数学归纳法(专题)

合集下载

数学思想方法专题二(待定系数法、定义法数学归纳法)

数学思想方法专题二(待定系数法、定义法数学归纳法)

数学思想方法专题二(待定系数法、定义法)一.待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。

例1已知函数y=mx x nx22431+++的最大值为7,最小值为-1,求此函数式。

例2.设抛物线经过两点(-1,6)和(-1,-2),对称轴与x轴平行,开口向右,直线y=2x+7和抛物线截得的线段长是410, 求抛物线的方程。

练习一1.设f(x)=x2+m,f(x)的反函数f 1(x)=nx-5,那么m、n的值依次为_____。

A. 52, -2 B. -52, 2 C.52, 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____。

A. 10B. -10C. 14D. -143.在(1-x3)(1+x)10的展开式中,x5的系数是_____。

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d为()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an = 2n 1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 若数列{an}满足an+1 = 2an,且a1=1,则数列{an}是()A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定4. 用数学归纳法证明1+3+5+…+(2n1)=n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论1+3+5+…+(2n1)=n²5. 已知数列{an}的通项公式为an = n² + n,则数列{an+1 an}的前5项和为()A. 20B. 25C. 30D. 356. 数列{an}为等比数列,a1=2,a3=8,则a5=()A. 16B. 24C. 32D. 647. 已知数列{an}满足an+2 = an+1 + an,a1=1,a2=1,则a5=()A. 3B. 4C. 5D. 68. 若数列{an}的通项公式为an = 3n 2,则数列{an}的前n项和为()A. n(3n1)/2B. n(3n+1)/2C. n(3n2)/2D. n(3n+2)/29. 用数学归纳法证明等式2^n > n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论2^n > n²10. 已知数列{an}的通项公式为an = 2^n,则数列{an+1 / an}的值为()A. 1B. 2C. 3D. 4二、判断题:1. 数列{an}的通项公式为an = n²,则数列{an}是等差数列。

专题7.6---数学归纳法--学生版

专题7.6---数学归纳法--学生版

专题7.6数学归纳法练基础1.(2021·全国高三专题练习(理))用数学归纳法证明等式123(21)(1)(21)n n n +++++=++ 时,从n k =到1n k =+等式左边需增添的项是()A .22k +B .[]2(1)1k ++C .[(22)(23)]k k +++D .[][](1)12(1)1k k ++++2.(2020·全国高三专题练习)已知n 为正偶数,用数学归纳法证明1-111234+-+…+1-1n =2111 (24)2n n n ⎛⎫+++⎪++⎝⎭时,若已假设n=k (k ≥2,k 为偶数)时命题成立,则还需要用归纳假设证()A .n=k+1时等式成立B .n=k+2时等式成立C .n=2k+2时等式成立D .n=2(k+2)时等式成立3.(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+12+13+…+121n -<n (n ∈N *,n ≥2)”时,由n =k (k ≥2)时不等式成立,推证n =k +1时,左边应增加的项数是()A .2k -1B .2k -1C .2kD .2k +14.(2021·全国高三专题练习(理))用数学归纳法证明不等式()*1114,21225n N n n n n ∈+++≤≥++ 时,可将其转化为证明()A .()*11141,2122521n n n n n n N +++≤+∈≥+++ B .()*14,2122521111n n n n n n N +++≤∈-≥+++ C .()*114,21225211N n n n n n n +++≤∈+≥++ D .()*11141,212252N n n n n n n+++≤∈-≥++ 5.(2019·浙江高二月考)利用数学归纳法证明“1111...(,1)2321n n n N n *++++<∈>-”的过程中,由假设“n k =”成立,推导“1n k =+”也成立时,左边应增加的项数是()A.kB.1k +C.2kD.21k +6.(2020·上海徐汇区·高三一模)用数学归纳法证明()2511222n n N -*++++∈ 能被31整除时,从k 到1k +添加的项数共有__________________项(填多少项即可).7.(2019·湖北高考模拟(理))已知正项数列{}n a 满足11a =,前n 项和n S 满足214(3)(2,)n n S a n n N *-=+∈≥,则数列{}n a 的通项公式为n a =______________.8.(2019届江苏省扬州市仪征中学摸底)已知正项数列中,1=1,r1=1+∈∗用数学归纳法证明:<r1∈∗.9.(2021·全国高三专题练习)数列{}n a 满足()*2N n n S n a n =-∈.(1)计算123a a a 、、,并猜想n a 的通项公式;(2)用数学归纳法证明(1)中的猜想.10.(2021·全国高三专题练习(理))已知数列{a n }满足:11a =,点*1(,)()n n a a n N +∈在直线21y x =+上.(1)求234,,a a a 的值,并猜想数列{a n }的通项公式;(2)用数学归纳法证明(1)中你的猜想.练提升1.(2021·全国)已知数列{}n a 满足()*1n n nna a n N a +=+∈,10a >,则当2n ≥时,下列判断一定正确的是()A .1n a n <+B .211n n n n a a a a +++-<-C .n a n≥D .1n a n ≥+2.(2021·浙江高三专题练习)已知数列{}n a ,满足()101a a a =<<,()()()*11ln 1n n n a a a n N ++=+∈,则()A .110nn a a n+<<<B .110n n a a n+<<<C .110n n a a n+<<<D .110x n a a n+<<<3.(2020·浙江省桐庐中学)数列{}n a 满足()2*1n n n a a a n N +=-+∈,110,2a ⎛⎫∈ ⎪⎝⎭,则以下说法正确的个数()①10n n a a +<<;②22221231n a a a a a ++++< ;③对任意正数b ,都存在正整数m 使得12311111111mb a a a a ++++>---- 成立;④11n a n <+.A .1B .2C .3D .44.(2021·全国高三其他模拟(理))已知数列{}n a 满足:10a =,()()1ln 1n an n a e a n *+=+-∈N ,前n 项和为n S (参考数据:ln 20.693≈,ln 3 1.099≈,则下列选项错误的是().A .{}21n a -是单调递增数列,{}2n a 是单调递减数列B .1ln 3n n a a ++≤C .2020670S <D .212n na a -≤5.(2021·上海市建平中学高三开学考试)有限集S 的全部元素的积称为该数集的“积数”,例如{}2的“积数”为2,{}2,3的“积数”为6,1111,,,,23n ⎧⎫⋅⋅⋅⎨⎬⎩⎭的“积数”为1!n ,则数集*1,22021,M x x n n N n ⎧⎫==≤≤∈⎨⎬⎩⎭的所有非空子集的“积数”的和为___________.6.(2021·浙江高三期末)已知数列{}n a 满足0n a >,前n 项和为n S ,若33a =,且对任意的*k N ∈,均有211222k a k a -+=,21222log 1k k a a +=+,则1a =_______;20S =______.7.(2020·江苏南通·高三其他)数列{}n a 的前n 项和为n R ,记11nn i S i==∑,数列{}n b 满足11b a =,()12n n n n R b S a n n-=+≥,且数列{}n b 的前n 项和为n T .(1)请写出n R ,n S ,n T 满足的关系式,并加以证明;(2)若数列{}n a 通项公式为112n n a -=,证明:22ln n T n <+.8.(2020届浙江省“山水联盟”高三下学期开学)已知等比数列{}n a 的公比1q >,且23414a a a ++=,31a +是2a ,4a 的等差中项,数列{}n b 满足:数列{}n n a b ⋅的前n 项和为2n n ⋅.(1)求数列{}n a 、{}n b 的通项公式;(2)数列{}n c 满足:13c =,*1,n n n n b c c n N c +=+∈,证明*12(2),2n n n c c c n N +++⋅⋅⋅+>∈9.(2020届浙江省嘉兴市3月模拟)设数列{}n a 的前n 项和为n S ,已知1a ,n a ,n S 成等差数列,且542a S =+,*n N ∈.(1)求数列{}n a 的通项公式;(2)记2nn na b S =,*n N ∈,证明:()12314421n n b b b +++≤-- ,*n N ∈.10.已知点(,)满足r1=.r1,r1=1−42(∈∗),且点1的坐标为(−1,1).(1)求过点1,2的直线的方程;(2)试用数学归纳法证明:对于∈∗,点都在(1)中的直线上.练真题1.(2020·全国高考真题(理))设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2na n }的前n 项和S n .2.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时(Ⅰ)10n n x x +<<;(Ⅱ)1122n n n n x x x x ++-≤;(Ⅲ)121122n n n x --≤≤.3.(湖北省高考真题)已知数列{}n a 的各项均为正数,1(1()nn n b n a n n +=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e xf x x =+-的单调区间,并比较1(1)n n+与e 的大小;(Ⅱ)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212n n b b b a a a 的公式,并给出证明;(Ⅲ)令112()nn n c a a a = ,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.4.(2021·全国高三专题练习)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .5.(江苏省高考真题)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(Ⅰ)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.6.(2021·上海普陀区·高三其他模拟)如图,曲线():10C xy x =>与直线:l y x =相交于1A ,作11A B l ⊥交x 轴于1B ,作12B A //l 交曲线C 于2A ,……,以此类推.(1)写出点123,,A A A 和123,,B B B 的坐标;(2)猜想()n A n N*∈的坐标,并用数学归纳法加以证明.。

