高考文科数学三角函数知识点
三角函数的概念及三角恒等变换
三角函数专题复习知识点一:三角函数的概念、同角三角函数的关系式及诱导公式一.考试要求二.基础知识1.角的概念的推广:按逆时针方向旋转所形成的角叫 角,按顺时针方向旋转所形成的角叫_______角,一条射线没有作任何旋转时,称它形成一个 角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角(1)定义:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角 任何象限。
(2)象限角的集合:第一象限角的集合为第二象限角的集合为第三象限角的集合为___________________________________第四象限角的集合为___________________________________终边在轴上的角的集合为终边在轴上的角的集合为______________________终边在坐标轴上的角的集合为_____________________(3)终边相同的角:与终边相同的角注意:相等的角的终边一定________,终边相同的角_____________.3、与的终边关系:若是第二象限角,则是第_____象限角4.弧度制:弧度与角度互换公式:1rad=、1°=(rad)。
弧长公式:(是圆心角的弧度数),扇形面积公式:【典例】已知扇形周长为10,面积为4,求扇形的圆心角.5、任意角的三角函数的定义:设是任意一个角,是的终边上的任意一点(异于原点),它与原点的距离是,那么,,.注:三角函数值与角的大小关,与终边上点P的位置关。
思考:判断各三角函数在每个象限的符号?【典型例题】1.(2014全国)已知角的终边经过点,则=()A.B.C.D.2.已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=____________,=____________,=____________3.(2011江西)已知角的顶点为坐标原点,始边为轴的正半轴,若是角终边上一点,且,则=_____________.【变式训练】1.(2014湖北孝感)点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.若,且,则所在的象限为_______________.3.已知角的终边上一点,且,求的值.6.特殊角的三角函数值:7.同角三角函数的基本关系式:(1)平方关系:(2)商数关系:【典型例题】1.已知,,则()A.B.C.D.无法确定2:已知,,则__________3.(2012江西)若,则=_________.【变式训练】1.(2011全国)已知,,则=______.2.如果,且,那么的值是()A.B.或C.D.或3.若,则=____________,=_______,=_____________.8、三角函数的诱导公式(重难点)【规律总结】奇偶(对而言,取奇数或偶数),符号___________(看原函数,同时把看成是锐角).诱导公式的应用的一般步骤:(1)负角变正角,再写成+,;(2)转化为锐角三角函数.【典型例题】1.(2013广东)已知,那么()A.B.C.D.2.如果为锐角,()A.B.C.D.3.的值等于()A.B.-C.D.-4.+的值是 .【变式训练】1.=_________;2.已知的值等于___________.3.已知.(1)化简;(2)若角的终边在第二象限且,求.【迁移应用】1.下列各命题正确的是()A.终边相同的角一定相等B.第一象限的角都是锐角C.锐角都是第一象限的角D.小于的角都是锐角2.等于()ABCD3.(2013山东诸城)集合中的角的终边所在的范围(阴影部分)是()4.化为弧度等于()A.B.C.D.5.点在第()象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限6.点在第三象限,则角的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.点从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q的坐标为()A.B.C.D.8.设,角的终边经过点,那么的值等于( )A.B.C.D.9.已知,且,则的值为( )A.B.[C.D.10.化简的结果是()A.B.1 C.D.11.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则=()A.B.2 C.0 D.12.(2014山东济南质检)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=_________.13.(2011全国)已知,,则__________.14.已知,则____________.15..扇形的圆心角是,半径为20cm,则扇形的面积为16.(2012山东)如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为__________________.17.化简:(1)(2)18.已知,求(1);(2)的值19.(2013江苏启东中学测试)已知是关于的方程的两个根.(1)求的值.(2)求的值.知识点二:三角恒等变换1.考试要求二.基础知识(1)两角和与差的三角函数(正余余正号相同)(余余正正号相反)(2).二倍角公式______________=_____________=______________.(3)降幂公式;____________;___________.(4)辅助角公式。
2023年高考数学(文科)一轮复习——三角恒等变换 第一课时 两角和与差的正弦、余弦和正切公式
第3节三角恒等变换考试要求 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin__αcos__β±cos__αsin__β.cos(α∓β)=cos__αcos__β±sin__αsin__β.tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin__αcos__α.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.tan 2α=2tan α1-tan2α.3.函数f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=a2+b2sin(α+φ)(其中tan φ=ba)或f(α)=a2+b2·cos(α-φ)(其中tan φ=ab).1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos2α=1+cos 2α2,sin2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.1.思考辨析(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( ) 答案 (1)√ (2)√ (3)× (4)√解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+k π(k ∈Z ).2.(易错题)已知锐角α,β满足sin α=1010,cos β=255,则α+β=( ) A.3π4 B.π4 C.π6 D.3π4或π4 答案 B解析 ∵sin α=1010,cos β=255, 又α,β为锐角,∴cos α=31010,sin β=55,∴cos(α+β)=cos αcos β-sin αsin β=31010×255-1010×55=22.∵0<α+β<π,∴α+β=π4. 3.计算:1+tan 15°1-tan 15°=________.答案3解析 1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=tan 60°= 3.4.(易错题)tan 10°+tan 50°+3tan 10°tan 50°=________. 答案3解析 ∵tan 60°=tan(10°+50°) =tan 10°+tan 50°1-tan 10°tan 50°, ∴tan 10°+tan 50°=tan 60°(1-tan 10°tan 50°)=3-3tan 10°tan 50°, ∴原式=3-3tan 10°tan 50°+3tan10°tan 50°= 3. 5.(2020·江苏卷)已知sin 2⎝ ⎛⎭⎪⎫π4+α=23,则sin 2α的值是________.答案 13解析 因为sin 2⎝ ⎛⎭⎪⎫π4+α=23, 所以1-cos ⎝ ⎛⎭⎪⎫π2+2α2=23,即1+sin 2α2=23,所以sin 2α=13.6.函数f (x )=sin 2x +3cos 2x 的周期为________. 答案 π解析 f (x )=2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=2sin ⎝ ⎛⎭⎪⎫2x +π3,周期T =2π2=π.第一课时 两角和与差的正弦、余弦和正切公式考点一 公式的基本应用1.已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫α+π4等于( ) A.-210 B.210 C.-7210 D.7210 答案 C解析 ∵α∈⎝ ⎛⎭⎪⎫π,3π2,且cos α=-45,∴sin α=-35,∴sin ⎝ ⎛⎭⎪⎫α+π4=-35×22+⎝ ⎛⎭⎪⎫-45×22=-7210.2.(2022·贵阳模拟)已知角α,β的顶点为坐标原点,始边与x 轴的非负半轴重合,若角α,β的终边分别与单位圆交于点A ⎝ ⎛⎭⎪⎫x 1,13,B ⎝ ⎛⎭⎪⎫x 2,23,其中x 1<0<x 2,则cos(2α-β)=________. 答案 75-8227解析 由题意可知,sin α=13,sin β=23, 由x 1<0<x 2可知cos α=-1-sin 2α=-223,cos β=1-sin 2β=53,所以cos 2α=⎝ ⎛⎭⎪⎫-2232-⎝ ⎛⎭⎪⎫132=79, sin 2α=2×⎝⎛⎭⎪⎫-223×13=-429, 所以cos(2α-β)=cos 2αcos β+sin 2αsin β=75-8227.3.已知2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=7,则tan 2θ=________.答案 -43解析 2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=2tan θ-1+tan θ1-tan θ=7,解得tan θ=2,∴tan 2θ=2tan θ1-tan 2θ=2×21-22=-43. 感悟提升 1.使用两角和与差的三角函数公式,首先要记住公式的结构特征. 2.使用公式求值,应先求出相关角的函数值,再代入公式求值.考点二 公式的逆用、变形用 角度1 公式的活用例1 (1)tan 22.5°1-tan 222.5°的值为________.(2)若α+β=-3π4,则(1+tan α)(1+tan β)=________. (3)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 答案 (1)12 (2)2 (3)-12 解析 (1)tan 22.5°1-tan 222.5°=12·2tan 22.5°1-tan 222.5°=12tan 45°=12×1=12. (2)tan ⎝ ⎛⎭⎪⎫-3π4=tan(α+β)=tan α+tan β1-tan αtan β=1,所以1-tan αtan β=tan α+tan β,所以1+tan α+tan β+tan αtan β=2, 即(1+tan α)·(1+tan β)=2.(3)∵sin α+cos β=1,cos α+sin β=0,∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.角度2 辅助角公式的运用 例2 化简:(1)sin π12-3cos π12; (2)cos 15°+sin 15°; (3)1sin 10°-3sin 80°; (4)315sin x +35cos x .解 (1)法一 原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12=2⎝ ⎛⎭⎪⎫sin π6sin π12-cos π6cos π12 =-2cos ⎝ ⎛⎭⎪⎫π6+π12=-2cos π4=- 2.法二 原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12=2⎝ ⎛⎭⎪⎫cos π3sin π12-sin π3cos π12 =-2sin ⎝ ⎛⎭⎪⎫π3-π12=-2sin π4=- 2. (2)cos 15°+sin 15°=2(cos 45°cos 15°+sin 45°sin 15°) =2cos(45°-15°) =2×32=62.(3)原式=cos 10°-3sin 10°sin 10°cos 10° =2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°.=4sin (30°-10°)sin 20°=4.(4)315sin x +35cos x =65⎝ ⎛⎭⎪⎫32sin x +12cos x=65⎝ ⎛⎭⎪⎫sin x cos π6+cos x sin π6=65sin ⎝ ⎛⎭⎪⎫x +π6.感悟提升 1.运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.2.对a sin x +b cos x 化简时,辅助角φ的值如何求要清楚.训练1 (1)下列式子化简正确的是( ) A.cos 82°sin 52°-sin 82°cos 52°=12 B.sin 15°sin 30°sin 75°=14 C.tan 48°+tan 72°1-tan 48°tan 72°= 3D.cos 215°-sin 215°=32(2)(2022·郑州模拟)函数f (x )=cos x -sin ⎝ ⎛⎭⎪⎫x +π6-sin ⎝ ⎛⎭⎪⎫x -π6在[0,π]的值域为________.答案 (1)D (2)[-2,1]解析 (1)选项A 中,cos 82°sin 52°-sin 82°·cos 52°=sin(52°-82°)=sin(-30°) =-sin 30°=-12,故A 错误;选项B 中,sin 15°sin 30°sin 75°=12sin 15°cos 15°=14sin 30°=18,故B 错误; 选项C 中,tan 48°+tan 72°1-tan 48°tan 72°=tan (48°+72°)=tan 120°=-3,故C 错误;选项D 中,cos 215°-sin 215°=cos 30°=32,故D 正确.(2)f (x )=cos x -32sin x -12cos x -32sin x +12cos x =cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3.