使开关打向左边Es 时IG=0。
此时, 流经电阻和滑动变阻器2的电流为:10101.86s E I mA == 当开关打向右边Ux 时, 调节滑动变阻器2使IG=0, 此时回路1的器件和条件都没发现变化, 其电流仍然为10mA, 此时滑动变阻器2的左端电压就等于Ux 的电压。
四 、实验步骤(1)电压的测量1.打开直流是位差计电源开关, 将倍率开关K1由“断”放所需档位5上, 将功能开关K3旋到“测量”, 旋动调零电位器, 使检流计初步指零;令电位差计预热5分钟;2.将检流计精细调0;将扳键推向“标准”, 旋动工作电流调节旋钮“粗”, “微”, 使检流计指0;3、按图2所示, 接好电路图;4.用万用表测量100欧姆电阻两端电压;5、按万用表测量数据初步调节读盘数据, 被测电阻两端电压按正确极性接在“未知”接线柱上, 将扳键开关K2扳向“未知”;调节大小读数使检流计指零, 则被测量值等于倍率与3个读盘之和的乘积。
图1 电位差计实验原理图2 电位差计测量电压(2)电位差计的灵敏度电位差计的灵敏度定义为: 电位差计平衡后, 单位被测电压的变化所引起的检流计指针偏转的变化。
若改变平衡时的补偿电压U的改变量为△U, 引起检流计指针的偏转为△n, 则灵敏度S为:S=△n/△U =五、实验报告万用表测量电压值为电位差计测量值为电位差计的灵敏度S=。
实验六SDS实验报告
实验六SDS实验报告1. 实验目的本实验旨在通过测定表面活性剂十二烷基硫酸钠(SDS)的临界胶束浓度和表面张力,探究SDS在水溶液中的表面活性行为,并了解其对化学反应的影响。
2. 实验器材与试剂- 器材:电子天平、试剂瓶、磁力搅拌器、扩散管、毛细管- 试剂:SDS、高纯水、乙醇3. 实验原理SDS是一种阴离子表面活性剂,可降低液体表面的表面张力。
在水溶液中,SDS分子会聚合形成胶束,当胶束的浓度达到一定程度时,称为临界胶束浓度(CMC)。
4. 实验步骤4.1 测定临界胶束浓度(CMC)4.1.1 预处理检测毛细管- 用高纯水冲洗毛细管,确保其内外无气泡。
- 用乙醇洗净毛细管,提高其润湿性能。
4.1.2 制备一系列浓度的SDS溶液- 分别称取不同质量的SDS,溶解于一定体积的高纯水中,得到不同浓度的SDS溶液。
4.1.3 填充扩散管- 将预处理好的毛细管插入扩散管中,通过磁力搅拌器搅拌,保持溶液的均匀性。
- 用一定质量的SDS溶液填充扩散管。
4.1.4 扩散实验- 在一个固定温度下,记录SDS溶液从毛细管开始扩散到溶液终点的时间。
- 重复实验,取平均值。
4.1.5 绘制扩散时间与SDS浓度的曲线- 将浓度作为横坐标,扩散时间作为纵坐标。
- 根据曲线的拐点,确定临界胶束浓度。
4.2 测定表面张力4.2.1 准备SDS溶液- 用高纯水配制一定浓度的SDS溶液。
4.2.2 表面张力计测定- 将表面张力计的叶片浸入SDS溶液中。
- 阅读并记录表面张力计上的数值。
5. 实验结果与分析5.1 CMC的确定- 根据实验数据,绘制SDS浓度与扩散时间的曲线。
- 通过拐点的位置确定CMC的值。
5.2 表面张力的测定- 通过实验测得的表面张力值,分析SDS溶液的表面活性。
6. 结论- 经过实验测定,确定了SDS的临界胶束浓度。
- 测定了SDS溶液的表面张力,了解了SDS在溶液中的表面活性行为。
7. 实验中的注意事项- 实验过程中应注意安全,避免有害物质的接触。
部编人教版小学三年级科学上册《科学实验六》教案
部编人教版小学三年级科学上册《科学实
验六》教案
一、实验目的
通过完成实验,使学生了解水的几种形态变化,培养学生的观
察和实验操作能力。
二、实验工具和材料
- 水杯
- 冰块
三、实施步骤
1. 向学生介绍实验目的,并解释水的几种形态变化。
2. 让学生观察并描述冰块的形态。
3. 让学生将冰块放在桌子上,观察冰块的变化。
4. 向学生解释冰块逐渐融化的过程,说明水的形态发生了变化。
5. 让学生观察融化后的水,了解液体的形态。
6. 结束实验,引导学生总结实验过程和观察结果。