专题数列极限数学归纳法

专题数列极限数学归纳法

自学专题二 函数 不等式 数列 极限数学归纳法一 能力培养1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨问题1数列{n a }满足112a =,212n n a a a n a ++⋅⋅⋅+=,(n N *∈). (I)则{n a }的通项公式n a = ; (II)则1100nn a -的最小值为 ; (III)设函数()f n 是1100nn a -与n 的最大者,则()f n 的最小值为 . 问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件:1a a =,1()n n a f a -= (n =2,3,4,⋅⋅⋅),21a a ≠,1()()n n f a f a --=1()n n k a a --(n =2,3,4,⋅⋅⋅),其中a 为常数,k 为非零常数.(I)令1n n n b a a +=-(n N *∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞.问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小 于零的等差数列.(I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ. 三 习题探讨 选择题1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是 A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b = A,23 B,2131n n -- C,2131n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是A,B,C,D,4在等差数列{}n a 中,1125a =,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是A,475t > B,837525t <≤ C,437550t << D,437550t <≤5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22221x y a b+=(0a b >>)上三个点,F 为焦点,若,,AF BF CF 成等差数列,则有A,2132x x x =+ B,2132y y y =+ C,213211x x x =+ D,2213x x x =⋅ 6在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为 第三项,9为第六项的等比数列的公比,则这个三角形是A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = .8223323232323236666n nn n S ++++=+++⋅⋅⋅+,则lim n n S →∞= . 9在等比数列{}n a 中,121lim()15n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前2m 项之和2m S = .11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <, ②96S S <,③7a 是各项中最大的一项,④7S 一定是n S 中的最大项,其中正确的是 . 解答题12已知23123()n n f x a x a x a x a x =+++⋅⋅⋅+,且123,,n a a a a ⋅⋅⋅组成等差数列(n 为正偶数).又2(1)f n =,(1)f n -=,(I)求数列的通项n a ;(II)试比较1()2f 与3的大小,并说明理由.13已知函数2()31f x x bx =++是偶函数,()5g x x c =+是奇函数,正数数列{}n a 满足11a =,211()()1n n n n n f a a g a a a +++-+=.(I)若{}n a 前n 项的和为n S ,则lim n n S →∞= ;(II)若12()()n n n b f a g a +=-,求n b 中的项的最大值和最小值.14设函数()f x 的定义域为全体实数,对于任意不相等的实数1x ,2x ,都有12()()f x f x -12x x <-,且存在0x ,使得00()f x x =,数列{}n a 中,10a x <,1()2()n n n f a a a n N +=-∈,求证:对于任意的自然数n ,有: (I)0n a x <; (II)1n n a x +<. 参考答案:问题1解:(I)212n n a a a n a ++⋅⋅⋅+=,得n S =2n n a当2n ≥时,1n n n a S S -=-=2n n a 21(1)n n a ---,有221(1)(1)n n n a n a --=-,即111n n a n a n --=+. 于是3241123112313451n n n a a a a a n a a a a a n --=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅+=2(1)n n +.又112a =,得n a =1(1)n n +. 由于1a 也适合该式,故n a =1(1)n n +.(II)1100nn a -=299n n -=2(49.5)2450.25n -- 所以当49n =或50时,1100nn a -有最小值2450-. (III)因()f n 是1100nn a -与n 的最大者,有(1100)()1100(100)nn n f n n n a ≤≤⎧⎪=⎨-<⎪⎩, 有min ()f n =(1)f =1.问题2(I)证明:由1210b a a =-≠,得2322121()()()0b a a f a f a k a a =-=-=-≠. 由数学归纳法可证10n n n b a a +=-≠(n N *∈). 而,当2n ≥时,1111111()()()n n n n n n n n n n n n n n b a a f a f a k a a k b a a a a a a +---------====--- 因此,数列{}n b 是一个公比为k 的等比数列. (II)解:由(I)知,11121()()n n n b kb k a a n N --*==-∈当1k ≠时,112211()(2)1n n k b b b a a n k--++⋅⋅⋅+=-≥-当1k =时,12n b b b ++⋅⋅⋅+=21(1)()n a a --(2n ≥)而12213211()()()(2)n n n n b b b a a a a a a a a n -++⋅⋅⋅+=-+-+⋅⋅⋅+-=-≥,有当1k ≠时,1n a a -= 1211()(2)1n k a a n k---≥-;当1k =时,1n a a -=21(1)()n a a --(2)n ≥. 以上两式对1n =时也成立,于是当1k ≠时,11211()1n n k a a a a k --=+--= 11(())1n k a f a a k--=+--当1k =时,121(1)()n a a n a a =+--=(1)(())a n f a a +--.(III)解:当1k <时,11()lim lim[(())]11n n n n k f a aa a f a a a k k-→∞→∞--=+-=+--.问题3解:(I)设点P(,x y ),由M (1,0)-,N (1,0)得(1,)PM MP x y =-=---,(1,)PN NP x y =-=--,(2,0)MN NM =-=有2(1)MP MN x ⋅=+,221PM PN x y ⋅=+-,2(1)NM NP x ⋅=-. 于是MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小于零的等差数列等价于2211[2(1)2(1)]22(1)2(1)0x y x x x x ⎧+-=++-⎪⎨⎪--+<⎩,即2230x y x ⎧+=⎨>⎩ 所以点P 的轨迹是以原点为圆心C. (II)设P(00,x y ),则由点P 在半圆C 上知,22001PM PN x y ⋅=+-又(1PM PN⋅=得cos 4PM PN PM PNθ⋅==⋅ 又001x <≤,12≤,有1cos 12θ<≤, 03πθ≤<,sin 1cos θ=-=由此得0tan y θ==. 习题解答:1由1(21)0n n a a n k +-=++>,n N *∈恒成立,有30k +>,得3k >-,选D.21211212112112121(21)22(21)21223(21)131(21)2n n n n n n n n n n a a n a a a a Sn n b b b b T n n n ------+-+--======+-+--,选B. 3设三边长分别为2,,a aq aq ,且0,0a q >> ①当1q ≥时,由2a aq aq +>,得1q ≤<②当01q <<时,由2aq aq a +>,1q <<,q <<选D. 4由10191a a d =+>,且9181a a d =+≤,而21lim ()2n nn da S t n →∞+==, 又1125a =,于是737550t <≤,选D.5由椭圆第2定义得222132()()22()a a a AF CF x x BF x c c c+=+++==+,选A.6由条件得31444tan ,9tan 3A B =-+=,有tan 2A =,tan 3B =. 得tan tan[()]tan()1C A B A B π=-+=-+=,于是ABC ∆为锐角三角形,选B. 7由12345636a a a a a a +++++=,12345180n n n n n n a a a a a a -----+++++=有12165()()()216n n n a a a a a a --++++⋅⋅⋅++=,即16()n a a +=216,得1n a a +=36,又13242na a n +⨯=,解得18n =. 822111111()()333222n n n S =++⋅⋅⋅++++⋅⋅⋅+,得11332lim 1121132n n S →∞=+=--.9由条件知,公比q 满足01q <<,且11115a q =-,当01q <<时,11015a <<;当10q -<<时,1121515a <<.于是1a 的取值范围是112(0,)(,)151515. 10当n 为奇数时,相邻两项为n a 与2n a +,由51n a n =+得25(2)1(51)n n a a n n +-=++-+ =10,且16a =.所以{}n a 中的奇数项构成以16a =为首项,公差10d =的等差数列.当n 为偶数时,相邻两项为n a 与2n a +,由n a = 22n ,得2222222n n n na a ++==,且22a = 所以{}n a 中的偶数项构成以22a =为首项,公比2q =的等比数列. 由此得212(1)2(12)610522212m m mm m S m m m +--=+⨯+=++--.11由6778,S S S S <>,得780,0a a ><,有0d <;96S S <;7S 是n S 中的最大值,选①②④. 12解:(I)由12(1)n f a a a =++⋅⋅⋅+=2n ,再依题意有1a +n a =2n ,即12(1)2a n d n +-=① 又121(1)n n f a a a a n --=-+-⋅⋅⋅-+=,(n 为正偶数)得2d =,代入①有21n a n =-. (II)2311111()3()5()(21)()22222n f n =+++⋅⋅⋅+-,2341111111()()3()5()(21)()222222n f n +=+++⋅⋅⋅+- 得2311111111(1)()2()2()2()(21)()2222222n n f n +-=+++⋅⋅⋅+--于是2111()12()(21)3222n f n n-=+---⋅<. 13解: (I)可得2()31f x x =+,()5g x x =,由已知211()()1n n n n n f a a g a a a +++-+=,得11(32)()0n n n n a a a a ++-⋅+=,而10n n a a ++≠,有123n n a a +=,于是1lim 3213n n S →∞==-.(II)215832()()6()1854n n n n b f a g a a +=-=-+, 由12()3n n a -=知n b 的最大值为1143b =,最小值为4374243b =.14证明:用数学归纳法 (I)当1n =时,10a a <命题成立.假设当n k =(k N *∈)时,0k a a <成立,那么当1n k =+时,由1212()()f x f x x x -<-, 得00()()k k f x f a x a -<-,又00()f x x =,有00()k k x f a x a -<-, 而0k a x <,得00()k k x f a x a -<-, 于是000()k k k a x x f a x a -<-<-,即0()2()k k k ka f a x f a a +<⎧⎨>⎩,又1()2k k k f a a a +=-,有10(2)2k k k a a a x ++-<,即10k a x +<,于是当1n k =+时,命题也成立. 综上所述,对任意的k N *∈,0n a a <.(II)由1212()()f x f x x x -<-,得00()()n n f x f a x a -<-, 又00()f x x =,得00()n n x f a x a -<-,又0n a a <,得00()n n x f a x a -<-,即000()n n n a x x f a x a -<-<-, 有()n n f a a >,而1()2n n n f a a a +=-,得12n n n a a a +->, 故1n n a a +>.。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1.若,则对于,.【答案】【解析】【考点】数学归纳法2.用数学归纳法证明:“1+a+a2++a n+1=(a≠1,n∈N*)”在验证n=1时,左端计算所得的项为( )A.1B.1+aC.1+a+a2D.1+a+a2+a3【答案】C【解析】当n=1时,左端为1+a+a2,故选C.考点:数学归纳法3.已知,,,,…,由此你猜想出第n个数为【答案】【解析】观察根式的规律,和式的前一项与后一项的分子相同,是等差数列,而后一项的分母可表示为,故答案为【考点】归纳推理.4.用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.5.利用数学归纳法证明“, ()”时,在验证成立时,左边应该是.【答案】【解析】用数学归纳法证明“, ()”时,在验证成立时,将代入,左边以1即开始,以结束,所以左边应该是.【考点】数学归纳法.6.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)能被9整除”,要利7.用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+用归纳法假设证n=k+1时的情况,只需展开( ).A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3【答案】A【解析】假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3.+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故应选A.8.用数学归纳法证明:【答案】通过两步(n=1,n=k+1)证明即可得出结论。

【解析】解:当n=1时,等式左边为2,右边为2,左边等于右边,当n=k时,假设成立,可以得到(k+1)+(k+2)+…+(k+k)=n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项,由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k),n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1),比较可得n=k+1时等式左边等于右边,进而综上可知,满足题意的所有正整数都成立,故证明。

高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。

数列与数学归纳法

数列与数学归纳法
4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设 命题成立时,可用的条件只有 ,而不能默认其它 的时依然成立.第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设 ,命题均成立,然后证明 命题成立.可使用的条件要比第一归纳法多,证明的步骤如下:
1归纳验证:验证 是满足条件的最小整数时,命题成立
3若 ,且 ,求 .
答案1 ;2 ,证明见解析;3 .
2由此猜想 .
下面用数学归纳法加以证明:
①当 时,由1知 成立;
②假设 ,结论成立,即 成立.
则当 时,有 ,即
即 时,结论也成立;
由①②可知, 的通项公式为 .
3由2知,
.
4.已知数列 的前 项和为 ,且满足 , .
1计算 , , ,根据计算结果,猜想 的表达式;
9.设 , ,令 , , .
1写出 , , 的值,并猜想数列 的通项公式;
2用数学归纳法证明你的结论.
答案1a1=1,a2= ,a3= ;a4= ,猜想an= n∈N+;2证明见解析.
答案1见解析;2见解析;3见解析
由数列的递推式,以及2的结论可得 ,根据等比数列的通项公式即可证明 ,再结合已知可得 ,即可证明不等式成立.
详解:1数学归纳法证明:
当 时, 成立
假设 时 ,成立,那么 时,假设 ,
则 ,矛盾
所以 ,故 得证
所以 ,故
2由



3由2得 ,则
所以
又 ,所以 ,所以 ,故
答案Ⅰ , , .
Ⅱ ,证明见解析.
由此猜想 .
下面用数学归纳法证明之:
当 时, ,结论成立;
假设 时,结论成立,即有 ,
则对于 时,

数学归纳法专题复习

数学归纳法专题复习

《数学归纳法》专题复习1.某个命题与正整数n 有关,若)(*N k k n ∈=时该命题成立,那么可推得1+=k n 时该命题也成立,现在已知当5=n 时该命题不成立,那么可推得( ).A 当6=n 时,该命题不成立 .B 当6=n 时,该命题成立 .C 当4=n 时,该命题不成立 .D 当4=n 时,该命题成立2.用数学归纳法证明“)(2221*+∈++≥N n n n n ”时,第一步验证为.3.用数学归纳法证明:当*∈N n 时,15322...2221-+++++n 是31的倍数时,当1=n 时原式为______,从k 到1+k 时需增添的项是________. 4.观察不等式:211>,131211>++,2371...31211>++++,2151...31211>++++,25311...31211>++++,…,由此猜测第n 个不等式为________)(•∈N n . 5.凸n 边形有)(n f 条对角线,则凸1+n 边形有对角线条数)1(+n f 与)(n f 的关系式为 .6.求证:33332(1)123[]2n n n +++++=)(•∈N n .7.证明不等式n n2131211<++++ (n ∈N).(2) 由(1)猜想数列{}n a 的通项公式并证明.9.(选修2-2P94例2)已知数列,...)13)(23(1,......,1071,741,411+-⨯⨯⨯n n , 计算4321,,,S S S S ,根据计算结果,猜想n S 的表达式,并用数学归纳法证明。