∵0≤x ≤π,∴π3≤x +π3≤4π3,则当x +π3=π时,函数取得最小值2cos π=-2,当x +π3=π3时,函数取得最大值2cos π3=2×12=1, 即函数的值域为[-2,1]. 考点三 角的变换例3 (1)已知sin α=255,sin(β-α)=-1010,α,β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6(2)(2022·大庆模拟)已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=2425,则cos ⎝ ⎛⎭⎪⎫α+π4=________. (3)(2022·兰州模拟)若23sin x +2cos x =1,则sin ⎝ ⎛⎭⎪⎫5π6-x ·cos ⎝ ⎛⎭⎪⎫2x +π3=________.答案 (1)C (2)-45 (3)732解析 (1)因为sin α=255,sin(β-α)=-1010,且α,β均为锐角,所以cos α=55,cos(β-α)=31010, 所以sin β=sin [α+(β-α)] =sin α·cos(β-α)+cos αsin(β-α) =255×31010+55×⎝ ⎛⎭⎪⎫-1010=25250 =22,所以β=π4.故选C.(2)由题意知,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫β-π4=-725, cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4 =cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-45.(3)由题意可得4sin ⎝ ⎛⎭⎪⎫x +π6=1,令x +π6=t ,则sin t =14,x =t -π6, 所以原式=sin(π-t )cos 2t =sin t (1-2sin 2t )=732.感悟提升 1.求角的三角函数值的一般思路是把“所求角”用“已知角”表示. (1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.训练2 (1)已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,则sin 2α等于( ) A.5665B.-5665C.1665D.-1635(2)(2021·全国大联考)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.答案 (1)B (2)-45解析 (1)因为π2<β<α<3π4,所以0<α-β<π4,π<α+β<3π2,由cos(α-β)=1213,得sin(α-β)=513,由sin(α+β)=-35,得cos(α+β)=-45, 则sin 2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β) =513×⎝ ⎛⎭⎪⎫-45+1213×⎝ ⎛⎭⎪⎫-35=-5665.故选B. (2)由cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3⎝ ⎛⎭⎪⎫12cos α-32sin α=3cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫π6-α=435,得sin ⎝ ⎛⎭⎪⎫π6-α=45.sin ⎝ ⎛⎭⎪⎫α+11π6=-sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫α+11π6 =-sin ⎝ ⎛⎭⎪⎫π6-α=-45.1.已知α是第二象限角,且tan α=-13,则sin 2α=( ) A.-31010 B.31010C.-35D.35答案 C解析 因为α是第二象限角,且tan α=-13, 所以sin α=1010,cos α=-31010,所以sin 2α=2sin αcos α=2×1010×⎝ ⎛⎭⎪⎫-31010=-35,故选C. 2.已知tan α2=3,则sin α1-cos α=( )A.3B.13 C.-3 D.-13答案 B解析 因为tan α2=3,所以sin α1-cos α=2sin α2cos α21-⎝⎛⎭⎪⎫1-2sin 2α2=cos α2sin α2=1tan α2=13,故选B.3.下列选项中,值为14的是( )A.2sin π12sin 5π12B.13-23cos 215°C.1sin 50°+3cos 50°D.cos 72°·cos 36° 答案 D解析 对于A ,2sin π12sin 5π12=2sin π12cos π12=sin π6=12,故A 错误; 对于B ,13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故B 错误;对于C ,原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝ ⎛⎭⎪⎫32sin 50°+12cos 50°12sin 100°=2sin 80°12sin 100°=2sin 80°12sin 80°=4,故C 错误;对于D ,cos 36°·cos 72°=2sin 36°·cos 36°·cos 72°2sin 36°=2sin 72°·cos 72°4sin 36°=sin 144°4sin 36°=14,故D 正确.4.(2020·全国Ⅲ卷)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6等于( ) A.12 B.33 C.23 D.22答案 B解析 因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3 =sin ⎝ ⎛⎭⎪⎫θ+π6-π6+sin ⎝ ⎛⎭⎪⎫θ+π6+π6 =sin ⎝ ⎛⎭⎪⎫θ+π6cos π6-cos ⎝ ⎛⎭⎪⎫θ+π6sin π6+ sin ⎝ ⎛⎭⎪⎫θ+π6cos π6+cos ⎝ ⎛⎭⎪⎫θ+π6sin π6=2sin ⎝ ⎛⎭⎪⎫θ+π6cos π6=3sin ⎝ ⎛⎭⎪⎫θ+π6=1. 所以sin ⎝ ⎛⎭⎪⎫θ+π6=33. 5.若sin ⎝ ⎛⎭⎪⎫π6-θ=35,则sin ⎝ ⎛⎭⎪⎫π6+2θ=( ) A.-2425 B.2425 C.-725 D.725答案 D解析 法一 因为sin ⎝ ⎛⎭⎪⎫π6-θ=35, 所以sin ⎝ ⎛⎭⎪⎫π6+2θ=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-θ =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ =1-2×⎝ ⎛⎭⎪⎫352=725.故选D. 法二 因为sin ⎝ ⎛⎭⎪⎫π6-θ=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π3+θ=35,所以cos ⎝ ⎛⎭⎪⎫2π3+2θ=2×⎝ ⎛⎭⎪⎫352-1=-725. 因为cos ⎝ ⎛⎭⎪⎫π2+π6+2θ=-sin ⎝ ⎛⎭⎪⎫π6+2θ, 所以sin ⎝ ⎛⎭⎪⎫π6+2θ=725. 6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2等于( ) A.33B.-33C.539D.-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+α·sin ⎝ ⎛⎭⎪⎫π4-β2. ∵0<α<π2,则π4<π4+α<3π4,∴sin ⎝ ⎛⎭⎪⎫π4+α=223. 又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63. 故cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.故选C. 7.sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.(2020·浙江卷)已知tan θ=2,则cos 2θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________. 答案 -35 13解析 由题意,cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2 θcos 2θ+sin 2 θ=1-tan 2θ1+tan 2θ=1-41+4=-35. tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-tan π41+tan θ·tan π4=tan θ-11+tan θ=2-11+2=13.9.tan 25°-tan 70°+tan 70°tan 25°=________.答案 -1解析 ∵tan 25°-tan 70°=tan(25°-70°)·(1+tan 25°tan 70°)=tan(-45°)(1+tan 25°tan 70°)=-1-tan 25°tan 70°,∴tan 25°-tan 70°+tan 70°tan 25°=-1.10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝ ⎛⎭⎪⎫-1010=91050. 11.已知cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,且π2<α<π,0<β< π2,求cos(α+β).解 由已知,得π2<α-β2<π,0<α2-β<π2,∴sin ⎝ ⎛⎭⎪⎫α-β2=459,cos ⎝ ⎛⎭⎪⎫α2-β=53, ∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2·sin ⎝ ⎛⎭⎪⎫α2-β =⎝ ⎛⎭⎪⎫-19×53+459×23=7527. 则cos(α+β)=2cos 2α+β2-1=-239729.12.若cos 2 α-cos 2β=a ,则sin(α+β)sin(α-β)等于( )A.-a 2B.a 2C.-aD.a答案 C解析 sin(α+β)sin(α-β)=(sin αcos β+cos αsin β)·(sin αcos β-cos αsin β)=sin 2αcos 2β-cos 2αsin 2 β=(1-cos 2α)cos 2β-cos 2α(1-cos 2β)=cos 2β-cos 2α=-a .13.已知sin 10°+m cos 10°=2cos 140°,则m =________.答案 - 3解析 由题意可得m =2cos 140°-sin 10°cos 10°=-2cos 40°-sin 10°cos 10°=-2cos (30°+10°)-sin 10°cos 10°=-3cos 10°cos 10°=- 3.14.(2021·合肥质检)已知函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x -π6. (1)求函数f (x )的最小正周期;(2)若α∈⎝ ⎛⎭⎪⎫0,π2,f (α)=13,求cos 2α.解 (1)∵f (x )=cos 2x +32sin 2x -12cos 2x =32sin 2x +12cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π6, ∴函数f (x )的最小正周期T =2π2=π.(2)由f (α)=13,可得sin ⎝ ⎛⎭⎪⎫2α+π6=13. ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴2α+π6∈⎝ ⎛⎭⎪⎫π6,7π6. 又∵0<sin ⎝ ⎛⎭⎪⎫2α+π6=13<12, ∴2α+π6∈⎝ ⎛⎭⎪⎫5π6,π. ∴cos ⎝⎛⎭⎪⎫2α+π6=-223. ∴cos 2α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π6-π6 =cos ⎝ ⎛⎭⎪⎫2α+π6cos π6+sin ⎝ ⎛⎭⎪⎫2α+π6·sin π6 =1-266.。
2019版文科数学讲义:第四章 三角函数 解三角形4.1 含答案
§4.1任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3。
理解任意角三角函数(正弦、余弦、正切)的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识.题型以选择题为主,低档难度。
1.角的概念(1)角的分类(按旋转的方向)角错误!(2)象限角(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.(2)角度制和弧度制的互化:180°=π rad,1°=错误!rad,1 rad=错误!°. (3)扇形的弧长公式:l=|α|r,扇形的面积公式:S=错误!lr=错误!|α|r2.3.任意角的三角函数的定义α为任意角,α的终边上任意一点P (异于原点)的坐标(x ,y ),它与原点的距离OP =r =错误! (r >0),则sin α=y r ;cos α=错误!;tan α=错误!;cot α=错误!;sec α=错误!;csc α=错误!.4.三角函数在各象限的符号规律及三角函数线(1)三角函数在各象限的符号:象限符号函数Ⅰ Ⅱ Ⅲ Ⅳsin α,csc α + + - -cos α,sec α + - - +tan α,cot α + - + -(2)三角函数线:正弦线 如图,角α的正弦线为错误!。
余弦线 如图,角α的余弦线为错误!。
正切线 如图,角α的正切线为错误!.知识拓展三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P的位置无关.(√) (3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α〉1。
高三文科数学总复习课件:三角形中的三角函数
2 为 3 ,则 a 的值为=
.
2
sin A
第八页,编辑于星期日:二十二点 四十九分。
例5
在 ABC中,角A、B、C所对的边分别为a、b、c,
若A= ,(1+ 3)c=2b.
6 (1)求C的大小; (2)若CB CA=1+ 3,求a,b,c.
第九页,编辑于星期日:二十二点 四十九分。
例6
在 ABC中,角A、B、C所对的边分别为a、b、c, 若 2sinA= 3cosA. (1)若a2 -c2 =b2 -mbc,求实数m的值; (2)若a 3,求 ABC面积的最大值.
2.解决三角形中的问题,要从统一着手, 或统一成角的关系,或统一成边的关系,
要视情况灵活处理.
第十二页,编辑于星期日:二十二点 四十九分。
《单元滚动卷检测一》
第十三页,编辑于星期日:二十二点 四十九分。
第三页,编辑于星期日:二十二点 四十九分。
(2) 余弦定理:
a2 b2 c2 2bc cos A
b2 a2 c2理可变形为:
cos A b2 c2 a2 cos B a2 c2 b2
2bc
2ac
a2 b2 c2 cosC
第十页,编辑于星期日:二十二点 四十九分。
在 ABC中,角A、B、C所对的边分别为a、b、c, 若a2 -c2 =2b,且sinAcosC=3cosAsinC,求b.