四、实验要点
- 学生应该仔细观察实验过程中的变化,并描述出来。
- 学生应该注意实验操作的安全性,避免受伤。
五、实验结果及分析
通过观察实验过程,学生可以发现冰块在温度升高的情况下逐渐融化,形成液体水。
这说明冰块和水是同一种物质,只是处于不同的形态。
六、实验延伸
教师可以进行以下延伸活动:
1. 让学生观察水在不同温度下的融化速度是否有所差异。
2. 引导学生思考冰块融化前后发生了哪些物质变化。
七、实验小结
通过完成本实验,学生了解了水的几种形态变化,培养了他们的观察和实验操作能力。
实验结果验证了冰和水是同一种物质,只是处于不同的状态下。
这些知识对理解水的性质和科学实验方法有一定的帮助。
八、教师寄语
希望同学们在今后的学习中能够保持对科学实验的兴趣,积极探索和实践,发现身边的科学现象,培养自己的科学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
typedef struct //头结点(数组)类型 { VertexType data; //顶点信息 ArcNode *firstarc; //指向第一条依附顶点的边或弧的指针 } VNode,AdjList[MAX_VERTEX_NUM];
typedef struct //图的邻接表类型 { AdjList vertices; //图的头结点数组 int vexnum,arcnum; //图的顶点数和边或弧数 int kind; //图的类型标志 } ALGraph;
预备知识
思考1:邻接矩阵与邻接表的优缺点是什么? 思考2:图的遍历方法有哪些? 思考3:图的应用有哪些?
实验六:图
二、实验内容
1、(必做题)假设图中数据元素类型是字符型,请 采用邻接矩阵或邻接表实现图的以下基本操作: (1)构造图(包括有向图、有向网、无向图、无向 网); (2)根据深度优先遍历图; (3)根据广度优先遍历图。
typedef enum {DG,DN,UDG,UDN} GraphKind; 网,无向图,无向网
//图类型,有向图,有向
typedef struct ArcCell //邻接矩阵(元素)类型 { VRType adj; //顶点关系(边或弧),图用1\0表示是否相邻,网为权值 InfoType *info; //边或弧的相关信息指针 } ArcCell, AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct //图的邻接矩阵类型 { VertexType vexs[MAX_VERTEX_NUM]; //顶点向量 AdjMatrix arcs; //邻接矩阵 int vexnum,arcnum; //图的顶点数和边或弧数 GraphKind kind; //图的类型标志 } Mgraph;
数据结构实验
实验六
实验六:图
一、实验目的
1、复习图的逻辑结构、存储结构及基本操作; 2、掌握邻接矩阵、邻接表及图的创建、遍历; 3、了解图efine INFINITY INT_MAX #define MAX_VERTEX_NUM //最大值 20 //最大顶点个数
实验六:图
•
2、(选做题)给定一个无向图及两种颜色,请判 定能否为这个无向图的相邻顶点着不同颜色。例 如,对于有4个顶点(1、2、3、4)及3条边( (1,2)、(1,3)、(2,4))的无向图,可以为相邻顶点 着不同颜色;对于有4个顶点(1、2、3、4)及4 条边((1,2)、(1,3)、(1,4)、(2,4))的无向图,不 可以为相邻顶点着不同颜色。
预备知识
邻接表: #define MAX_VERTEX_NUM 20 //最大顶点数 typedef struct ArcNode //表结点类型 { int adjvex; //边或弧所依附的顶点的位置 struct ArcNode *nextarc; //指向下一条依附顶点的边或弧的指针 InfoType *info; //边或弧的相关信息指针 } ArcNode;