10.在数列{}n a ,{}n b 中,21=a ,41=b ,且n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比列)*∈N n .(1)求432,,a a a 与432,,b b b 的值.(2)由(1)猜测{}n a ,{{}n b 的通项公式,并证明你的结论.11.已知函数x x x f sin )(-=,数列}{n a 满足:101<<a ,)(1n n a f a =+,*∈N n . 证明: 101<<<+n n a a .12.已知数列{}n a 满足12+=+n a S n n .(1) 写出321,,a a a ,并推测n a 的表达式; (2) 用数学归纳法证明所得的结论.13.是否存在常数c b a ,,,使得等式)(12)1()1(32212222c bn an n n n n +++=+•++•+•对一切自然数n 成立?并证明你的结论.15.已知数列{}n a 的通项)1211lg(-+=n a n ,记n S 为{}n a 的前n 项和,试比较n S 与 12lg +n 的大小,并证明你的结论.《数学归纳法》专题复习答案1.答案:.C 解析:因为若)(*N k k n ∈=时该命题成立,那么可推得1+=k n 时该命题也成立,由它的逆否命题可知,若当1+=k n 时该命题不成立,那么当)(*N k k n ∈=时该命题也不成立.应选.C 2.当1=n 时,左边4211==+,右边42112=++=,所以左边=右边,命题正确.3.43222221++++,451552...22+++++k k k . 4.答案:.2121...31211n n >-++++解析:1232-= ,1273-=,12154-=,12315-=,可猜测第n 个不等式为:.2121...31211nn >-++++5.答案:.1)()1(-+=+n n f n f 解析:由n 边形到1+n 边形,增加的对角线是增加的一个顶点与原2-n 个顶点连成的2-n 条对角线,与原先的一条边成了对角线,故12)()1(+-+=+n n f n f ,即.1)()1(-+=+n n f n f6.证明 (1)当1n =时,左边=31=1,右边=212()2⨯=1,等式成立. (2)假设当n k =时,等式成立,就是33332(1)123[]2k k k +++++=,那么 3333323(1)123(1)[](1)2k k k k k +++++++=++22(1)[][4(1)]2k k k +=++2(1)(2)[]2k k ++=.即当1n k =+时,等式也成立.综上所述,等式对任何自然数n 都成立.7.证明:①当1=n 时,左边1=,右边2=.左边<右边,不等式成立. ②假设k n =时,不等式成立,即k k2131211<++++.那么当1+=k n 时,11131211++++++k k112++<k k ,故即要证明12112+<++k k k ,只需证)1(2112+<++k k k ,即证1212+<+k k k ,只要证144)1(42++<+k k k k ,即证10<,而10<成立,所以当1+=k n 时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立. 8.解:(1)当1=n 时,)1(21111a a a +=,121=∴a ,又数列{}n a 的各项均为正数,.11=∴a 当2=n 时,)1(2122212a a a a S +=+=,012222=-+∴a a ,212±-=∴a , 又数列{}n a 的各项均为正数,.122-=∴a 当3=n 时,)1(21333213a a a a a S +=++=,0122323=-+∴a a ,323±-=∴a ,又数列{}n a 的各项均为正数,.233-=∴a (2) 由(1)猜想数列{}n a 的通项公式为.1--=n n a n下面用数学归纳法证明:①由(1)已得当1=n 时,命题成立;当1+=k n 时,⎪⎪⎭⎫ ⎝⎛+=+++111121k k k a a S ,即)1(21111++++=+k k k k a a a S ,)1(21111++++=+∴k k k a a a k ,即012121=-+++k k a k a ,11+±-=∴+k k a k ,又数列{}n a 的各项均为正数,.11k k a k -+=∴+即当1+=k n 时,命题成立.10.解:(1)由条件得12++=n n n a a b ,.121++⋅=n n n b b a又21=a ,41=b ,⎩⎨⎧==+∴21221212b b a b a a ,即⎩⎨⎧=⨯=+22224422b a a ,⎩⎨⎧==∴9622b a ;同理⎩⎨⎧==161233b a ,⎩⎨⎧==252044b a .(2)2121⨯==a ,3262⨯==a ,43123⨯==a ,54204⨯==a ,…又2124==b ,2239==b ,23416==b ,24525==b ,…∴猜测)1(+=n n a n ,2)1(+=n b n .下面用数学归纳法证明)1(+=n n a n ,2)1(+=n b n :①当1=n 时,21=a ,41=b ,结论成立.②假设当)(*∈=N k k n 时结论成立, 即)1(+=k k a k ,2)1(+=k b k ,那么当1+=k n 时,)2)(1(])1(2)[1()1()1(2221++=-++=+-+=-=+k k k k k k k k a b a k k k ]1)1)[(1(+++=k k ..]1)1[()2()1()2()1(22222211++=+=+++==++k k k k k b a b k k k ∴当1+=k n 时,结论也成立.由①②知,)1(+=n n a n ,2)1(+=n b n 对一切正整数都成立.11.证明:先用数学归纳法证明:10<<n a ,*∈N n . ①当1=n 时,101<<a ,∴当1=n 时,10<<n a ; ②假设当k n =(1≥k )时,结论成立,即10<<k a . 则当1+=k n 时,).1,0(,sin )(1∈-==+k k k k k a a a a f a∵当10<<x 时,0cos 1)(>-='x x f ,∴)(x f 在)1,0(单调递增. ∵)(x f 在]1,0[上连续,∴)1()()0(f a f f k <<,即11sin 101<-<<+k a . ∴当1+=k n 时,结论成立.∴由①、②可得,10<<n a 对一切正整数都成立. 又∵10<<n a ,0sin >n a ,∴n n n n a a a a <-=+sin 1,∴101<<<+n n a a .13.解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=c b a c b a c b a 3970)24(2122)(614解得10,11,3===c b a ,于是对3,2,1=n ,下面等式成立:)10113(12)1()1(32212222+++=+•++•+•n n n n n n 令222)1(3221+•++•+•=n n S n 假设kn =时上式成立,即)10113(12)1(2+++=k k k k S k ,那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12)1(++++++=k k k k k k 2)2)(1()53)(2(12)1(++++++=k k k k k k)101253(12)2)(1(2+++++=k k k k k ]10)1(11)1(3[12)2)(1(2++++++=k k k k这就是说,等式当1+=k n 时也成立.综上所述,当10,11,3===c b a 时,题设的等式对一切自然数n 都成立.15.解:)1211lg(...)311lg()11lg(-++++++=n S n )1211).....(311)(11lg(-+++=n . 因此要比较n S 与12lg +n 的大小,可先比较)1211).....(311)(11(-+++n 与12+n 的大小.当1=n 时,311211=+⨯>+,当2=n 时,945512296438342)311)(11(==+⨯>==⨯=++, 当3=n 时,.2517571322525651656342)511)(311)(11(==+⨯>==⨯⨯=+++ 由此推测)1211).....(311)(11(-+++n .12+>n 下面用数学归纳法证明上面猜想:当1=n 时,不等式成立.假设当k n =时,不等式成立,即)1211).....(311)(11(-+++k .12+>k 那么当1+=k n 时,)1211(12)1211)(1211).....(311)(11(+++>++-+++k k k k , 所以只要证明1)1(2)1211(12++>+++k k k ,即要证32122212+>++⋅+k k k k , 只需证)32)(12(22++>+k k k ,即证38448422++>++k k k k ,故只要证明34>.而34>成立,所以当1+=k n 时不等式成立.综上所述,当*∈N n 时不等式成立.。

数学归纳法、数列的通项公式与数列求和

数学归纳法、数列的通项公式与数列求和

上一页
返回导航
下一页
专题三 数列与数学归纳法
3
[典型例题]
(2019·宁波市九校联考)已知 n∈N*,Sn=(n+1)·(n+2)…(n+n),Tn=2n×1×3×… ×(2n-1).
(1)求 S1,S2,S3,T1,T2,T3; (2)猜想 Sn 与 Tn 的关系,并用数学归纳法证明. 【解】 (1)S1=T1=2,S2=T2=12,S3=T3=120. (2)猜想:Sn=Tn(n∈N*). 证明:①当 n=1 时,S1=T1; ②假设当 n=k(k≥1 且 k∈N*)时,Sk=Tk, 即(k+1)(k+2)…(k+k)=2k×1×3×…×(2k-1),
上一页
返回导航
下一页
专题三 数列与数学归纳法
16
【答案】 (1)an=2-12n-1 (2)2n+1-3 (3)n2
上一页
返回导航
下一页
专题三 数列与数学归纳法
17
由递推式求数列通项公式的常见类型 (1)形如 an+1=an+f(n)的数列,求解此类数列的通项公式一般先通过变形为 an+1-an= f(n),再利用累加法 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,代入相应的关系式, 再加以合理的分析与求解.同理,形如 an+1=f(n)an 型数列可转化为用累乘法求解. (2)形如 an+1=can+d(c≠0,1)的数列,求解此类线性关系的数列的通项公式一般可用待
上一页
返回导航
下一页
专题三 数列与数学归纳法
12
【解析】 (1)由于 Sn=2n-an,所以 Sn+1=2(n+1)-an+1,后式减去前式,得 Sn+1-Sn =2-an+1+an,即 an+1=12an+1,变形为 an+1-2=12(an-2),则数列{an-2}是以 a1-2 为首项,12为公比的等比数列.又 a1=2-a1,a1=1,则 an-2=(-1)·12n-1,所以 an=2 -12n-1.