第十一页,编辑于星期日:二十二点 四十九分。
1.利用正弦定理、余弦定理将三角形 的边角转化、三角形形状的判断、进行 三角形内三角函数的求值及三角恒等式 的证明.
湖南师大附中 刘东红
第一页,编辑于星期日:二十二点 四十九分。
1.掌握正弦定理、余弦定理,并能解决 一些简单的三角度量问题。
高三高考文科数学《三角函数》题型归纳与汇总
高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
高三文科数学三角函数概念、同角关系、诱导公式
义的应用原点)的角为,OB为终边的角为,那么 sin(+ )等于多少?
(第103页例1)
二、三角函数定义的应用
例2 直线y=2x+m和圆x2+y2=1交于 以x轴正方向为始边,OA为终边(
典例分析
原点)的角为,OB为终边的角为 sin(+ )等于
典例分析
二、三角函数定义的应用
例3 如图,已知点A(3,4),C(2,0),
点B在第二象限,且OB=3,O为坐标原点,
记AOC= . (1)求sin2的值;
y
A
(2)若AB=7, 求 BOC的面积.
B
O
C
x
典例分析
三、
-7 例4
已知-
2
x
0, sin
x
cos
x
1 5
,
5 求sin x cos x 的值.
sin x cos x与方程思想
典例分析
sin x cos x与方程思想
复习回顾
二、三角函数 定义的应用
1.齐次式的问题
一、同角关系的应用
2.已知一个角的三角函数值,求其它的 三角函数值
典例分析
若角的终边落在射线y=二-、x三(角函x数定义0的)应上用 ,
in
1 cos2 的值为 (第104页第6题)2 直线y=2x+m和圆x2+y2=1交于点A,B, 以x轴正方向为始边,OA为终边(O是坐标
例5
已知 (0,),sin2
-24 , 25
-7
求 cos sin 的值.
5
三、
三角函数的概念 同角 三角函数的关系 诱导
公式
单击此处添加副标题
湖北高三文科数学知识点
湖北高三文科数学知识点湖北高三文科学生对数学的学习十分重视,因为数学是高考中的一门重要科目。
在数学知识点中,有一些部分对于湖北高三文科学生来说尤为重要,下面就对其中几个知识点进行讨论。
一、函数的基本概念和性质函数是高中数学中的重要概念,也是湖北高三文科学生需要掌握的知识点之一。
函数的概念是指将一个集合与另一个集合建立起对应关系的规则。
通过函数,我们可以描述和研究现实世界中的各种关系和变化。
函数有多种形式,比如显函数、隐函数和参数方程等。
湖北高三文科学生需要理解它们的特点和表示方法,并能够运用函数的性质解决实际问题。
二、三角函数与图像变换三角函数是湖北高三文科学生在数学学习中的重要知识点之一。
三角函数有正弦、余弦、正切等多种形式,它们在几何学、物理学和工程学中有广泛的应用。
湖北高三文科学生需要掌握三角函数的基本性质,并能够运用它们解决几何问题和相关的计算题。
此外,图像变换也是湖北高三文科学生需要了解的内容之一。
通过对函数图像进行平移、伸缩和翻转等操作,可以得到新的函数图像,这对于解决实际问题非常有帮助。
三、导数与微分导数与微分是湖北高三文科学生需要重点掌握的知识点之一。
导数是函数在某一点上的变化率,也可以理解为函数的瞬时变化率。
微分则是导数的一种几何解释,它描述了函数的局部性质。
湖北高三文科学生需要了解导数的定义和性质,并能够计算函数的导数。
通过求导,可以研究函数的变化规律,进而解决一些实际问题。
四、函数的极限与连续性函数的极限与连续性也是湖北高三文科学生需要重点学习的内容。
极限是描述函数逐渐趋于某一值的概念,它在微积分中有重要的应用。
连续性则是函数在某一区间上没有间断的特征。
湖北高三文科学生需要理解极限的概念和性质,并能够计算函数的极限。
同时,他们还需要理解连续函数的定义和判定条件,并能够判断函数的连续性。
五、统计与概率统计与概率是湖北高三文科学生需要了解的另一个数学知识点。
统计学研究了收集、处理和解释数据的方法和原理。
高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理
②由 f(x)=12sin2x-π6= 63,
得 sin2x-π6= 33,
∵x∈0,π4,∴-π6≤2x-π6≤π3,
∴cos2x-π6=
6 3.
∴cos 2x=cos2x-π6+π6 =cos2x-π6× 23-sin2x-π6×21 = 36× 23- 33×12= 22- 63.
三角恒等变换的“四大策略” (1)常值代换:特别是“1”的代换, 1=sin2θ+cos2θ=tan 45°等. (2)项的拆分与角的配凑: 如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.
分值 10 12 10
年份 卷别 Ⅰ卷
2019 Ⅱ卷 Ⅲ卷 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号
考查角度
分值
17 正余弦定理
12
二倍角公式、基本关系式、余弦定理、
15
5
三角形面积公式
18
正余弦定理、三角形面积公式
12
17
正余弦定理、解三角形
12
二倍角、辅助角公式、基本关系式、
10、15 和的正弦公式、余弦定理
10°=
典例1
A.34
(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin
( A)
B.14
C.12+
3 2
D.3
3 4
(2)(2020·宜宾模拟)已知 α∈0,π2,且 3sin2α-5cos2α+sin 2α=0,则
sin 2α+cos 2α=
( A)
A.1
B.-2137
2023年高考数学(文科)一轮复习——三角函数的图象与性质
第4节 三角函数的图象与性质考试要求 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 最小正周期 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无1.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的周期T =2π|ω|,函数y =A tan(ωx +φ)的周期T =π|ω|.2.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12T ,相邻的对称中心与对称轴之间的距离是14T ,其中T 为周期,正切曲线相邻两对称中心之间的距离是12T ,其中T 为周期.3.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.1.思考辨析(在括号内打“√”或“×”)(1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( ) 答案 (1)× (2)× (3)× (4)√解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 2.函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠-π12C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2+π6(k ∈Z )答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z . 3.下列函数中,是奇函数的是( ) A.y =|cos x +1| B.y =1-sin x C.y =-3sin(2x +π) D.y =1-tan x答案 C解析 选项A 中的函数是偶函数,选项B ,D 中的函数既不是奇函数,也不是偶函数;因为y =-3sin(2x +π)=3sin 2x ,所以是奇函数,选C. 4.(易错题)函数y =cos 2x +sin x 的值域为( )A.[-1,1]B.⎣⎢⎡⎦⎥⎤1,54 C.⎣⎢⎡⎦⎥⎤-1,54D.[0,1]答案 C解析 y =cos 2x +sin x =-sin 2x +sin x +1=-⎝ ⎛⎭⎪⎫sin x -122+54,∴当sin x =12时,y max =54. 当sin x =-1时,y min =-1.5.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是________. 答案 π6.(易错题)函数y =tan ⎝ ⎛⎭⎪⎫x +π4的图象的对称中心是________.答案 ⎝ ⎛⎭⎪⎫k π2-π4,0,k ∈Z解析 由x +π4=k π2,k ∈Z ,得x =k π2-π4,k ∈Z ,∴对称中心是⎝ ⎛⎭⎪⎫k π2-π4,0,k ∈Z .考点一 三角函数的定义域和值域 1.函数y =sin x -cos x 的定义域为______. 答案 ⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z )解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示. 在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+54π,k ∈Z . 2.函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π4-cos ⎝ ⎛⎭⎪⎫x -π4的最大值为________.答案2解析 f (x )=sin ⎝ ⎛⎭⎪⎫x -π4-cos ⎝ ⎛⎭⎪⎫x -π4=2sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -π4-π4=2sin ⎝ ⎛⎭⎪⎫x -π2 =-2cos x ,所以当x =(2k +1)π(k ∈Z )时,f (x )max = 2.3.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.答案 -4解析 因为f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1, 令t =cos x ,则t ∈[-1,1], 所以g (t )=-2t 2-3t +1.又函数g (t )图象的对称轴t =-34∈[-1,1],且开口向下,所以当t =1时,g (t )有最小值-4.综上,f (x )的最小值为-4.4.函数y =sin x -cos x +sin x cos x 的值域为________. 答案 ⎣⎢⎡⎦⎥⎤-12-2,1解析 设t =sin x -cos x , 则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-1+222. ∴函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.感悟提升 1.求三角函数的定义域通常要解三角不等式(组),解三角不等式(组)常借助三角函数线或三角函数的图象.2.求解三角函数的值域(最值)常见的几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(4)一些复杂的三角函数,可考虑利用导数确定函数的单调性,然后求最值. 考点二 三角函数的周期性、奇偶性、对称性例1 (1)(2022·成都调研)在函数①y =cos|x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的函数有( ) A.①③B.①④C.②④D.②③(2)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(3)(2022·西安调研)已知函数f (x )=2sin(x +θ+π3)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为________.答案 (1)D (2)C (3)π6解析 (1)①y =cos|x |=cos x ,最小正周期为2π,错误;②y =|cos x |,最小正周期为π,正确;③y =cos ⎝ ⎛⎭⎪⎫2x +π6,最小正周期为2π2=π,正确;④y =tan ⎝ ⎛⎭⎪⎫2x -π4最小正周期为π2,错误.故选D.(2)由题意知f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,当x =π3时,x +π6=π2,所以直线x =π3为对称轴,点⎝ ⎛⎭⎪⎫π3,0不为对称中心,A 错误,C 正确;当x =2π3时,x +π6=5π6,所以点⎝ ⎛⎭⎪⎫2π3,0不为对称中心,B 错误;当x =π6时,x +π6=π3,所以直线x =π6不为对称轴,D 错误,故选C. (3)∵函数f (x )为偶函数, ∴θ+π3=k π+π2(k ∈Z ).又θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π3=π2,解得θ=π6,经检验符合题意.感悟提升 1.求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ)或y =A cos(ωx +φ)或y =A tan(ωx +φ)(A ,ω,φ为常数,A ≠0)的形式,再分别应用公式T =2π|ω|或T =π|ω|求解.2.三角函数型奇偶性判断除可以借助定义外,还可以借助其图象与性质,对y =A sin(ωx +φ)代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).3.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.训练1 (1)(2022·河南名校联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2 022x +π4+cos ⎝ ⎛⎭⎪⎫2 022x -π4的最大值为M ,若存在实数m ,n ,使得对任意实数x 总有f (m )≤f (x )≤f (n )成立,则M ·|m -n |的最小值为( ) A.π2 022B.π1 011C.π505D.3π1 011(2)已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π2)的最小正周期为4π,且∀x ∈R 有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图象的对称中心是________,对称轴方程是________.答案 (1)B (2)⎝ ⎛⎭⎪⎫2k π+4π3,0,k ∈Z x =2k π+π3,k ∈Z解析 (1)令α=2 022x +π4,则f (x )=sin α+cos ⎝ ⎛⎭⎪⎫α-π2=sin α+sin α=2sin α=2sin ⎝ ⎛⎭⎪⎫2 022x +π4,其最小正周期T =2π2 022=π1 011.由题意可知,M =2,|m -n |min =12T ,∴M |m -n |的最小值为π1 011.故选B.(2)由f (x )=cos(ωx +φ)的最小正周期为4π,得ω=12,因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=2k π(k ∈Z ).又∵|φ|<π2,所以φ=-π6,故f (x )=cos ⎝ ⎛⎭⎪⎫12x -π6,令12x -π6=π2+k π(k ∈Z ),得x =4π3+2k π(k ∈Z ),故f (x )图象的对称中心为⎝ ⎛⎭⎪⎫2k π+4π3,0,k ∈Z . 令12x -π6=k π(k ∈Z ),得x =2k π+π3(k ∈Z ),故f (x )图象的对称轴方程是x =2k π+π3,k ∈Z . 考点三 三角函数的单调性 角度1 求三角函数的单调区间例2 (1)函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π6(x ∈[0,π])的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤0,5π6B.