高考真题突破:数学归纳法

高考真题突破:数学归纳法

专题十三 推理与证明第三十九讲 数学概括法解答题1.( 2017 浙江)已知数列 { x n } 知足: x 11, x n x n 1 ln(1 x n 1) (n N * ) .证明:当 n N * 时(Ⅰ) 0x n 1 x n ;(Ⅱ) 2x n 1x n≤x nxn 1 ;2(Ⅲ)1 ≤ x n ≤1.2n 12n 22. (2015 湖北 )已知数列 { a n } 的各项均为正数,b n n (1 1nN ) , e 为自然对数的) a n (nn底数.(Ⅰ)求函数 f ( x) 1x e x的单一区间,并比较 (11 )n与 e 的大小;n(Ⅱ)计算 b 1 , b 1 b 2 , b 1b 2b 3 ,由此推断计算b 1 b 2b n 的公式,并给出证明;a 1a 2 a 3 a 1a 2a 1 a 1 a 2a n1(Ⅲ)令 c n (a 1a 2a n ) n ,数列 { a n } , { c n } 的前 n 项和分别记为 S n , T n , 证明: T n eS n .3. (2014 江苏 ) 已知函数 f 0 ( x) sin x ( x 0) ,设 f n ( x) 为 f n 1 ( x) 的导数, n N .x(Ⅰ)求 2 f 122 f 22 的值;( 2)证明:对随意的 nN ,等式 nf n 1 44 f n422 建立..(2014 安徽)设实数 c0 ,整数p 1 , n N *.4(Ⅰ)证明:当x1 且 x 0 时, (1 x) p 1 px ;1p1a nca n 1 p ,(Ⅱ)数列a n知足 a 1c p , a n 1pp1证明: a nan 1c p.5.( 2014 重庆)设 a 1 1,a n 1a n 2 2a n 2 b(nN*)(Ⅰ)若(Ⅱ)若b1,求 a2 ,a3及数列 { a n} 的通项公式;b 1 ,问:能否存在实数c 使得a2n c a2n 1对全部 n N *建立?证明你的结论.6.( 2012 湖北)(Ⅰ)已知函数f (x)rx x r(1r ) (x 0) ,此中r为有理数,且0r 1 .求 f (x) 的最小值;(Ⅱ)试用(Ⅰ)的结果证明以下命题:设 a10, a20 ,b1 , b2为正有理数 . 若 b1b2 1 ,则 a1b1 a2b2a1b1a2 b2;(Ⅲ)请将(Ⅱ)中的命题推行到一般形式,并用数学概括法证明你所推行的命题......注:当为正有理数时,有求导公式( x )x 1 .72011湖南)已知函数f ( x)x3, g( x)x x..((Ⅰ)求函数 h(x) f( x)g( x) 的零点个数,并说明原因;(Ⅱ)设数列 { a n } (n N *)知足 a1 a ( a0) , f (a n 1 )g( a n ) ,证明:存在常数M ,使得关于随意的n N *,都有 a n≤M.专题十三推理与证明第三十九讲数学概括法答案部分1.【分析】(Ⅰ)用数学概括法证明:x n0当 n 1 时,x1 1 0假定 n k 时,x k0 ,那么 n k1时,若 x k 1≤ 0 ,则 0 x k x k 1 ln(1 x k 1 ) ≤ 0 ,矛盾,故 x k 1 0 .所以 x n0 (n N *)所以 x n x n1ln(1x n1 )xn 1所以 0 x n 1x n (n N* )(Ⅱ)由 x n xn 1ln(1x n 1 ) x n 1得x n x n 1 4x n12x nx n 2 12x n 1 ( x n 1 2) ln(1 x n 1 )记函数 f ( x)x 2 2x ( x2)ln(1 x)( x ≥ 0)函数 f ( x) 在 [0, ) 上单一递加,所以f ( x) ≥ f (0) =0,所以 x n 2 1 2x n 1 ( x n 1 2)ln(1 x n 1)f ( x n1)≥0故 2x n 1x n ≤x n x n 1(n N )2(Ⅲ)由于x nxn 1ln(1 x n 1 ) ≤ x n 1xn 12x n 1所以 x n ≥1 得2n 1由x n x n 1≥ 2 x n 1 x n 得211 11xn 1≥ 2()2x n 2所以11≥ 2( 11) ≥ ≥ 2n 1 ( 1 1) 2n 2x n 2xn 12x 1 2故 x n ≤12n2综上,1 ≤ x n ≤ 1 ( n N ) .2n 1 2n 2) , f ( x)1 e x.2.【分析】(Ⅰ) f ( x) 的定义域为 (, 当 f ( x) 0 ,即 x 0 时, f ( x) 单一递加;当 f ( x) 0 ,即 x0 时, f ( x) 单一递减.故 f (x) 的单一递加区间为 ( ,0) ,单一递减区间为 (0,) .当 x0 时, f (x)f (0)0,即1 x e x .1,得1 1 11 )n令 xe n ,即 (1 e . ①n n n(Ⅱ)b 11 (11 11 2 ;b 1b 2b 1 b 2 2 2(11 222;a 1)1a 1a 2a 1 a 2)(2 1)312b 1 b 2 b 3 b 1b 2 b 3 213(3 343a 1 a 2 a 3 a 1a 2 a 33 3(1 )1).3由此推断:b 1b 2 b n (n1) n.②a 1a 2 a n下边用数学概括法证明②.(1)当 n 1时,左侧 右侧2 ,②建立.(2)假定当 n k 时,②建立,即b 1b 2 b k (kk.a 1a 2a k 1)当 nk1时, b k 1 (k 1)(11k 11 ,由概括假定可得) a kk1b 1b 2 b kbk 1b 1b 2 b k bk 1(k k(k 1)(1 1 k 12)k 1.a 1a 2a kak 1a 1a 2a kak 1 1) k 1 )( k所以当 n k 1 时,②也建立.依据( 1)( 2),可知②对全部正整数 n 都建立.(Ⅲ)由 c n 的定义,②,算术 -几何均匀不等式,b n 的定义及①得1111T cc2 cc(a )1(a a ) 2( a a a )3(a a2a )nn1 3n11 21 2 31 n1111(b 1) 1(bb 12 ) 2 (b 1b 2 b 3 ) 3(b 1b 2b n ) n234n1b 1b 1 b 2 b 1 b 2b 3b 1 b 2b n1 223 3 4n(n 1)111 ] b2 [ 111]1b 1 [2 2 3n( n3 3 4n( nb n11) 21)n(n 1)b 1 (11 1 111n) b 2 (n)b n (n )12 1 n1b 1b 2b n(11 1 12(11 n12n) a 1(1) a 2n ) a n12ea 1 ea 2ea neS n ,即 T n eS n .sin x cos x sin x3.【分析】(Ⅰ)由已知,得f 1 (x) f 0 (x) x x x 2 ,于是 f 2 ( x)f 1 ( x)cos xsin x sin x 2cos x2sin x ,xx 2 xx 2x 3所以 f 1()4( )2 162, f23 ,22 故 2 f ( ) 2 f ( )1.12 2 2(Ⅱ)证明:由已知,得xf 0 ( x) sin x, 等式两边分别对 x 求导,得 f 0 ( x) xf 0 (x)cos x ,即 f 0 ( x) xf 1 (x) cos x sin( x2) ,近似可得2 f ( x) xf ( x) sin x sin(x) ,3 f 2 ( x) xf 3 ( x)cos xsin( x 3 ) ,2 4 f3 ( x) xf4 ( x) sin x sin( x 2 ) .下边用数学概括法证明等式nf n 1 ( x)xf n ( x) sin(x n) 对全部的 n N * 都建立 .2(i) 当 n=1 时,由上可知等式建立 .(ii) 假定当 n=k 时等式建立 , 即 kf k 1 ( x) xf k ( x) sin( xk ) .2 由于 [kf k 1 ( x) xf k ( x)] kf k 1 (x) f k ( x) xf k ( x) (k 1) f k (x) f k 1 ( x),[sin( xk)]cos(xk ) ( x k )sin[ x (k1) ] ,22 22所以 (k1) f k ( x) f k 1 (x)sin[ x (k 1) ] .2 所以当 n=k +1 时 ,等式也建立 .综合 (i),(ii) 可知等式 nf n 1 ( x)xf n ( x)sin( xn) 对全部的 n N * 都建立 .2令 x,可得 nf n 1 ( ) f n ( ) sin( n ) ( n N * ).444 4 42所以 nf n 1 ( )f n ( ) 2( n N * ).44 424.【分析】(Ⅰ)证:用数学概括法证明( 1)当 p 2时, (1 x)21 2xx 21 2x ,原不等式建立。

第4讲数学归纳法

第4讲数学归纳法

三个注意 运用数学归纳法应注意以下三点: (1)n=n0时成立,要弄清楚命题的含义. (2)由假设n=k成立证n=k+1时,要推导详实,并且一定 要运用n=k成立的结论. (3)要注意n=k到n=k+1时增加的项数.
考向一
用数学归纳法证明等式
[审题视点]注意第一步验证的值,在第二步推理证明时 要注意把假设作为已知.
专题十三 推理证明、算法、复数
第4讲 数学归纳法
1.数学归纳法的原理及其步骤. 2.能用数学归纳法证明一些简单的数学命题. 【复习指导】 复习时要抓住数学归纳法证明命题的原理,明晰其内在的联 系,把握数学归纳法证明命题的一般步骤,熟知每一步之间 的区别联系,熟悉数学归纳法在证明命题中的应用技巧.
1.归纳法
下面用数学归纳法证明这个猜想:
由于方法选择不当导致失误 【问题诊断】 用数学归纳法证明与正整数有关的一些等式 命题时,关键在于弄清等式两边的构成规律,等式的两边 各有多少项,由n=k到n=k+1时,等式的两边会增加多少 项,增加怎样的项,其难点在于归纳假设后,如何推证对 下一个正整数值命题也成立. 【防范措施】 把归纳假设当做已知条件参加推理.明确对下 一个正整数值命题成立的目标,通过适当的变换达到这个 目标,这里可以使用综合法,也可以使用分析法,甚至可 以再次使用数学归纳法.
(2)用数学归纳法证明一个与正整数有关的命题时,其步骤为: ①归纳奠基:证明当取第一个自然数n0时命题成立; ②归纳递推:假设n=k,(k∈N*,k≥n0)时,命题成立,证明当n =k+1时,命题成立; ③由①②得出结论.
两个防范 数学归纳法是一种只适用于与正整数有关的命题的证明方法, 第一步是递推的“基础”,第二步是递推的“依据”,两 个步骤缺一不可,在证明过程中要防范以下两点: 第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适 的起始值. (2)第二步中,归纳假设起着“已知条件”的作用,在证明n= k+1时,命题也成立的过程中一定要用到它,否则就不是 数学归纳法.第二步关键是“一凑假设,二凑结论”.

专题20 数学归纳法及其证明(解析版)

专题20  数学归纳法及其证明(解析版)

专题20 数学归纳法及其证明1、(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此 2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .2、(2016年江苏卷). (1) 求7C 36-4C 47的值; (2) 设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+n C m n -1+(n +1)C m n =(m +1)C m +2n +2.规范解答 (1) 7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2) 解法1 当n =m 时,结论显然成立.当n >m 时,(k +1)C m k =k +1·k !m !·k -m !=(m +1)·k +1!m +1!·[k +1-m +1]!=(m +1)C m +1k +1,k =m +1,m +2,…,n .又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n .因此,(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)·C m n =(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)·C m n ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)]=(m +1)C m +2n +2.解法2 对任意的m ∈N *,①当n =m 时,左边=(m +1)C m m =m +1,右边=(m +1)C m +2m +2=m +1,等式成立,②假设n =k (k ≥m )时命题成立,即(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+k C m k -1+(k +1)C m k =(m +1)C m +2k +2,当n =k +1时,左边=(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+k C m k -1+(k +1)C m k +(k +2)C m k +1=(m +1)·C m +2k +2+(k +2)C mk +1,右边=(m +1)C m +2k +3,而(m +1)C m +2k +3-(m +1)C m +2k +2=(m +1)×k +3!m +2!k -m +1!-k +2!m +2!k -m !=(m +1)×k +2!m +2!k -m +1![k +3-(k -m +1)]=(k +2)×k +1!m !k -m +1!=(k +2)C m k +1, 因此(m +1)C m +2k +2+(k +2)C m k +1=(m +1)C m +2k +3,因此,左边=右边,因此n =k +1时命题也成立,综合①②可得命题对任意n ≥m 均成立.3、(2015年江苏卷) 已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1) 写出f (6)的值;(2) 当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.规范解答 (1) 因为S 6={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,4),(2,6),(3,1),(3,3),(3,6)},故f (6)=13.(2) 当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+n 2+n3, n =6t ,n +2+n -12+n -13, n =6t +1,n +2+n 2+n -23, n =6t +2,n +2+n -12+n3, n =6t +3,n +2+n 2+n -13, n =6t +4,n +2+n -12+n -23, n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立;②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:1) 若k +1=6t ,则k =6(t -1)+5,此时有 f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;2) 若k +1=6t +1,则k =6t ,此时有 f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+k +1-12+k +1-13,结论成立; 3) 若k +1=6t +2,则k =6t +1,此时有 f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+k +1-23,结论成立;4) 若k +1=6t +3,则k =6t +2,此时有 f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+k +1-12+k +13,结论成立; 5) 若k +1=6t +4,则k =6t +3,此时有 f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+k +1-13,结论成立;6) 若k +1=6t +5,则k =6t +4,此时有 f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+k +1-12+k +1-23,结论成立. 综上所述,结论对满足n ≥6的自然数n 均成立.4、(2014年江苏卷) 已知函数f 0(x )=sin xx(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1) 求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2) 证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n⎝⎛⎭⎫π4=22都成立. 规范解答 (1) 由已知,得f 1(x )=f ′0(x )=sin x x ′=cos x x -sin xx2, 于是f 2(x )=f ′1(x )=cos x x ′-sin x x 2′=-sin x x -2cos x x 2+2sin x x 3,所以f 1π2=-4π2,f 2π2=-2π+16π3.故2f 1π2+π2f 2π2=-1.(2) 由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin x +π2,类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π),3f 2(x )+xf 3(x )=-cos x =sin x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin x +n π2对所有的n ∈N *都成立.(ⅰ) 当n =1时,由上可知等式成立.(ⅱ) 假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin x +k π2.因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k +1(x ), sin x +k π2′=cos x +k π2·x +k π2′=sin x +k +1π2, 所以(k +1)f k (x )+xf k +1(x )=sin x +k +1π2. 因此当n =k +1时,等式也成立.结合(ⅰ)(ⅱ)可知等式nf n -1(x )+xf n (x )=sin x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1π4+π4f n π4=sin π4+n π2(n ∈N *).所以对任意的n ∈N *,等式nf n -1π4+π4·f n π4=22都成立.一.数学归纳法:一般证明一个与正整数n 有关的命题,按下列步骤进行 ①归纳奠基:证明当n 取第一个值n 0时命题成立②归纳递推:假设n=k 时命题成立 ,证明当n=k+1时的命题也成立。

高考第一轮复习指导方法之数学归纳法

高考第一轮复习指导方法之数学归纳法

高考第一轮复习指导方法之数学归纳法数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范畴内成立。

(一)第一数学归纳法一样地,证明一个与正整数n有关的命题,有如下步骤(1)证明当n取第一个值时命题成立,关于一样数列取值为1,但也有专门情形,(2)假设当n=k(k[n的第一个值],k为自然数)时命题成立,证明当n=k +1时命题也成立。

(二)第二数学归纳法关于某个与自然数有关的命题,(1)验证n=n0时P(n)成立,(2)假设no综合(1)(2)对一切自然数n(n0),命题P(n)都成立,(三)螺旋式数学归纳法P(n),Q(n)为两个与自然数有关的命题,假如(1)P(n0)成立,(2)假设P(k)(kn0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k +1)成立,综合(1)(2),关于一切自然数n(n0),P(n),Q(n)都成立,(四)倒推数学归纳法(又名反向数学归纳法)(1)关于无穷多个自然数命题P(n)成立,(2)假设P(k+1)成立,并在此基础上推出P(k)成立,综合(1)(2),对一切自然数n(n0),命题P(n)都成立要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

数学归纳法的内容确实是这些,查字典数学网期望考生都能够考生理想的大学。

观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。

随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。

我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。

数学归纳法总结

数学归纳法总结

数学归纳法总结数学归纳法总结【数学归纳法】【数学归纳法的基本形式】1.第一数学归纳法设P(n)是一个与正整数有关的命题,如果①当nn0(n0N)时,P(n)成立;②假设nk(kn0,kN)成立,由此推得nk1时,P(n)也成立;那么根据①②可得到结论:对一切正整数nn0,命题P(n)成立。

2.第二数学归纳法(串值归纳法)设P(n)是一个与正整数有关的命题,如果①当nn0(n0N)时,P(n)成立;②假设nk(kn0,kN)成立,由此推得nk1时,P(n)也成立;那么根据①②可得到结论:对一切正整数nn0,命题P(n)成立。

3.跳跃数学归纳法设P(n)是一个与正整数有关的命题,如果①当n1,2,...,l时,P(1),P(2),...,P(l)成立;②假设nk(kn0,kN)成立,由此推得nkl时,P(n)也成立;那么根据①②可得到结论:对一切正整数n1,命题P(n)成立。

4.反向数学归纳法设P(n)是一个与正整数有关的命题,如果①P(n)对无限多个正整数n成立;②从命题P(n)成立可以推出命题P(n1)也成立;那么根据①②可得到结论:对一切正整数n,命题P(n)成立。

如果命题P(n)对无穷多个自然数成立的证明很困难,我们还可以考虑反向数学归纳法的另外两种形式:Ⅰ设P(n)是一个与正整数有关的命题,如果①n1时命题P(n)正确;②假如由P(n)不成立推出P(n1)不成立;那么根据①②可得到结论:对一切正整数n,命题P(n)成立。

Ⅱ设P(n)是一个与正整数有关的命题,如果①n1,2,...,r时,命题P(1),P(2),...,P(r)都成立;②假若由由P(n)不成立推出P(nr)不成立;那么根据①②可得到结论:对一切正整数n,命题P(n)成立。

以上讨论的均是完全归纳法,不完全归纳法是从特殊出发,通过实验、观察、分析、综合、抽象概括出一般性结论的一种重要方法,运用不完全归纳法可通过对数列前n项的计算、观察、分析推测出它的通项公式,或推测出这个数列的有关性质。