⎣⎢⎡⎦⎥⎤0,2π3C.⎣⎢⎡⎦⎥⎤5π6,πD.⎣⎢⎡⎦⎥⎤2π3,π (2)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.答案 (1)C (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )解析 (1)由2k π-π≤x +π6≤2k π,k ∈Z ,解得2k π-7π6≤x ≤2k π-π6,k ∈Z .∵x ∈[0,π],∴5π6≤x ≤π,∴函数f (x )在[0,π]的单调递增区间为⎣⎢⎡⎦⎥⎤5π6,π,故选C.(2)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). 角度2 利用单调性比较大小例3 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c答案 A解析 a =f ⎝ ⎛⎭⎪⎫π7=2cos 13π42,b =f ⎝ ⎛⎭⎪⎫π6=2cos π3,c =f ⎝ ⎛⎭⎪⎫π4=2cos 5π12,因为y =cos x 在[0,π]上递减, 又13π42<π3<5π12,所以a >b >c .角度3 根据三角函数的单调性求参数例4 (1)已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (x )在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递增,则φ的取值范围是________.(2)(2022·山西高三测评)已知函数f (x )=sin x 2+3cos x2在(-a ,a )(a >0)上单调递增,则a 的取值范围是________. 答案 (1)⎣⎢⎡⎦⎥⎤π10,π4 (2)⎝ ⎛⎦⎥⎤0,π3 解析 (1)因为函数f (x )=-2sin(2x +φ)在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递增,所以函数y =2sin(2x +φ)在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递减,又因为y =2sin(2x +φ)的单调递减区间为π2+2k π≤2x +φ≤3π2+2k π,k ∈Z ,解得π4+k π-φ2≤x ≤3π4+k π-φ2,k ∈Z ,所以π4+k π-φ2≤π5,5π8≤3π4+k π-φ2,k ∈Z ,所以π10+2k π≤φ≤π4+2k π,k ∈Z ,因为|φ|<π,所以令k =0,解得π10≤φ≤π4,所以φ的取值范围是⎣⎢⎡⎦⎥⎤π10,π4.(2)f (x )=sin x 2+3cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π3,由-π2+2k π≤x 2+π3≤π2+2k π(k ∈Z ),得-5π3+4k π≤x ≤π3+4k π(k ∈Z ),所以⎩⎪⎨⎪⎧a ≤π3,-a ≥-5π3,又a >0,所以a ∈⎝ ⎛⎦⎥⎤0,π3.感悟提升 1.已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.2.已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.训练2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是________. (2)(2022·中原名校联盟联考)若函数f (x )=3sin ⎝ ⎛⎭⎪⎫x +π10-2在区间⎣⎢⎡⎦⎥⎤π2,a 上单调,则实数a 的最大值是________.答案 (1)⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z (2)7π5 解析 (1)由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z . (2)法一 令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤2π5,7π5上单调递减, 所以a 的最大值为7π5.法二 因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,又f (x )在⎣⎢⎡⎦⎥⎤π2,a 上单调,π2+π10<a +π10≤3π2,即π2<a ≤7π5,所以a 的最大值为7π5. 三角函数中ω的求解在三角函数的图象与性质中ω的求解是近年高考的一个热点内容,但因其求法复杂,涉及的知识点多,历来是我们复习中的难点.一、结合三角函数的单调性求解例1 若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,23 B.⎣⎢⎡⎦⎥⎤0,32 C.⎣⎢⎡⎦⎥⎤23,3 D.⎣⎢⎡⎦⎥⎤32,3 答案 D解析 令π2+2k π≤ωx ≤3π2+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎢⎡⎦⎥⎤π3,π2上单调递减, 所以⎩⎪⎨⎪⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3. 又ω>0,所以k ≥0.又6k +32≤4k +3,得0≤k ≤34.又k ∈Z ,所以k =0.即32≤ω≤3.故选D.二、结合三角函数的对称性、周期性求解例2 (2021·兰州质量预测)设函数f (x )=3sin ωx +cos ωx (ω>0),其图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内,且f (x )的最小正周期大于π,则ω的取值范围是( ) A.⎝ ⎛⎭⎪⎫12,1 B.(0,2) C.(1,2) D.[1,2) 答案 C解析 f (x )=3sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0), 令ωx +π6=k π+π2(k ∈Z ),解得x =π3ω+k πω(k ∈Z ),由于函数f (x )图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内, 因此有π6<π3ω+k πω<π3(k ∈Z )成立,即3k +1<ω<6k +2(k ∈Z ),由f (x )的最小正周期大于π,得2πω>π且ω>0,解得0<ω<2,综上可得1<ω<2.故选C.三、结合三角函数的最值求解例3 已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.答案 (-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞解析 显然ω≠0.若ω>0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,-π3ω≤ωx ≤π4ω, 因为函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2, 所以-π3ω≤-π2,解得ω≥32.若ω<0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因为函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2, 所以π4ω≤-π2,解得ω≤-2.综上所述,符合条件的ω的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.1.下列函数中,是周期函数的为( )A.f (x )=sin |x |B.f (x )=tan |x |C.f (x )=|tan x |D.f (x )=(x -1)0 答案 C解析 对于C ,f (x +π)=|tan(x +π)|=|tan x |=f (x ),所以f (x )是周期函数,其余均不是周期函数.2.(2021·西安调研)函数y =3tan ⎝ ⎛⎭⎪⎫2x +π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π-π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π,k ∈Z 答案 C解析 要使函数有意义,则2x +π4≠k π+π2,k ∈Z ,即x ≠k 2π+π8,k ∈Z ,所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π+π8,k ∈Z ,故选C. 3.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6的图象的一条对称轴方程为( ) A.x =π6 B.x =5π12C.x =2π3D.x =-2π3答案 B解析 令2x +π6=k π(k ∈Z ),则x =k π2-π12,k ∈Z ,当k =1时,x =5π12,故选B.4.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x +π6+φ⎝ ⎛⎭⎪⎫|φ|<π2为奇函数,则φ=( ) A.-π6 B.-π3 C.π6 D.π3答案 D解析 因为f (x )为奇函数,所以π6+φ=k π+π2,则φ=k π+π3,k ∈Z ,又|φ|<π2,所以φ=π3.5.若f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4,则( ) A.f (1)>f (2)>f (3)B.f (3)>f (2)>f (1)C.f (2)>f (1)>f (3)D.f (1)>f (3)>f (2)答案 A解析 由π2≤2x -π4≤3π2,可得3π8≤x ≤7π8,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤3π8,7π8上单调递减,由于1<3π8<2,且3π8-1<2-3π8,故f (1)>f (2).由于3π8<2<7π8<3,且7π8-2>3-7π8,故f (2)>f (3),所以f (1)>f (2)>f (3),故选A.6.(2022·南昌模拟)已知函数f (x )=sin(2x +φ)(0<φ<π)的图象关于点B ⎝ ⎛⎭⎪⎫π6,0对称,则下列选项中能使得g (x )=cos(x +φ) 取得最大值的是( )A.x =-2π3B.x =-π6C.x =π3D.x =5π12答案 A解析 因为f (x )=sin(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫π6,0对称,所以2×π6+φ=k π(k ∈Z ),得φ=k π-π3(k ∈Z ),又φ∈(0,π),所以当k =1时,φ=2π3,所以g (x )=cos(x +φ)=cos ⎝ ⎛⎭⎪⎫x +2π3取得最大值时,x +2π3=2k 1π(k 1∈Z ),得x =2k 1π-2π3(k 1∈Z ),令k 1=0得x =-2π3.故选A.7.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为________.答案 6π5解析 由函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,又ω∈(1,2),∴ω=53,∴函数f (x )的最小正周期为2π53=6π5. 8.(2022·合肥调研)已知函数f (x )=⎪⎪⎪⎪⎪⎪tan ⎝ ⎛⎭⎪⎫12x -π6,则下列说法正确的是________(填序号).①f (x )的周期是π2;②f (x )的值域是{y |y ∈R ,且y ≠0};③直线x =5π3是函数f (x )图象的一条对称轴;④f (x )的单调递减区间是(2k π-2π3,2k π+π3),k ∈Z .答案 ④解析 函数f (x )的周期为2π,①错;f (x )的值域为[0,+∞),②错,当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,∴x =5π3不是f (x )的对称轴,③错;令k π-π2<12x -π6<k π,k ∈Z ,可得2k π-2π3 <x <2k π+π3,k ∈Z ,∴f (x )的单调递减区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+π3,k ∈Z ,④正确. 9.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤12,54 解析 由π2<x <π,ω>0得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z , 解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝ ⎛⎭⎪⎫2k +54≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈⎣⎢⎡⎦⎥⎤12,54. 10.已知函数f (x )=sin(2π-x )sin ⎝ ⎛⎭⎪⎫3π2-x -3cos 2x + 3. (1)求f (x )的最小正周期和图象的对称轴方程;(2)当x ∈⎣⎢⎡⎦⎥⎤0,7π12时,求f (x )的最小值和最大值. 解 (1)由题意,得f (x )=(-sin x )(-cos x )-3cos 2 x + 3=sin x cos x -3cos 2x + 3=12sin 2x -32(cos 2x +1)+ 3 =12sin 2x -32cos 2x +32=sin ⎝ ⎛⎭⎪⎫2x -π3+32, 所以f (x )的最小正周期T =2π2=π;令2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),故所求图象的对称轴方程为x =k π2+5π12(k ∈Z ).(2)当0≤x ≤7π12时,-π3≤2x -π3≤5π6,由函数图象(图略)可知, -32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1. 即0≤sin ⎝ ⎛⎭⎪⎫2x -π3+32≤2+32. 故f (x )的最小值为0,最大值为2+32.11.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2) 求f (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b ,3a +b ].又-5≤f (x )≤1,∴⎩⎪⎨⎪⎧b =-5,3a +b =1,解得⎩⎪⎨⎪⎧a =2,b =-5.(2)f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 由-π2+2k π≤2x +π6≤π2+2k π得-π3+k π≤x ≤π6+k π,k ∈Z .由π2+2k π≤2x +π6≤32π+2k π得π6+k π≤x ≤23π+k π,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,23π+k π(k ∈Z ), 单调递减区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z ). 12.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象在⎣⎢⎡⎦⎥⎤0,π4内有且仅有一条对称轴,则实数ω的取值范围是( )A.(0,5)B.(0,5]C.[1,5)D.(1,5]答案 C解析 令ωx +π4=k π+π2,x =1ω⎝ ⎛⎭⎪⎫k π+π4,k ∈Z . ∵ω>0,由题意得⎩⎪⎨⎪⎧1ω×π4≤π4,1ω×5π4>π4,解得1≤ω<5.故选C. 13.(2022·贵阳模拟)已知函数f (x )=sin x +12sin 2x ,给出下列四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于原点对称; ③函数f (x )的图象过点(π,0);④函数f (x )为R 上的单调函数.其中所有真命题的序号是________. 答案 ①②③解析 因为f (x +2π)=sin(x +2π)+12sin(2x +4π)=sin x +12sin 2x =f (x ),所以2π是函数f (x )的一个周期,所以①正确;因为f (-x )=sin(-x )+12sin(-2x )=-⎝ ⎛⎭⎪⎫sin x +12sin 2x =-f (x )(x ∈R ), 所以f (x )为奇函数,其图象关于原点对称,所以②正确;因为f (π)=sin π+12sin 2π=0,所以③正确;因为f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1,f (π)=0, 所以f (x )不可能是单调函数,所以④错误.14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2, 求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时, 函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2,∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.。