高考专题数学归纳法

高考专题数学归纳法

高考专题数学归纳法最新考纲 1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题.知识梳理1.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.数学归纳法的框图表示诊断自测1.判断正误(在括号内打“√”或“×”)(1)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23.()(2)所有与正整数有关的数学命题都必须用数学归纳法证明.()(3)用数学归纳法证明问题时,归纳假设可以不用.()(4)不论是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项.()解析对于(2),有些命题也可以直接证明;对于(3),数学归纳法必须用归纳假设;对于(4),由n=k到n=k+1,有可能增加不止一项.答案(1)√(2)×(3)×(4)×2.(选修2-2P99B1改编)在应用数学归纳法证明凸n边形的对角线为12n(n-3)条时,第一步检验n等于()A.1B.2C.3D.4解析三角形是边数最少的凸多边形,故第一步应检验n=3. 答案 C3.已知f(n)=1n+1n+1+1n+2+…+1n2,则()A.f(n)中共有n项,当n=2时,f(2)=12+13B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14C.f(n)中共有n2-n项,当n=2时,f(2)=12+13D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14解析f(n)共有n2-n+1项,当n=2时,1n=12,1n2=14,故f(2)=12+13+14.答案 D4.用数学归纳法证明1+12+13+…+12n-1<n(n∈N,且n>1),第一步要证的不等式是________.解析当n=2时,式子为1+12+13<2.答案1+12+13<25.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=________时,命题亦真.解析由于步长为2,所以2k-1后一个奇数应为2k+1.答案2k+16.用数学归纳法证明“当n为正偶数时,x n-y n能被x+y整除”第一步应验证n =________时,命题成立;第二步归纳假设成立应写成________.解析因为n为正偶数,故第一个值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除.答案2x2k-y2k能被x+y整除考点一用数学归纳法证明等式【例1】用数学归纳法证明:1 2×4+14×6+16×8+…+12n(2n+2)=n4(n+1)(n∈N*).证明(1)当n=1时,左边=12×1×(2×1+2)=1 8,右边=14(1+1)=1 8,左边=右边,所以等式成立.(2)假设n=k(k∈N*)时等式成立,即有1 2×4+14×6+16×8+…+12k(2k+2)=k4(k+1),则当n=k+1时,12×4+14×6+16×8+…+12k(2k+2)+12(k+1)[2(k+1)+2]=k4(k+1)+14(k+1)(k+2)=k(k+2)+14(k+1)(k+2)=(k+1)24(k+1)(k+2)=k+14(k+2)=k+14(k+1+1).所以当n=k+1时,等式也成立,由(1)(2)可知,对于一切n∈N*等式都成立.规律方法(1)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.(2)由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【训练1】求证:(n+1)(n+2)·…·(n+n)=2n·1·3·5·…·(2n-1)(n∈N*). 证明(1)当n=1时,等式左边=2,右边=2,故等式成立;(2)假设当n=k(k∈N*)时等式成立,即(k+1)(k+2)·…·(k+k)=2k·1·3·5·…·(2k-1),那么当n=k+1时,左边=(k+1+1)(k+1+2)·…·(k+1+k+1)=(k +2)(k +3)·…·(k +k )(2k +1)(2k +2) =2k ·1·3·5·…·(2k -1)(2k +1)·2 =2k +1·1·3·5·…·(2k -1)(2k +1), 所以当n =k +1时等式也成立. 由(1)(2)可知,对所有n ∈N *等式成立. 考点二 用数学归纳法证明不等式【例2】 等比数列{a n }的前n 项和为S n .已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0,且b ≠1,b ,r 均为常数)的图象上. (1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *).证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.(1)解 由题意,S n =b n +r , 当n ≥2时,S n -1=b n -1+r , 所以a n =S n -S n -1=b n -1(b -1),由于b >0,且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列,又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r =b ,解得r =-1.(2)证明 由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1. ①当n =1时,左式=32,右式=2, 左式>右式,所以结论成立.②假设n =k 时结论成立,即2+12·4+14·…·2k +12k>k +1,则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1,要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2,即证2k +32≥(k +1)(k +2), 由基本不等式可得2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立,故2k +32k +1≥k +2成立,所以当n =k +1时,结论成立. 由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.规律方法 应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法.【训练2】 求证:12+13+…+1n +1<ln(n +1),n ∈N *.证明 ①当n =1时,12<ln 2,结论成立.②假设当n =k (k ≥1,k ∈N *)时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2. 下面证明ln(k +1)+1k +2<ln(k +2). 令f (x )=ln(1+x )-x1+x(x >0), 则f ′(x )=x(1+x )2>0,∴f (x )在(0,+∞)上递增,∴f (x )>f (0)=0,∵1k +1>0,∴f ⎝ ⎛⎭⎪⎫1k +1>0,即ln ⎝ ⎛⎭⎪⎫1+1k +1-1k +11+1k +1>0, 即lnk +2k +1-1k +2>0, ∴ln(k +2)-ln(k +1)-1k +2>0,即ln(k +1)+1k +2<ln(k +2). ∴当n =k +1时,不等式也成立.综上由①②,12+13+…+1n +1<ln(n +1),n ∈N *成立.考点三 归纳——猜想——证明【例3】 已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明(1)中的猜想.(1)解 当n =1时,由已知得a 1=a 12+1a 1-1,即a 21+2a 1-2=0.∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0).同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N *).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k ,将a k =2k +1-2k -1代入上式,整理得 a 2k +1+22k +1a k +1-2=0, ∴a k +1=2k +3-2k +1, 即n =k +1时通项公式成立.由①②可知对所有n∈N*,a n=2n+1-2n-1都成立.规律方法(1)利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.【训练3】设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(1)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N*,求g n(x)的表达式;(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;(3)设n∈N*,猜想g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.解由题设得,g(x)=x1+x(x≥0).(1)由已知,g1(x)=x1+x,g2(x)=g(g1(x))=x1+x1+x1+x=x1+2x,g3(x)=x1+3x,…,可猜想g n(x)=x1+nx.下面用数学归纳法证明.①当n=1时,g1(x)=x1+x,结论成立.②假设n=k时结论成立,即g k(x)=x1+kx.那么,当n=k+1时,g k+1(x)=g(g k(x))=g k(x)1+g k(x)=x1+kx1+x1+kx=x1+(k+1)x,即结论成立.由①②可知,结论对n∈N*成立.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥ax1+x恒成立.设φ(x)=ln(1+x)-ax1+x(x≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增. 又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立, ∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )≤0, ∴(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, ∴ln(1+x )≥ax1+x不恒成立, 综上可知,实数a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,n -f (n )=n -ln(n +1),猜想结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N *,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N *成立.[思想方法]1.数学归纳法证明中的两个步骤体现了递推思想,第一步是递推的基础,第二步是递推的依据,两个步骤缺一不可,否则就会导致错误.有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础.2.归纳假设的作用在用数学归纳法证明问题时,对于归纳假设要注意以下两点:(1)归纳假设就是已知条件;(2)在推证n=k+1时,必须用上归纳假设.3.利用归纳假设的技巧在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n=k与n=k+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.[易错防范]1.数学归纳法证题时初始值n0不一定是1.2.推证n=k+1时一定要用上n=k时的假设,否则不是数学归纳法.3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础,否则将会做大量无用功.基础巩固题组(建议用时:40分钟)一、选择题1.用数学归纳法证明“2n>2n+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取()A.2B.3C.5D.6解析∵n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.∴n的第一个取值n0=3.答案 B2.某个命题与正整数有关,如果当n =k (k ∈N *)时该命题成立,那么可以推出n =k +1时该命题也成立.现已知n =5时该命题成立,那么( ) A.n =4时该命题成立 B.n =4时该命题不成立 C.n ≥5,n ∈N *时该命题都成立D.可能n 取某个大于5的整数时该命题不成立解析 显然A ,B 错误,由数学归纳法原理知C 正确,D 错. 答案 C3.利用数学归纳法证明不等式“1+12+13+…+12n -1>n2(n ≥2,n ∈N *)”的过程中,由“n =k ”变到“n =k +1”时,左边增加了( ) A.1项B.k 项C.2k -1项D.2k 项解析 左边增加的项为12k +12k +1+…+12k +1-1共2k 项,故选D.答案 D4.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法证明的过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式k 2+k <k +1成立,当n =k +1时,(k +1)2+k +1=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1.∴当n =k +1时,不等式成立,则上述证法( ) A.过程全部正确 B.n =1验得不正确 C.归纳假设不正确D.从n =k 到n =k +1的推理不正确解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法. 答案 D5.用数学归纳法证明1+2+3+…+n 2=n 4+n22,则当n =k +1时左端应在n =k的基础上加上( ) A.k 2+1 B.(k +1)2C.(k +1)4+(k +1)22D.(k 2+1)+(k 2+2)+…+(k +1)2解析 当n =k 时,左端=1+2+3+…+k 2.当n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+…+(k +1)2.故选D. 答案 D 二、填空题6.设S n =1+12+13+14+…+12n ,则S n +1-S n =________. 解析 ∵S n +1=1+12+…+12n +12n +1+…+12n +2n ,S n =1+12+13+14+…+12n .∴S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n .答案12n +1+12n +2+12n +3+…+12n +2n7.数列{a n }中,已知a 1=2,a n +1=a n3a n +1(n ∈N *),依次计算出a 2,a 3,a 4的值分别为________;猜想a n =________.解析 a 1=2,a 2=23×2+1=27,a 3=273×27+1=213,a 4=2133×213+1=219.由此,猜想a n 是以分子为2,分母是以首项为1,公差为6的等差数列.∴a n =26n -5.答案 27,213,219 26n -58.凸n 多边形有f (n )条对角线.则凸(n +1)边形的对角线的条数f (n +1)与f (n )的递推关系式为________.解析 f (n +1)=f (n )+(n -2)+1=f (n )+n -1. 答案 f (n +1)=f (n )+n -1 三、解答题9.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2). 证明 (1)当n =2时,1+122=54<2-12=32,命题成立. (2)假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k . 当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1,命题成立.由(1)(2)知原不等式在n ∈N *,n ≥2时均成立. 10.数列{a n }满足S n =2n -a n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)证明(1)中的猜想.(1)解 当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32; 当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74; 当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, ∴a 4=158.由此猜想a n =2n -12n -1(n ∈N *).(2)证明 ①当n =1时,a 1=1,结论成立. ②假设n =k (k ≥1且k ∈N *)时,结论成立, 即a k =2k -12k -1,那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k .∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k .所以当n =k +1时,结论成立. 由①②知猜想a n =2n -12n -1(n ∈N *)成立.能力提升题组 (建议用时:25分钟)11.设n 为正整数,f (n )=1+12+13+…+1n ,经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,观察上述结果,可推测出一般结论( ) A.f (2n )>2n +12B.f (n 2)≥n +22 C.f (2n )≥n +22D.以上都不对解析 因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥1时,有f (2n)≥n +22. 答案 C12.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么,下列命题总成立的是( ) A.若f (1)<1成立,则f (10)<100成立 B.若f (2)<4成立,则f (1)≥1成立C.若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立D.若f (4)≥16成立,则当k ≥4时,均有f (k )≥k 2成立解析 选项A ,B 的答案与题设中不等号方向不同,故A ,B 错;选项C 中,应该是k ≥3时,均有f (k )≥k 2成立;对于选项D ,满足数学归纳法原理,该命题成立. 答案 D13.设平面上n 个圆周最多把平面分成f (n )片(平面区域),则f (2)=________,f (n )=________.(n ≥1,n ∈N *)解析 易知2个圆周最多把平面分成4片;n 个圆周最多把平面分成f (n )片,再放入第n +1个圆周,为使得到尽可能多的平面区域,第n +1个应与前面n 个都相交且交点均不同,有n 条公共弦,其端点把第n +1个圆周分成2n 段,每段都把已知的某一片划分成2片,即f (n +1)=f (n )+2n (n ≥1),所以f (n )-f (1)=n (n -1),而f (1)=2,从而f (n )=n 2-n +2. 答案 4 n 2-n +214.数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈N *).(1)证明:{x n }是递减数列的充要条件是c <0; (2)若0<c ≤14,证明数列{x n }是递增数列.证明 (1)充分性:若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,∴数列{x n }是递减数列.必要性:若{x n }是递减数列,则x 2<x 1,且x 1=0. 又x 2=-x 21+x 1+c =c ,∴c <0. 故{x n }是递减数列的充要条件是c <0. (2)若0<c ≤14,要证{x n }是递增数列. 即x n +1-x n =-x 2n +c >0, 即证x n <c 对任意n ≥1成立. 下面用数学归纳法证明:当0<c ≤14时,x n <c 对任意n ≥1成立. ①当n =1时,x 1=0<c ≤12,结论成立.②假设当n =k (k ≥1,k ∈N *)时结论成立,即x k <c .因为函数f (x )=-x 2+x +c 在区间⎝ ⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,∴当n =k +1时,x k +1<c 成立.由①,②知,x n <c 对任意n ≥1,n ∈N *成立. 