高考文科数学必考知识点归纳
高考文科数学必考知识点归纳精选全国高考文科数学必考知识点一、基本概念1.函数与曲线:定义函数与曲线,二次函数方程;二次曲线函数表达式;参数方程的图形;定义域和值域;一次函数与l2函数的性质;反函数的求解;函数和曲线变换;极坐标函数图形;求值点;联系函数和曲线。
2.三角函数:三角函数基本性质;弧度和角度的关系;周期性特点;正弦定理、余弦定理及其应用;正弦曲线以及余弦曲线的性质;三角函数变换;三角函数的值的计算。
3.解析几何:定义几何图形,平面直角坐标系;圆的性质;椭圆及其性质;双曲线的特点;点、直线、圆及其几何关系;不等式的图形表示;空间几何图形;解析几何方法解决几何问题;锐角三角形内角和外角的关系;三角函数与角度;等腰三角形及其特殊性质;空间三角形和其内角和外角关系;四边形面积;六边形面积;新结构和性质;特殊定点定理和性质。
4.统计:统计的基本概念;概率的含义;概率的计算;分类资料的相互关系;抽样分析;概率的判断;统计数据的分类;统计数据的计算;统计图的制作及其应用;回归分析;误差估计。
二、代数与方程1.代数:定义多项式;解题步骤和算法;系数;根;因式分解;乘法定理;互异因数;无穷序列求和;除号自由把法;十二项式;因式定理;求取代数方程的根;多项式的因式分解;代数的性质;多项式的奇偶性;分数的运算;平方根运算。
2.方程:定义方程;一元二次方程的求解;整式化简;同余方程;不等式及其解法;定义不等式;不等式解法;二元一次方程组;合并算法;解法及应用;三元一次方程组;连立方程解法;恒等变换;解三元一次方程组。
三、推理与证明1.数学推理:数学推理的基本概念;式子、条件、命题、证明;直觉猜想;演绎推理;证明方式和思路;言语推理;判断推理;数列的构造;数列的求和及其性质;模式推理;推理与逻辑;数学归纳法;归纳证明;归纳定理;反证法的应用;数论。
2.证明方法:数论的基本概念;数论的证明方法;数学分析的基本任务;证明的步骤和思路;数学初步证明;假设证明法;特例法;反证法;常数项法;例证法;椭圆函数的性质;变量分离法。
2023年高考数学(文科)一轮复习——同角三角函数的基本关系与诱导公式
第2节同角三角函数的基本关系与诱导公式考试要求 1.理解同角三角函数的基本关系:sin2α+cos2α=1,sin αcos α=tan α;2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α-sin__α-sin__αsin__αcos__αcos__α余弦cos α-cos__αcos__α-cos__αsin__α-sin__α正切tan αtan__α-tan__α-tan__α口诀函数名改变,符号看象限函数名改变,符号看象限1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.1.思考辨析(在括号内打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)sin(π+α)=-sin α成立的条件是α为锐角.( ) (3)若α∈R ,则tan α=sin αcos α恒成立.( ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 答案 (1)× (2)× (3)× (4)× 解析 (1)对任意的角α,sin 2α+cos 2α=1. (2)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴上时,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13.2.求值:cos 2 023π6=________. 答案 -32解析 cos ⎝ ⎛⎭⎪⎫337π+π6=-cos π6=-32.3.若cos α=33,则tan α=________. 答案 ±2解析 因为cos α=33, 所以sin α=±1-cos 2 α=±1-⎝ ⎛⎭⎪⎫332=±63 .故tan α=sin αcos α=±2.4.(易错题)已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为________.答案 -23解析:∵sin θ+cos θ=43,∴sin θcos θ=718.又∵(sin θ-cos θ)2=1-2sin θcos θ=29,θ∈⎝ ⎛⎭⎪⎫0,π4,∴sin θ-cos θ=-23.5.(2022·昆明诊断)若cos ⎝ ⎛⎭⎪⎫π3-α=15,则sin ⎝ ⎛⎭⎪⎫π6+α=________. 答案 15解析 sin ⎝ ⎛⎭⎪⎫π6+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π3-α=15. 6.(2021·沈阳模拟)已知2sin(π-α)=3sin ⎝ ⎛⎭⎪⎫π2+α,则sin 2α-12sin 2α-cos 2α=________. 答案 -113解析 由2sin(π-α)=3sin ⎝ ⎛⎭⎪⎫π2+α,得2sin α=3cos α.所以tan α=32,从而sin 2α-12sin 2α-cos 2α= sin 2α-sin αcos α-cos 2αsin 2α+cos 2α=tan 2α-tan α-1tan 2α+1=-113.考点一 诱导公式的应用1.化简:sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=________.答案 -1sin α解析原式=cos α(-cos α)tan2αsin α(-sin α)(-sin α)=-1sin α.2.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则sin β=________.答案1 3解析由已知得α+β=π+2kπ,k∈Z.∵sin α=1 3,∴sin β=sin(π+2kπ-α)=sin α=1 3.3.(2022·皖北名校联考)sin 613°+cos 1 063°+tan(-30°)的值为________.答案-3 3解析sin 613°+cos 1 063°-tan 30°=sin(180°+73°)+cos(-17°)-tan 30°=-sin 73°+cos(-17°)-tan 30°=-cos 17°+cos 17°-33=-33.感悟提升 1.诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了.(2)化简:统一角,统一名,同角名少为终了.2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算.考点二同角三角函数基本关系及其应用角度1切弦互化例1 (1)已知α是第四象限角,tan α=-815,则sin α等于()A.1517B.-1517C.817 D.-817(2)(2021·新高考Ⅰ卷)若tan θ=-2,则sin θ(1+sin 2θ)sin θ+cos θ=( )A.-65B.-25C.25D.65答案 (1)D (2)C解析 (1)因为tan α=-815, 所以sin αcos α=-815,所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289, 又α是第四象限角,所以sin α=-817. (2)因为tan θ=-2,所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ)=sin 2 θ+sin θcos θsin 2 θ+cos 2θ=tan 2 θ+tan θ1+tan 2θ=4-21+4=25. 角度2 sin α±cos α与sin αcos α的转化例2 若sin θ-cos θ=43,且θ∈⎝ ⎛⎭⎪⎫34π,π,则sin(π-θ)-cos(π-θ)=( )A.-23B.23C.-43D.43 答案 A解析 由sin θ-cos θ=43得1-2sin θcos θ=169,即2sin θcos θ=-79, ∴(sin θ+cos θ)2=1+2sin θcos θ=29. 又θ∈⎝ ⎛⎭⎪⎫34π,π,∴sin θ+cos θ<0,∴sin θ+cos θ=-23,则sin(π-θ)-cos(π-θ)=sin θ+cos θ=-23,故选A.感悟提升 1.(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化. (2)形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.2.注意公式的逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.3.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.训练1 (1)(2022·北京市西城区模拟)已知α∈(0,π),cos α=-35,则tan α等于( ) A.34B.-34C.43D.-43(2)(2022·成都联考)在△ABC 中,sin A ·cos A =-18,则cos A -sin A 的值为( ) A.-32B.-52C.52D.±32(3)(2021·兰州诊断)已知sin α+cos α=75,则tan α=________. 答案 (1)D (2)B (3)43或34解析 (1)因为cos α=-35且α∈(0,π),所以sin α=1-cos 2α=45,所以tan α=sin αcos α=-43.(2)∵在△ABC 中,sin A ·cos A =-18, ∴A 为钝角,∴cos A -sin A <0, ∴cos A -sin A =-(cos A -sin A )2=-cos 2A +sin 2A -2sin A cos A =-1-2×⎝ ⎛⎭⎪⎫-18=-52.(3)将sin α+cos α=75两边平方得1+2sin αcos α=4925, ∴sin αcos α=1225, ∴sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1225, 整理得12tan 2α-25tan α+12=0,解得tan α=43或tan α=34. 考点三 同角三角函数基本关系和诱导公式的综合应用例3 (1)(2020·全国Ⅰ卷)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α=( ) A.53 B.23 C.13 D.59(2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a (|a |≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________.答案 (1)A (2)0解析 (1)由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去). 又因为α∈(0,π), 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-232=53.故选A. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0.感悟提升 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.注意角的范围对三角函数值符号的影响.2.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有π3-α与π6+α,π3+α与π6-α,π4+α与π4-α等,常见的互补关系有π6-θ与5π6+θ,π3+θ与2π3-θ,π4+θ与3π4-θ等.训练2 (1)已知θ为第四象限角,sin θ+3cos θ=1,则tan θ=________; (2)已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________.答案 (1)-43 (2)-33解析 (1)由(sin θ+3cos θ)2=1=sin 2θ+cos 2 θ, 得6sin θcos θ=-8cos 2 θ, 又因为θ为第四象限角,所以cos θ≠0, 所以6sin θ=-8cos θ,所以tan θ=-43.(2)∵⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫5π6+α=π,∴tan ⎝ ⎛⎭⎪⎫5π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.1.sin 1 050°等于( ) A.12 B.-12C.32D.-32答案 B解析 sin 1 050°=sin(3×360°-30°) =-sin 30°=-12.2.若角α的终边在第三象限,则cos α1-sin 2 α+2sin α1-cos 2α的值为( ) A.3 B.-3C.1D.-1答案 B解析 由角α的终边在第三象限,得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3,故选B. 3.已知α是第四象限角,sin α=-1213,则tan(π+α)等于( ) A.-513 B.513C.-125D.125答案 C解析 因为α是第四象限角,sin α=-1213, 所以cos α=1-sin 2 α=513,故tan(π+α)=tan α=sin αcos α=-125. 4.已知sin α-cos α=54,则sin 2α=( ) A.-916 B.-716 C.716 D.916答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α,∴sin 2α=1-⎝ ⎛⎭⎪⎫542=-916.5.已知3sin(π+θ)=cos(2π-θ),|θ|<π2,则θ等于( ) A.-π6 B.-π3C.π6D.π3答案 A解析 ∵3sin(π+θ)=cos(2π-θ),∴-3sin θ=cos θ,∴tan θ=-33,∵|θ|<π2,∴θ=-π6.6.若3sin α+cos α=0,则1cos 2α+2sin αcos α的值为 ( )A.103B.53C.23D.