因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.15.已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2的值;(2)证明:对任意的n ∈N *,等式|nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4|=22都成立.(1)解 由已知,得f 1(x )=f ′0(x )=⎝ ⎛⎭⎪⎫sin x x ′=cos x x -sin x x 2,于是f 2(x )=f ′1(x )=⎝ ⎛⎭⎪⎫cos x x ′-⎝ ⎛⎭⎪⎫sin x x 2′=-sin x x -2cos x x 2+2sin x x 3,所以f 1⎝ ⎛⎭⎪⎫π2=-4π2,f 2⎝ ⎛⎭⎪⎫π2=-2π+16π3.故2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=-1.(2)证明 由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cos x ,即f 0(x )+xf 1(x )=cos x =sin ⎝ ⎛⎭⎪⎫x +π2,类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝ ⎛⎭⎪⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝ ⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立.(ⅰ)当n =1时,由上可知等式成立.(ⅱ)假设当n =k (k ≥1,且k ∈N *)时等式成立, 即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎪⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k +1(x ),⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +k π2′=cos ⎝ ⎛⎭⎪⎫x +k π2·⎝ ⎛⎭⎪⎫x +k π2′=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2,所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2. 因此当n =k +1时,等式也成立.综合(ⅰ),(ⅱ)可知等式nf n -1(x )+xf n (x )=sin ⎝ ⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+n π2(n ∈N *).所以|nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4|=22(n ∈N *).高考导航 考查内容主要集中在两个方面:一是以选择题和填空题的形式考查等差、等比数列的运算和性质,题目多为常规试题;二是等差、等比数列的通项与求和问题;三是结合函数、不等式(放缩法)等进行综合考查,难度较大,涉及内容较为全面,试题思维量较大.热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】 已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12. 故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n≤56.所以数列{T n }最大项的值为56,最小项的值为-712.探究提高 解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【训练1】 已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d (d ≠0), ∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n .(2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k ∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列,∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k ∈N *,使得等式1-2T k =1b k成立.热点二 数列的通项与求和(规范解答)数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等. 【例2】 设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .满分解答 (1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2,2分 解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.4分故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1.6分(2)解 由d >1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1,7分 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .②8分 ①-②可得12T n =2+12+122+…+12n -2-2n -12n 10分 =3-2n +32n ,11分 故T n =6-2n +32n -1.12分❶由题意列出方程组得2分; ❷解得a 1与d 得2分,漏解得1分; ❸正确导出a n ,b n 得2分,漏解得1分; ❹写出c n 得1分;❺把错位相减的两个式子,按照上下对应好,再相减,就能正确地得到结果,本题就得满分,否则就容易出错,丢掉一些分数.用错位相减法解决数列求和的模板第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q )的对应项之积构成的,则可用此法求和. 第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q . 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k ∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【训练2】 已知数列{a n },a n =(-1)n -14n(2n -1)(2n +1),求数列{a n }的前n项和T n .解 a n =(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数(或T n =2n +1+(-1)n-12n +1).热点三 数列的综合应用 热点3.1 数列的实际应用数列在实际问题中的应用,要充分利用题中限制条件确定数列的特征,如通项公式、前n 项和公式或递推关系式,建立数列模型.【例3-1】 某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年年底固定给股东们分红500万元,该企业2010年年底分红后的资金为1 000万元.(1)求该企业2014年年底分红后的资金;(2)求该企业从哪一年开始年底分红后的资金超过32 500万元. 解 设a n 为(2010+n )年年底分红后的资金,其中n ∈N *, 则a 1=2×1 000-500=1 500, a 2=2×1 500-500=2 500,…, a n =2a n -1-500(n ≥2).∴a n -500=2(a n -1-500)(n ≥2),即数列{a n -500}是以a 1-500=1 000为首项,2为公比的等比数列, ∴a n -500=1 000×2n -1,∴a n =1 000×2n -1+500.(1)∵a 4=1 000×24-1+500=8 500,∴该企业2014年年底分红后的资金为8 500万元.(2)由a n >32 500,即2n -1>32,得n >6,∴该企业从2017年开始年底分红后的资金超过32 500万元.热点3.2 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-2】 已知二次函数f (x )=ax 2+bx 的图象过点(-4n ,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式; (2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1a n ,且a 1=4,求数列{a n }的通项公式; (3)对于(2)中的数列{a n },求证: ①∑nk =1a k <5;②43≤∑nk =1a k a k +1<2.(1)解 由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n ,0),∴16n 2a -4nb =0,解得a =12.∴f (x )=12x2+2nx (n ∈N *).(2)解 由(1)知f ′(x )=x +2n (n ∈N *),∴1a n +1=1a n +2n ,即1a n +1-1a n =2n , ∴1a n -1a n -1=2(n -1),1a n -1-1a n -2=2(n -2),…,1a 2-1a 1=2,∴1a n-14=n 2-n ,∴a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). (3)证明 ①a k =1k (k -1)+14<1k (k -1)=1k -1-1k (k ≥2).当n =1时,∑nk =1a k<5显然成立;当n ≥2时,∑nk =1a k<4+ ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =5-1n <5.②∵a k a k +1=4(2k -1)(2k +1)=22k -1-22k +1,∴∑nk =1a k a k +1=⎝ ⎛⎭⎪⎫21-23+⎝ ⎛⎭⎪⎫23-25+…+⎝ ⎛⎭⎪⎫22n -1-22n +1=2-22n +1.∵n ∈N *,∴2n +1≥3, ∴43≤2-22n +1<2. 综上,原不等式得证.热点3.3 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-3】 设数列{a n }满足|a n -a n +12|≤1,n ∈N *. (1)证明:|a n |≥2n -1(|a n |-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n,n ∈N *,证明:|a n |≤2,n ∈N *.证明 (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1得|a n |-12|a n +1|≤1, 故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2).(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m -1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m |2m ·2n ≤⎣⎢⎡⎦⎥⎤12n -1+12m ·⎝ ⎛⎭⎪⎫32m ·2n=2+⎝ ⎛⎭⎪⎫34m ·2n .从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.由m 的任意性得|a n |≤2.① 否则,存在n 0∈N *,有|a n 0|>2, 取正整数m 0>log 34|a n 0|-22n且m 0>n 0,综上,对于任意n ∈N *,均有|a n |≤2.(建议用时:70分钟)1.已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解 (1)设{a n }的公差为d ,则由已知条件得 a 1+2d =2,3a 1+3×22d =92, 化简得a 1+2d =2,a 1+d =32, 解得a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12. (2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.2.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,且S 3+S 5=50,a 1,a 4,a 13成等比数列.(1)求数列{a n }的通项公式;(2)设⎩⎨⎧⎭⎬⎫b n a n 是首项为1,公比为3的等比数列,求数列{b n }的前n 项和T n .解 (1)依题意得⎩⎪⎨⎪⎧3a 1+3×22d +5a 1+4×52d =50,(a 1+3d )2=a 1(a 1+12d ),解得⎩⎨⎧a 1=3,d =2,∴a n =2n +1.(2)∵b na n=3n -1,∴b n =a n ·3n -1=(2n +1)·3n -1,∴T n =3+5×3+7×32+…+(2n +1)×3n -1,3T n =3×3+5×32+7×33+…+(2n -1)×3n -1+(2n +1)×3n , 两式相减得,-2T n =3+2×3+2×32+…+2×3n -1-(2n +1)×3n =3+2×3(1-3n -1)1-3-(2n +1)×3n =-2n ×3n ,∴T n =n ×3n .3.已知函数f (x )=x 2-4,设曲线y =f (x )在点(x n ,f (x n ))处的切线与x 轴的交点为(x n+1,0)(n ∈N *),其中x 1为正实数.(1)用x n 表示x n +1;(2)求证:对一切正整数n ,x n +1≤x n 的充要条件是x 1≥2.(1)解 ∵f ′(x )=2x ,∴过点(x n ,f (x n ))的切线方程为y -(x 2n -4)=2x n (x -x n ),将(x n +1,0)代入切线方程并整理,得x 2n +4=2x n x n +1,显然x n ≠0,∴x n +1=x n 2+2x n.(2)证明 (必要性)若对一切正整数n ,x n +1≤x n ,则x 2≤x 1,即x 12+2x 1≤x 1,而x 1>0,∴x 21≥4,故x 1≥2.(充分性)由x 1≥2>0,x n +1=x n 2+2x n,易得数列{x n }为正项数列,从而x n +1=x n 2+2x n≥2x n 2·2x n =2(n ≥1),即x n ≥2(n ≥2),又x 1≥2,∴x n ≥2(n ≥1).于是x n +1-x n =x n 2+2x n -x n =4-x 2n 2x n =(2-x n )(2+x n )2x n ≤0,即x n +1≤x n 对一切正整数n 成立.4.已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *). (1)证明:1≤a na n +1≤2(n ∈N *); (2)设数列{a 2n }的前n 项和为S n,证明:12(n +2)≤S n n ≤12(n +1)(n ∈N *). (1)证明 由题意得a n +1-a n =-a 2n ≤0,即a n +1≤a n , 故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0. 由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n ∈(1,2],即1≤a na n +1≤2成立. (2)解 由题意得a 2n =a n -a n +1,所以S n =a 1-a n +1①由1a n +1-1a n =a n a n +1和1≤a n a n +1≤2得1≤1a n +1-1a n ≤2, 所以n ≤1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1≤1n +2(n ∈N *).②由①②得12(n +2)≤S n n ≤12(n +1)(n ∈N *).5.已知数列{a n },{b n }中,a 1=1,b n =⎝ ⎛⎭⎪⎫1-a 2n a 2n +1·1a n +1,n ∈N *,数列{b n }的前n项和为S n .(1)若a n =2n -1,求S n ;(2)是否存在等比数列{a n },使b n +2=S n 对任意n ∈N *恒成立?若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,请说明理由;(3)若{a n }是单调递增数列,求证:S n <2. (1)解 当a n =2n -1时,b n =⎝⎛⎭⎪⎫1-14·12n =32n +2. 所以S n =38⎝ ⎛⎭⎪⎫1+12+…+12n -1=38×1-12n 1-12=34-32n +2. (2)解 满足条件的数列{a n }存在且只有两个, 其通项公式为a n =1和a n =(-1)n -1. 证明:在b n +2=S n 中,令n =1,得b 3=b 1. 设a n =q n -1,则b n =⎝ ⎛⎭⎪⎫1-1q 21q n .由b 3=b 1得⎝ ⎛⎭⎪⎫1-1q 21q 3=⎝ ⎛⎭⎪⎫1-1q 21q .若q =±1,则b n =0,满足题设条件. 此时a n =1和a n =(-1)n -1.若q ≠±1,则1q 3=1q ,即q 2=1,矛盾.综上所述,满足条件的数列{a n }存在,且只有两个, 一个是a n =1,另一个是a n =(-1)n -1. (3)证明 因为1=a 1<a 2<…<a n <…, 故a n >0,0<a n a n +1<1,于是0<a 2n a 2n +1<1.b n =⎝ ⎛⎭⎪⎫1-a 2n a 2n +1·1a n +1=⎝ ⎛⎭⎪⎫1+a n a n +1⎝ ⎛⎭⎪⎫1-a n a n +1·1a n +1=⎝ ⎛⎭⎪⎫1+a n a n +1⎝ ⎛⎭⎪⎫1a n -1a n +1·a n a n +1<2⎝ ⎛⎭⎪⎫1a n -1a n +1. 故S n =b 1+b 2+…+b n<2⎝ ⎛⎭⎪⎫1a 1-1a 2+2⎝ ⎛⎭⎪⎫1a 2-1a 3+…+2⎝ ⎛⎭⎪⎫1a n -1a n +1 =2⎝ ⎛⎭⎪⎫1a 1-1a n +1=2⎝ ⎛⎭⎪⎫1-1a n +1<2. 所以S n <2.6.已知正项数列{a n }满足S 2n =a 31+a 32+…+a 3n (n ∈N *),其中S n 为数列{a n }的前n项的和.(1)求数列{a n }的通项公式;(2)求证:2n +1(n +1)n +1<⎝ ⎛⎭⎪⎫1a 132+⎝ ⎛⎭⎪⎫1a 232+⎝ ⎛⎭⎪⎫1a 332+…+⎝ ⎛⎭⎪⎫1a 2n +132<3.(1)解 ∵S 2n =a 31+a 32+…+a 3n (n ∈N *), ∴S 2n -1=a 31+a 32+a 3n -1,两式相减得S 2n -S 2n -1=a 3n ⇒a n (S n +S n -1)=a 3n ⇒S n +S n -1=a 2n , 则S n -1+S n -2=a 2n -1,两式相减得a n +a n -1=a 2n -a 2n -1⇒a n -a n -1=1,∴a n =n .(2)证明 根据(1)知⎝ ⎛⎭⎪⎫1a n 32=1n n.∵k (2n +2-k )≤⎝⎛⎭⎪⎫k +2n +2-k 22=(n +1)2, ∴1k k +1(2n +2-k )2n +2-k> 2k (2n +2-k )k (2n +2-k )≥2(n +1)n +1,即⎝ ⎛⎭⎪⎫1a k 32+⎝ ⎛⎭⎪⎫1a2n +2-k 32>2⎝ ⎛⎭⎪⎫1a n +132, 令k =1,2,3,…,n ,累加后再加⎝ ⎛⎭⎪⎫1a n +132得⎝ ⎛⎭⎪⎫1a 132+⎝ ⎛⎭⎪⎫1a 232+⎝ ⎛⎭⎪⎫1a 332+…+⎝ ⎛⎭⎪⎫1a 2n +132 >2⎝ ⎛⎭⎪⎫1a n +132+2⎝ ⎛⎭⎪⎫1a n +132+2⎝ ⎛⎭⎪⎫1a n +132+…+2⎝ ⎛⎭⎪⎫1a n +132+⎝ ⎛⎭⎪⎫1a n +132=(2n +1)⎝ ⎛⎭⎪⎫1a n +132=2n +1(n +1)n +1.又∵11+122+133+…+1(2n +1)2n +1<3⇔122+133+…+ 1(2n +1)2n +1<2,而1k k =1k ·k ·k <1k ·k ·k -1 =1k ⎝ ⎛⎭⎪⎫1k -1-1k 1k -k -1 =k +k -1k ⎝ ⎛⎭⎪⎫1k -1-1k <2k k ⎝ ⎛⎭⎪⎫1k -1-1k =2⎝ ⎛⎭⎪⎫1k -1-1k . 令k =2,3,4,…,2n +1,累加得 122+133+…+1(2n +1)2n +1<2⎝⎛⎭⎪⎫1-12+2⎝ ⎛⎭⎪⎫12-13+…+2⎝ ⎛⎭⎪⎫12n -12n +1=2⎝ ⎛⎭⎪⎫1-12n +1<2, ∴2n +1(n +1)n +1<⎝ ⎛⎭⎪⎫1a 132+⎝ ⎛⎭⎪⎫1a 232+⎝ ⎛⎭⎪⎫1a 332+…+⎝ ⎛⎭⎪⎫1a 2n +132<3.。

数学归纳法专题

数学归纳法专题

数学归纳法专题数学归纳法的4种基本形式1,利用命题对n成立推出命题对n+1成立2,利用命题对1,2,...,n都成立推出命题对n+1成立3,首先利用命题对n+1成立推出命题对n成立,再证明对任意正整数N,存在正整数m>N,使命题对m成立4,一个含有m,n的命题,首先利用命题对m,n成立推出命题对m,n+1成立然后利用命题对m,n成立推出命题对m+1,n成立我们主要讨论数学归纳法的难点:如何加强命题1, 求证:(1/2)*(3/4)*....*(2n-1)/(2n)<1/sqrt(3n),n为正整数分析:如果直接用用数学归纳法证明,奠基n=1没有问题,关键是从n到n+1的过渡有问题因为若想从(1/2)*(3/4)*....*(2n-1)/(2n)<1/sqrt(3n)推出(1/2)*(3/4)*....*(2n+1)/(2n+2)<1/sqrt(3n+3),则需要证明(2n+1)/(2n+2)<sqrt(3n)/sqrt(3n+3),平方化简后成为1<0,不成立尽管不成立,但是我们在平方化简过程中可以发现上面不等式左右两边非常接近,因此,若能将右边稍微改大一点,那么上面不等式就有可能成立为此,将sqrt(3n)/sqrt(3n+3)改为sqrt(3n+1)/sqrt(3n+4),改证加强命题(1/2)*(3/4)*....*(2n-1)/(2n)≤1/sqrt(3n+1),这个不难证明为何改为将3n改为3n+1? 显然同奠基有关,若将3n+1改为更大的数,则奠基n=1就不成立2,求证:1/(n+1)+1/(n+2)+...+1/(2n)<7/10,n为正整数分析:如果直接用用数学归纳法证明,奠基n=1没有问题,关键是从n到n+1的过渡有问题因为若想从1/(n+1)+1/(n+2)+...+1/(2n)<7/10推出1/(n+2)+1/(n+3)+...+1/(2n+2)<7/10,则需要证明1/(2n+1)+1/(2n+2)<1/(n+1)但事实上不难知道1/(2n+1)+1/(2n+2)-1/(n+1)=1/(2n+1)(2n+2)>0以上说明,如果将An=1/(n+1)+1/(n+2)+...+1/(2n)看成一个数列的话,为了利用n成立推出n+1成立,应该证明这个数列单调减,可是遗憾的是这个数列单调增为此,我们产生一个想法,寻找一个单调减的正数列Bn,使Cn=An+Bn单调减,那么如果C1<7/10,就有Cn<7/10,进而An<Cn<7/10这个Bn不能太大,否则C1<7/10不成立因此,注意到A(n+1)-An=1/(2n+1)(2n+2),我们试取Bn=1/4n,有C(n+1)-Cn=1/(2n+1)(2n+2)-1/4n(n+1)<0,即Cn单调减可是,我们发现此时C1=1/2+1/4>7/10,怎么办?不用着急,既然Cn单调减,那么肯定越来越小,应该会有不大于7/10的时候吧.经过计算有C3=7/10所以当n≥3时,有Cn≤7/10,从而有An<Cn≤7/10而当n<3时,利用An单调增即知An<A3<7/10至此,题目已经证明完毕,再提一点若取Bn时更细致些,可以取Bn=1/(4n+1)即用数学归纳法证明加强命题An+1/(4n+1)≤7/103,求证:对任意正整数n>1,存在n个不同的正整数,使任意两个数的差能整除它们的和分析: 直接证明是困难的,想法是利用数学归纳法奠基没有问题,n=2时,1,2就满足条件假设命题对n成立,即存在正整数A1<A2<...<An,且Ai-Aj整除Ai+Aj(i>j)下面要利用A1,A2,...,An构造出n+1个数满足条件我们首先注意到将A1,A2,...,An同时乘以同一个整数k后仍然满足条件那么同时加上同一个整数u会怎样呢?注意到同时加上同一个整数u后,任意两数的差Ai-Aj没有变化,但它们的和Ai+Aj比原来增加了2u,因此,若2u能够被任意两数的差Ai-Aj整除,那么将A1,A2,...,An同时加上u后仍然满足条件最后,注意到0,A1,A2,...,An满足任意两个数的差能整除它们的和,那么很自然完成了归纳构造令M=∏(Aj-Ai)1≤i<j≤nN=A1*A2*...*An则容易验证MN,MN+A1,MN+A2,...,MN+An满足任意两个数的差能整除它们的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

请你来批作业
1
用数学归纳法证明:1 2
1 23
1 n(n 1)
n (n N ) n 1
证明:
(1)当n 1时,左边 1 ,右边 1 ,左边 右边,等式成立;
2
2
(2)假设当n k时等式成立,即
第二步的证明没有
1 1 1 1 k
1 2 23 3 4
k(k 1) k 1
用上归纳假设!
1 1 1 1 1 2 k 1 ,
23
k k 1
k 1
2 k 1 (2 k 1 ) 2( k 1 k ) 1
k 1
k 1
2
2
0.
k 1 k k 1 k 1
2 k 1 2 k 1.
k 1
故:1 1 1 1
23
k
1 2 k 1. k 1
即当n=k+1时,不等式也成立.
问题 3:教师根据成绩单,逐一核实后下结论:“全班及格”
请问:以上三个结论正确吗?为什么? ❖得出以上结论所用的方法有什么共同点和什么不同点
1、错
2、对
3、对
❖ 共同点:均用了归纳法得出结论;不同点:问题1、2是用的不完全
归纳法,问题3是用的完全归纳法。
问题情境二法:国数的数学学家家费费马(马Pie运rre用de 不Fer完mat全) 归纳法得出十七费(世16纪马01最年猜卓~越1想6的6数5的年学)事家。之例一,
根据(1)、(2)可知,原不等式对一切正整数都 成立.
例4、求证:
1
1 22
1 32
1 n2
2
1 (n N , n 2). n
证:(1)当n=2时,左边= 1
1 22
5,右边=
4
2
1 2
3 2
,由于
5 4
3 2
,故不等式成立.
(2)假设n=k( k N, k 2 )时命题成立,即
1
1 22
验证n=n0时命 题成立
若当n=k(knБайду номын сангаас )时命题成立, 证明当n=k+1时命题也成立
命题对从n0开始的所 有正整数n都成立。
问题情境三
多 米 诺 骨 牌 课 件 演 示
3、数学归纳法
思考题:
(1)数学归纳法能证明什么样类型的命题? (2)数学归纳法有几个步骤?每个步骤说明什么问题? (3)为什么这些步骤缺一不可? (4)数学归纳法是完全归纳法还是不完全归纳法?
如何寻找一种严格推理的归纳法?

二、挖掘内涵、形成概念:
证明某些与自然数有关的数学题,可用下列方法来
证明它们的正确性:
(1)验证当n取第一个值n0(例如n0=1)时命题成立,
【归纳奠基】
(2)证假明设当当nn==kk+(1k时N命* 题,也k成n0立)时【命题归成纳立递,推】
完成这两步,就可以断定这个命题对从n0开始的所 有正整数n都成立。这种证明方法叫做数学归纳法。
即当n=k+1时,不等式也成立.
由(1)、(2)原不等式对一切 n N, n 2 都成立.
例3、证明不等式: 1 1 1 1 2 n(n N*).
23
n
证:(1)当n=1时,左边=1,右边=2, 不等式显然成立.
(2)假设当n=k时不等式成立,即有:
1 1 1 1 2 k,
23
k
则当n=k+1时,我们有:
(2)假设当n=k时,结论成立,即ak k 上k归纳1. 假设!
则当n=k+1时,
1 11
1
Sk 2 (ak ak ) 2 ( k
k 1
k
) k 1
k.
ak 1
S k 1
Sk
1 2 (ak1
1 ) ak 1
k ak21 2
k ak1 1 0
ak1 k 1 k ( ak1 0).
题型二 用数学归纳法证明不等式问题
【例 1】 用数学归纳法证明:对一切大于 1 的自然数 n,不等式(1+31)(1+51)…(1+
1 2n-1)>
2n2+1成立.
证明:①当 n=2 时,左=1+31=34,右= 25,左>右,不等式成立.
②假设当 n=k(k≥2 且 k∈N*)时,不等式成立,即
1、归纳法定义: 对于某类事物,由它的一些特殊事例或其全部可
能情况,归纳出一般结论的推理方法,叫归纳法。
2、归纳法分类:
完全归纳法
归纳法 不完全归纳法
想一想:
由两种归纳法得出的结论一定正确吗?
说 (1)不完全归纳法有利于发现问题,但结论
明:
不一定正确。 (2)完全归纳法结论可靠,但一一核对困难。

出 问
数学归纳法的应用
题型一 用数学归纳法证明等式问题 题型二 用数学归纳法证明不等式问题 题型三 用数学归纳法证明整除问题 题型四 用数学归纳法证明几何问题 题型五 用数学归纳法解决探究性问题
例1.用数学归纳法证明
12 22 32 n2 n(n 1)(2n 1)
6
证明:1、当n=1时,左=12=1,右= 1(1 1)(2 1第)二步1 的证明要用
∴n=1时,等式成立
6
上归纳假设!
2、假设n=k时,等式成立,即
12 22 32 k 2 k(k 1)(2k 1)
那么,当n=k+1时
6
左=12+22+…+k2+(k+1)2= k(k 1)(2k 1) (k 1)2 6
k(k 1)(2k 1) 6(k 1)2 (k 1)(k 2)(2k 3)
则当n=k+1时,我们有:
1 1 1 1 1
(k 1) 1 (k 1) 2
2k 2k 1 2k 2
1 1 1 ( 1 1 1 )
k 1 k 2
2k 2k 1 2k 2 k 1
13 ( 1 1 ) 13
1
13 .
24 2k 1 2k 2 24 (2k 1)(2k 2) 24
例5、已知x> 1,且x0,nN,n2. 求证:(1+x)n>1+nx.
证明: (1)当n=2时,左=(1+x)2=1+2x+x2 ∵ x0,∴ 1+2x+x2>1+2x=右 ∴n=1时不等式成立
(2)假设n=k时,不等式成立,即 (1+x)k>1+kx 当n=k+1时,因为x> 1 ,所以1+x>0,于是 左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x. 因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x. 这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
由(1)(2)可知,对一切正整数,等式均成立。 k 1 右边 k2
例3、已知正数数列{an}中,前n项和为sn,且2Sn
用数学归纳法证明: an n n 1.
an
1 an
.
证:(1)当n=1时, a1 S1 =1,结论成立.
1 2
(a1
1 a1
)
a12
1 a1 1, 1 11 第二步的证明要用
第二步的证明要用
即(k+1)(k+2)…(k+k)=2k×1×3×5×…×(2k-1)成立.上归纳假设!
那么 n=k+1 时,
(k+2)(k+3)…(k+k)(2k+1)(2k+2)
=2(k+1)(k+2)(k+3)×…×(k+k)(2k+1)
=2k+1×1×3×5×…×(2k-1)[2(k+1)-1]
故当n=k+1时,结论也成立.
根据(1)、(2)知,对一切正整数n,结论都成立.
证明中的几个注意问题:
(1)在第二步中,证明n=k+1命题成立时,必须用到 n=k命题成立这一归纳假设,否则就打破数学 归纳法步骤之间的逻辑严密关系,造成推理无 效.
(2)在第一步中的初始值不一定从1取起,证明时 应根据具体情况而定.
即 n=k+1 时等式成立.
由(1)、(2)可知,对任何 n∈N*等式均成立.
①用数学归纳法证明与正整数有关的等式,关键在于“先看项”,弄清等
式两边的构成规律,等式两边有多少项,项的多少与 n 的取值是否有关,由 n=k 到 n=k+ 1 时等式两边会增加多少项,增加怎样的项.
②在步骤(2)的证明过程中,突出两个“凑”字:一凑假设,二凑结论,关键是明确 n= k+1 时证明的目标,充分考虑由 n=k 到 n=k+1 时,命题形式之间的区别和联系.
(1+13)(1+15)…(1+2k1-1)> 2k2+1,
在用数学归纳法证明不等式时, 往往需要综合运用不等式证明的其他方法,
那么当 n=k+1 时,
如比较法、配方法、分析法、综合法、重要
(1+13)(1+15)…(1+2k1-1)[1+2k+11-1] 不等式法、放缩法(特别注意放缩要有“度”)等.
例2、用数学归纳法证明:
1 1 1 13 (n 2, n N*). n 1 n 2 2n 24
证:(1)当n=2时, 成立.
左边=
1 21
2
1
2
1 3
1 4
14 24
13 24
,
不等式
(2)假设当n=k(k≥2)时不等式成立,即有:
1 1 1 13 , k 1 k 2 2k 24
他在数学许多领域中都有极大的贡献, 因为他的本行是专业的律师, 为了表彰他的数学造诣,
相关文档
最新文档