-2 答案 A解析 由3sin α+cos α=0,得tan α=-13,则1cos 2 α+2sin αcos α=sin 2 α+cos 2 αcos 2 α+2sin αcos α =tan 2α+11+2tan α=19+11-23=103. 7.若θ∈⎝ ⎛⎭⎪⎫π2,π,则1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=( )A.sin θ-cos θB.cos θ-sin θC.±(sin θ-cos θ)D.sin θ+cos θ答案 A 解析 1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=(sin θ-cos θ)2=|sin θ-cos θ|, 又∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0, 所以原式=sin θ-cos θ.8.(2022·太原调研)已知3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,则tan ⎝ ⎛⎭⎪⎫5π14+α等于( ) A.-53 B.-35 C.35 D.53 答案 A解析 由3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,得sin ⎝ ⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+α,所以tan ⎝ ⎛⎭⎪⎫5π14+α=sin ⎝ ⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53. 9.(2022·合肥模拟)已知tan(π-α)=2,则sin α+cos αsin α-cos α=________.答案 13解析 由tan(π-α)=2,得tan α=-2,则sin α+cos αsin α-cos α=tan α+1tan α-1=-2+1-2-1=13.10.已知k ∈Z ,则sin (k π-α)cos [(k -1)π-α]sin [(k +1)π+α]cos (k π+α)的值为________. 答案 -1解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos [(2n -1)π-α]sin [(2n +1)π+α]cos (2n π+α)=sin (-α)cos (-π-α)sin (π+α)cos α=-sin α(-cos α)-sin α cos α=-1. 当k =2n +1(n ∈Z )时,原式=sin [(2n +1)π-α]cos [(2n +1-1)π-α]sin [(2n +1+1)π+α]cos [(2n +1)π+α]=sin (π-α)cos αsin αcos (π+α)=sin αcos αsin α(-cos α)=-1. 综上,原式=-1.11.已知α为钝角,sin ⎝ ⎛⎭⎪⎫π4+α=34,则sin ⎝ ⎛⎭⎪⎫π4-α=________,cos ⎝ ⎛⎭⎪⎫α-π4=________. 答案 -74 34解析 sin ⎝ ⎛⎭⎪⎫π4-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α =cos ⎝ ⎛⎭⎪⎫π4+α, ∵α为钝角,∴34π<π4+α<54π.∴cos ⎝ ⎛⎭⎪⎫π4+α<0.∴cos ⎝ ⎛⎭⎪⎫π4+α=-1-⎝ ⎛⎭⎪⎫342=-74. cos ⎝ ⎛⎭⎪⎫α-π4=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭⎪⎫π4+α=34. 12.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________. 答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.13.已知角α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) A.-32 B.32 C.-12 D.12答案 D解析 终边在直线y =x 上的角为k π+π4(k ∈Z ),因为角α和β的终边关于直线y=x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=sin ⎝ ⎛⎭⎪⎫2k π+5π6=12. 14.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( )A.355B.377C.31010D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角).15.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 023)的值为________.答案 -3解析 因为f (x )=a sin(πx +α)+b cos(πx +β),所以f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,所以f (2 023)=a sin(2 023π+α)+b cos(2 023π+β)=a sin(π+α)+b cos(π+β)=-a cos α-b cos β=-3.16.已知2θ是第一象限角,且sin 4θ+cos 4θ=59,那么tan θ=________. 答案 22解析 因为sin 4θ+cos 4θ=59,所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59. 所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23, 即tan θ1+tan 2θ=23,解得tan θ=2或tan θ=22. 又因为2θ为第一象限角,所以2k π<2θ<2k π+π2,k ∈Z .所以k π<θ<π4+k π,k ∈Z .所以0<tan θ<1.所以tan θ=22.。
高三文科数学一轮复习之三角函数和解三角形
数学讲义之三角函数、解三角形【主干内容】1 1 21. 弧长公式:l I |r. 扇形面积公式:s扇形尹| r22. 三角函数的定义域:4. 同角三角函数的基本关系式:si^ tan sin2cos21cosk5. 诱导公式:把亍的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”。
重要公式:cos() cos cos sin sin6•三角函数图象的作法:描点法及其特例一一五点作图法(正、余弦曲线)三点二线作图法(正切曲线)【注意!!!】本专题主要思想方法1. 等价变换。
熟练运用公式对问题进行转化,化归为熟悉的基本问题;2. 数形结合。
充分利用单位圆中的三角函数线及三角函数图象帮助解题;3. 分类讨论。
【题型分类】题型一:三角运算,要求熟练使用各种诱导公式、倍角公式等。
〖例1〗(10全国卷I文)cos300A.31-C1n .3B.— D. 2222C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解析】cos300cos36601cos602〖例2〗(10全国卷n文)已知sin2,则cos(x 2 )3A. JB.1C.1D V5D.3993【解析】B:本题考查了二倍角公式及诱导公式,•••SINA=2/3 , cos( 2 )cos2(12sin 2) -9〖例3〗(10福建文)计算12sin 22.5的结果等于()A.-B.豆C.D.迈2232【答案】B2故选B.【解原式=cos 45 - 51例4〗(10浙江文)函数f(x) sin2(2x -)的最小正周期是 ___________4最小正周期为2,本题主要考察了二倍角余弦公式的灵活运用,属容易题。
题型二:三角函数的图象:三角函数图象从“形”上反应了三角函数的性质。
是()D解析:对解析式进行降幕扩角,转化为f x】cos 4x —1,可知其2 2 21例1〗(10重庆文)下列函数中,周期为,且在[壬,?]上为减函数的是A. y sin(2x -)B. y cos(2x )C. y sin(x 【答案】AD.cos(x —)1例2〗(09浙江文)已知 a 是实数,则函数 f (x ) 1 a sin ax 的图象不可能1例3〗为得到y sin2x 的图象A.向左平移丸个长度单位12C.向左平移4个长度单位6分析:先统一函数名称,在根据平移的法则解决.B .向右平移个长度单位12D.向右平移士个长度单位6n解析:函数 y cos 2x sin 2x — —33 2sin 2xsin2 x512故要将函数y sin2x的图象向左平移丸个长度单位,选择答案A.121例4〗(10江西文)四位同学在同一个坐标系中分别选定了一个适当的区间,y sin(x ), y sin(x )各自作出三个函数y sin2x,63的图像如下,结果发现恰有一位同学作出的图像有错误,那么有错误的图像是 【答案】C【命题意图】考查三角函数的图像与性质•【解析】作出三个函数图像对比分析即可选择 Co2最小正周期为 -.3(I)求 的最小正周期.〖例6〗(11浙江文)已知函数 f(x) As in (§x ) , x R , A 0 ,0 -. y f (x)的部分图像,如图所示, P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1, A).(I)求f (x)的最小正周期及 (n)若点R 的坐标为(1,0),1例5〗(09重庆文)设函数f(x )2 2(sin x cos x) 2cos x( 0)的(n)若函数y g(x)的图像是由y f(x)的图像向右平移三个单位长度得到,求y g(x)的单调增区间.解:(I)2 2依题意得————,故2 3的最小正周期为由2k 2 解得三k3依题意得:5w 3x w 2k24 2 w x w k 4 3-(kZ) 寻(kZ)\故y g(x)的单调增区间为:拿的值;PRQ —,求A 的值.题型三:三角函数的最值: 最值是三角函数最为重要的内容之一, 其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问 题。
专题3 三角函数的图象与性质【高考文科数学】含答案
第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx.(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2 函数 性质 y =sin xy =cos xy =tan x定义域RR{x |x ≠k π+π2,k ∈Z}图象值域[-1,1] [-1,1]R对称性对称轴:x =k π+π2(k ∈Z);对称中心:(k π,0)(k ∈Z)对称轴:x = k π(k ∈Z);对称中心: (k π+π2,0)(k ∈Z)对称中心:⎝⎛⎭⎪⎫k π2,0(k ∈Z)周期2π2ππ单调性单调增区间[2k π-π2,2k π+π2](k ∈Z); 单调减区间[2k π+π2,2k π+3π2] (k ∈Z) 单调增区间 [2k π-π,2k π]( k ∈Z);单调增区间 (k π-π2,k π+π2)(k ∈Z)奇偶性 奇 偶 奇3. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x值、y 值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (2013·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+3, ∴T =π.2. (2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ) A.3π4 B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ=π4.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A. 4. (2012·课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎪⎫2x +π4, 其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z , 显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6知,当x =π6时f (x )取最值,∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝ ⎛⎭⎪⎫π2>f (π),∴sin(π+φ)>sin(2π+φ), ∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎪⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β).审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.(2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用 例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝ ⎛⎭⎪⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝ ⎛⎭⎪⎫π6,2, 所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝ ⎛⎭⎪⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和. 变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4C .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π4D .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -3π4答案 B解析 由图象可知A =2,T 2=3π2-⎝ ⎛⎭⎪⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫12x +φ.又f ⎝ ⎛⎭⎪⎫-π2=2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-π2+φ=2,即sin ⎝ ⎛⎭⎪⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4,选B.题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎪⎫ωx +π3+3(ω>0)的最小正周期为π.(1)求f (x )的解析式;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫cos ωx cos π3-sin ωx sin π3+ 3=2sin ωx cos ωx -23sin 2ωx + 3=sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎪⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎪⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sint +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( ) A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 答案 C解析 因为y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎢⎡⎦⎥⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为增函数D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数答案 B解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,其图象关于直线x =0对称,∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . ∴y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为减函数.题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, 所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y=-k 在⎣⎢⎡⎦⎥⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调区间.解 g (x )=sin ⎝⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π3,π2. 变式训练4 (2013·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝ ⎛⎭⎪⎫11π12=sin ⎝ ⎛⎭⎪⎫2×11π12-π3=sin ⎝ ⎛⎭⎪⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2×2π3-π3=sin π=0,图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称,所以②正确;当-π12≤x≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin 2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分]又∵f (x )过点⎝ ⎛⎭⎪⎫π6,12, ∴12=12cos ⎝ ⎛⎭⎪⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3.[5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.[7分]将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.[12分]评分细则 (1)将点⎝ ⎛⎭⎪⎫π6,12代入解析式给1分;从cos ⎝ ⎛⎭⎪⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分. 阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (2013·江苏)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34B.34C.43D .-43答案 D 解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y=sin ⎝ ⎛⎭⎪⎫x +π3单调递减,所以y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数,选B.5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4 B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1, ∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎪⎫5π12-π4=2π3,ω=3,所以sin ⎝ ⎛⎭⎪⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A. 3. 函数y =log 2sin x 在x ∈⎣⎢⎡⎦⎥⎤π6,π4时的值域为( ) A .[-1,0]B.⎣⎢⎡⎦⎥⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于( ) A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( )A.π8 B.38π C.34π D.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝ ⎛⎭⎪⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (2012·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ)得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.答案 ⎣⎢⎡⎦⎥⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同,∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎪⎫2x -π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4, 故④错.故填①③. 三、解答题13.(2013·湖南)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝ ⎛⎭⎪⎫x -π3=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎪⎫x +π6≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎪⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1.。
文科高考数学重难点02 三角函数与解三角形(解析版)
重难点02 三角函数与解三角形【高考考试趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内.备考时要熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点.考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用.本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升.【知识点分析以及满分技巧】三角函数与解三角形:从返几年高考情况来看,高考对本部分内容的考查主要有,1.三解恒等变换与三角函数的图象、性质相结合;2.三角恒等变换与解三角形相结合;3.平面向量、不等式、数列与三角函数和解三角形相结合,难度一般不大,属中档题型.三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题选项中特殊点的带入简单方便,正确率比较高.总额和性的问题一般采用换元法转化成最基本的函数问题去解答.对于三角函数有关恒等变换的题目应注重公式的变形.解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2020·贵溪市实验中学高三月考(文))在中,角,,所对的边分别ABC :A B C 为,,,且,则的最大值是( )a b c BC c bb c +A .8B .6C .D .4【答案】D【分析】由已知可得:,11sin 22bc A a =所以,2sin a A =因为,所以222cos 2b c a A bc +-=2222cos sin 2cos b c a bc AA bc A +=+=+所以,222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭所以的最大值是4c bb c +故选:D2.(2020·南昌市新建一中(文))在中,内角,,所对应的边分别为ABC :A B C a ,,,且,若,则边的最小值为()b c sin 2sin 0a B b A +=2a c +=b AB .C .2D【答案】D【分析】根据由正弦定理可得,sin2sin 0a B b A +=sin sin2sin sin 0A B B A +=即,,2sin sin cos sin sin 0A B B B A +=sin 0,sin 0A B ≠≠ ,,∴1cos 2B =-23B π∴=由余弦定理可得.()2222222cos 4b a c ac B a c ac a c ac ac=+-=++=+-=- .2a c +=≥ 1ac ∴≤ 即.,243bac ∴=-≥,b ≥故边.b 故选:D .3.(2020·吉林高三其他模拟(文))在中,内角,,所对的边分别为,ABC :A B C a ,,且,,在边上,且,则b c 3a =b =c =M AB BM CM =AMAB=( )A .B .C .D .14133423【答案】C【分析】因为,BM CM =所以为等腰三角形,MBC △因为,,.3a =b =c =由条件可得,222cos2a c b B ac +-==所以,解得3·cos 22BC BM B ==BM =所以AM AB BM =-=可得.34AM AB =故选:.C 4.(2020·河南郑州市·高三月考(文))已知的三个内角,,对应的边分ABC :A B C 别为,,,且,,成等差数列,则a b c sin 2a C π⎛⎫- ⎪⎝⎭()cos 4b B π-()cos 3c A π-的形状是( )ABC :A .直角三角形B .锐角三角形C .钝角三角形D .正三角形【答案】C【分析】,,sin cos 2a C a Cπ⎛⎫-=- ⎪⎝⎭()cos 4cos b B b B π-=,()cos 3cos c A c Aπ-=-依题意得,2cos cos cos b B a C c A =--根据正弦定理可得,()2sin cos sin cos cos sin B B A C A C =-+即,()2sin cos sin sin B B A C B=-+=-又,则,sin 0B ≠1cos 2B =-又,所以,()0,B π∈23B π=故的形状是钝角三角形.ABC :故选:C .5.(2020·安徽六安市·六安一中高三月考(文))已知的三个内角,,所ABC :A B C 对的边分别为,,,满足,且a b c 222cos cos cos 1sin sin A B C A C -+=+,则的形状为( )sin sin 1A C +=ABC :A .等边三角形B .等腰直角三角形C .顶角为的非等腰三角形D .顶角为的等腰三角形120120【答案】D【分析】因为,222cos cos cos 1sin sin A B C A C -+=+所以,2221sin (1sin )1sin 1sin sin A B C A C ---+-=+所以,222sin sin sin sin sin A C B A C +-=-根据正弦定理可得,即,222a cb ac +-=-222122a c b ac +-=-所以,因为,所以,所以,1cos 2B =-0B π<<120B = 60A C += 由得,sin sin 1A C +=sin sin(60)1A A +-=得,sin sin 60cos cos 60sin 1AA A +-=得,1sin sin 12A A A +-=得,1sin 12A A +=得,因为为三角形的内角,所以,,sin(60)1A +=A 30A = 30C =所以为顶角为的等腰三角形.ABC :120故选:D6.(2020·贵州黔东南苗族侗族自治州·高三月考(文))将函数的图象向右平2sin 2y x =移个单位得到函数的图象.若,则的值为(02πϕϕ⎛⎫<<⎪⎝⎭()f x 50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ϕ)A .B .C .D .12π8π6π3π【答案】A依题意,函数,由得()()2sin 22)i (2s n 2f x x x ϕϕ-=-=50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即,故5124f f ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭52sin 222sin 22124ππϕϕ⎛⎫⎛⎫⨯-=--⨯- ⎪ ⎪⎝⎭⎝⎭,即,5sin 262sin 2ππϕϕ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭1cos 22cos 22ϕϕϕ+=2cos 2ϕϕ=故,又,则,故,即.tan 2ϕ=02πϕ<<02ϕπ<<26πϕ=12πϕ=故选:A.7.(2020·梅河口市第五中学高三月考(文))已知角的顶点为坐标原点,始边与αβ,轴的非负半轴重合,若角的终边过点,,且,则x α()21,()4cos 5αβ+=0,2πβ⎛⎫∈ ⎪⎝⎭( )sin β=ABCD【答案】C【分析】因为角的终边过点,所以是第一象限角,α()21,α所以sin α==cos α==因为,,所以为第一象限角,,0,2πβ⎛⎫∈⎪⎝⎭()4cos 5αβ+=αβ+所以,()sin 35αβ+==所以()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦3455==故选:C.8.(2020·罗山县楠杆高级中学高三月考(文))函数的()()cosln 2xx f x x e e π-⎛⎫=-+ ⎪⎝⎭图象大致为()A .B .C .D .【答案】C【分析】因为,()()()πcos ln sin ln 2x x x x f x x e e x e e --⎛⎫=-+=+ ⎪⎝⎭所以,()()()()()sin ln sin ln x x x x f x x x e e x e e f x ---=-+=-+=-即函数为奇函数,其图象关于原点对称,故排除D ,()f x又因为,当且仅当时取等号,2xxy e e-=+≥=0x =所以,()ln ln 2ln10x x e e -+≥>=当时,,当时,,[)0,πx ∈sin 0x ≥[)π,2πx ∈sin 0x ≤所以,当时,,当时,,故排除A 、B ,[)0,πx ∈()0f x >[)π,2πx ∈()0f x ≤故选:C .二、填空题9.(2020·新疆实验高三月考(文))在中,ABC :BC =,则外接圆的面积为______.222cos cos sin sin C A B B C --=ABC :【答案】π【分析】,222cos cos sin sin C A B B C --=,()()2221sin 1sin sin sin C A B B C∴----=即.222sin sin sin sin A C B B C --=由正弦定理得,222222a cb ac b --=⇒-=+由余弦定理得,所以,2222cos a c b bc A =+-cos A =,则,0A π<< 4A π=设的外接圆半径为,则,则,ABC :R 2sin BCRA =1R =则外接圆的面积为:,ABC :2R ππ=故答案为:.π10.(2020·山西高三期中(文))中,角A ,B ,C 所对的边分别为a ,b ,c ,若ABC :函数有极值点,则的取值范围是()()3222113f x x bx a c ac x =+++-+cos 23B π⎛⎫- ⎪⎝⎭______.【答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意,函数,()()3222113f x x bx a c ac x =+++-+可得,()2222()f x x bx a c ac '=+++-因为函数有极值点,所以有两个不同的实数根,()f x 2222()0x bx a c ac +++-=可得,整理得,222(2)4()0b a c ac ∆=-+->222ac a c b >+-又由,2221cos 222a c b ac B ac ac +-=<=因为,所以,可得,(0,)B π∈3B ππ<<52333B πππ<-<当时,即时,取得最小值,最小值为;23B ππ-=23B π=cos 23B π⎛⎫- ⎪⎝⎭cos 1π=-当时,即时,此时,233B ππ-=3B π=1cos 2cos 332B ππ⎛⎫-<= ⎪⎝⎭所以的取值范围是.cos 23B π⎛⎫- ⎪⎝⎭11,2⎡⎫-⎪⎢⎣⎭三、解答题11.(2020·山东济南市·高三开学考试)在四边形中,,是上的ABCD A C ∠=∠E AD 点且满足与相似,,,.BED ∆ABD ∆34AEB π∠=6DBE π∠=6DE =(1)求的长度;BD (2)求三角形面积的最大值.BCD【答案】(1)2)36+【分析】(1),4BED AEB ππ∠=-∠=在三角形中,,BDE sin sin DE BD DBE BED =∠∠即,6sinsin 64BD ππ=所以612=BD =(2)因为,所以,BED ABD ∆∆:C A ∠=∠=6DBE π∠=在三角形中,,BDC 2222cos 6BD DC BC DC BCπ=+-::所以,2272DCBC BC =+:所以,722DCBC BC ≥::所以,(72DCBC ≤:所以,((11sin 7218264BCD S DC BC π∆=≤⨯=::所以三角形面积的最大值为BCD 36+12.(2020·北京海淀区·人大附中高三月考)已知,(2sin ,sin cos )mx x x =-,记函数.,sin cos )n x x x =+ ()f x m n =⋅ (1)求函数取最大值时的取值集合;()f x x (2)设函数在区间是减函数,求实数的最大值.()f x ,2m π⎡⎤⎢⎥⎣⎦m【答案】(1) ;(2).,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭56π【分析】(1)由题意,得,()2cos 22sin(26f x m n x x x π=⋅=-=- 当取最大值时,即,此时()f x sin(2)16x π-=22()62x k k Z πππ-=+∈所以的取值集合为.x ,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(2)由得3222262k x k πππππ+≤-≤+,41022266k x k ππππ+≤≤+536k x k ππππ+≤≤+所以的减区间,()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦当,得是一个减区间,且1k =5,36ππ⎡⎤⎢⎥⎣⎦52,36πππ∈⎡⎤⎢⎥⎣⎦所以,5,,236m πππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦所以, 5(,]26m ππ∈所以的最大值为.m 56π13.(2020·宁夏固原市·固原一中高三月考(文))已知函数.()2cos sin 3f x x x x π⎛⎫=⋅+ ⎪⎝⎭x ∈R(1)求的最小正周期;()f x (2)求在闭区间上的值域.()f x ,44ππ⎡⎤-⎢⎥⎣⎦【答案】(1);(2).π11,24⎡⎤-⎢⎥⎣⎦【分析】(1)由已知,有21()cos sin 2f x x x x x ⎛⎫=⋅+ ⎪ ⎪⎝⎭21sin cos 2x x x =⋅-1sin 2cos 2)4x x =-+,11sin 22sin 2423x x x π⎛⎫=-=- ⎪⎝⎭的最小正周期;∴()f x 22T ππ==(2)∵,,,44x ππ⎡⎤∈-⎢⎥⎣⎦52,366x πππ⎡⎤∴-∈-⎢⎥⎣⎦当,即时,取得最大值为,236x ππ-=4x π=()f x 14当,即时,取得最小值为,232x ππ-=-12x π=-()f x 12-的值域为.()f x ∴11,24⎡⎤-⎢⎥⎣⎦14.(2020·梅河口市第五中学高三月考(文))在的中,角,,的对边分ABC :A B C别为,且a b c ,,sin (sin sin )sin 0a A b A B c C ++-=(1)求角;C (2)若,求的取值范围.2c =+a b 【答案】(1);(2).23C π=2⎛ ⎝【分析】:(1)由,及正弦定理得sin (sin sinB)sin 0a A b A c C ++-=,2220a ab b c ++-=由余弦定理得,又,所以;2221cos 222a b c ab C ab ab +--===-0C π<<23C π=(2)由及,得,即,2220a ab b c ++-=2c =224a ab b ++=2()4a b ab +-=所以,所以,当且仅当221()4()4ab a b a b =+-≤+a b +≤a b ==成立,又,所以,2a b c +>=2a b <+≤所以的取值范围为.+a b 2⎛ ⎝15.(2020·黑龙江高三月考(文))在中,角,,所对的边分别为,ABC :A B C a b,,,.c sin 3sin b A B =222b c a bc +-=(1)求外接圆的面积;ABC :(2)若的周长.BC ABC :【答案】(1);(2)9.3π【分析】解:(1)因为,又,即,所以,sin 3sin b A B =sin sin a b A B =sin sin b A a B =3a =由,得,设外接圆的半径为2221cos 22b c a A bc --==3A π=ABC :R 则,所以外接圆的面积为.12sin a R A=⋅==ABC :3π(2)设的中点为,则.因为,BC D AD =()12AD AB AC =+ 所以,()()222221127||2444AD AB AC AB AC c b bc =++⋅=++= 即,又,,则 ,2227c b bc ++=222b c a bc +-=3a =22918bc b c =⎧⎨+=⎩整理得,解得或(舍去),则.所以的周长为9.()2290b -=3b =3-3c =ABC :。
高中文科数学知识点精编——三角函数
高中文科数学知识点精编——三角函数一、任意角三角函数定义:1. 定义:设α是一个任意角,α的终边上任意一点P 的坐标是(x ,y ),它与原点的距离22()r r x y =+,那么sin ,cos ,tan y x yx x x r r x=== 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o ox yx yxy二、三角函数公式:1. 同角三角函数的基本关系式:(1)平方关系:1cos sin 22=+αα (2)商数关系: αααtan cos sin = αααcot sin cos =(2)倒数关系:1cot tan =⋅αα 2.诱导公式:“奇变偶不变,符号看象限”。
象限 一 二 三 四 一 二 三四角 2k πα+ k Z ∈ πα- πα+ 2πα-或α- 2πα- 2πα+32πα- 32πα+ 正弦余弦 正切3.特殊角的函数值:角 0o 6π4π3π 90o 120o π43π 32π 74π 2π 正弦 余弦 正切3. 两角和差与倍角公式:()sin sin cos cos sin sin sin cos αβαβαβαβααα±=±=−→−−−=令22()cos cos cos sin sin cos cos sin αβαβαβαβααα±==−→−−−=- 令222 ()tan tan tan tan tan αβαβαβ±=±1 · =-=-⇒211222cos sin ααtan tan tan 2212ααα=-cos cos sin cos 22122122αααα=+=-4. 合一变形,化为同名三角函数:roxya 的终边P (x,y )(1)()ϕααα++=+sin cos sin 22b a b a ,其中,2222cos ,sin a b a ba bϕ=ϕ=++(2)sin cos sin αααπ+=+⎛⎝ ⎫⎭⎪24(3)sin cos sin αααπ+=+⎛⎝ ⎫⎭⎪323 三、三角函数的图象与性质:1. 三角函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max1y =; 当22x k ππ=-()k ∈Z时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭ ()k ∈Z 上是增函数.函数 性质。
高考文科数学三角函数的图像和性质专项讲解
上一页
返回导航
下一页
第二部分
函数 y=Asin(ωx+φ)(或 y=Acos(ωx+φ))的最小正周期 T=2|ωπ|.应特别注意 y=
π
|Asin(ωx+φ)|的最小正周期为 T=|ω|.
上一页
返回导航
下一页
第二部分 专题一 三角函数与解三角形
7
【解析】
(1)A
中,函数
f(x)=|cos
π 2x|的周期为 2 ,当
x∈π4 ,π2 时,2x∈π2 ,π,
函数
f(x)单调递增,故
A
正确;B
中,函数
f(x)=|sin
π 2x|的周期为 2 ,当
x∈π4 ,π2
时,2x∈π2 ,π,函数 f(x)单调递减,故 B 不正确;C 中,函数 f(x)=cos|x|=cos x
第二部分 高考热点 分层突破
专题一 三角函数与解三角形
第1讲 三角函数的图象与性质
数学
第二部分 专题一 三角函数与解三角形
1
01
做高考真题 明命题趋向
02
研考点考向 破重点难点
03
练典型习题 提数学素养
上一页
返回导航
下一页
第二部分 专题一 三角函数与解三角形
2
考点 3 三角函数的性质(综合型) [知识整合]
上一页
返回导航
下一页
第二部分 专题一 三角函数与解三角形
25
2.若存在实数 φ,使得圆面 x2+y2≤4 恰好覆盖函数 y=sinπk x+φ图象的最高点
或最低点共三个,则正数 k 的取值范围是________. 解析:函数 y=sinπk x+φ的图象的最高点或最低点一定在直线 y=±1 上,由
三角函数诱导公式-高三文科数学
三角函数的诱导公式一、考点、热点回顾1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系角2kπ+α(k∈Z)π+α-α图示与角α终边的关系相同关于原点对称关于x轴对称角π-απ2-απ2+α图示与角α终边的关系关于y轴对称关于直线y=x对称3.组数一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin_α-sin_α-sin_αsin_αcos_αcos_α余弦cos_α-cos_αcos_α-cos_αsin_α-sin_α正切tan_αtan_α-tan_α-tan_α口诀函数名不变符号看象限函数名改变 符号看象限三角函数诱导公式(k2π+α)的本质是:奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角).牢记几个诱导公式:sin()sin ,παα-=cos()s ,co αα-=tan()tan ,παα+=sin()cos ,2παα-=sin()cos ,2παα+=二、典型例题+拓展训练典型例题1:若点P 在角2π3的终边上,且|OP |_____.=2,则点P 的坐标是___________扩展1:已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上点,且sin θ=-255,则y =________.2.下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45° (k ∈Z )B .k ·360°+94π (k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z ) 3.已知角α的终边经过点P (x ,-2) (x ≠0),且cos α=36x ,求sin α+1tan α的值.4. (1)若θ是第二象限角,试判断sin cos θcos sin 2θ的符号;5. (1)y =sin x -32的定义域为________.典型例题2:已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,则cos α=_______1. 若tan α=2,则2sin α-cos αsin α+2cos α的值为________.2. 已知α是第二象限的角,tan α=-12,则cos α=________.3. sin 43π·cos 56π·tan ⎝ ⎛⎭⎪⎫-43π的值是________.4. 已知cos ⎝ ⎛⎭⎪⎫π6-α=23,则sin ⎝ ⎛⎭⎪⎫α-2π3=________.5.已知在△ABC 中,sin A +cos A =15.(1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形; (3)求tan A 的值.6.(1)已知tan α=2,求sin 2α+sin αcos α-2cos 2α; (2)已知sin α=2sin β,tan α=3tan β,求cos α.三、课堂训练1.(1)已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝⎛⎭⎪⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝ ⎛⎭⎪⎫α-72π的值.2.(1)化简:tanπ+αcos2π+αsin ⎝⎛⎭⎪⎫α-3π2cos-α-3πsin-3π-α;(2)已知f (x )=sin π-x cos2π-x tan -x +πcos ⎝ ⎛⎭⎪⎫-π2+x ,求f ⎝⎛⎭⎪⎫-31π3的值.3. (1)已知tan α=13,求12sin αcos α+cos 2α的值;(2)化简:tanπ-αcos 2π-αsin ⎝⎛⎭⎪⎫-α+3π2cos -α-πsin -π-α.4. 已知sin ⎝⎛⎭⎪⎫α+π2=-55,α∈(0,π),求cos 2⎝ ⎛⎭⎪⎫π4+α2-cos 2⎝ ⎛⎭⎪⎫π4-α2sin π-α+cos 3π+α的值.四、总结五、课后练习1. 化简015tan 115tan 1-+等于 ( )A. 3B. 23C. 3D. 12. 已知函数f(x)=sin(x+2π),g(x)=cos(x -2π),则下列结论中正确的是( ) A .函数y=f(x)·g(x)的最小正周期为2π B .函数y=f(x)·g(x)的最大值为1C .将函数y=f(x)的图象向左平移2π单位后得g(x)的图象D .将函数y=f(x)的图象向右平移2π单位后得g(x)的图象3. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是( )A .)32sin(π-=x y B .)62sin(π-=x y C .)62sin(π+=x y D .)62sin(π+=x y4. 函数x x y sin cos 2-=的值域是 ( )A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,15. 设0002012tan13cos66,,21tan 13a b c ===+则有( ) A .a b c >> B.a b c << C. b c a << D. a c b <<6. 已知sin 53=α,α是第二象限的角,且tan(βα+)=1,则tan β的值为( ) A .-7 B .7 C .-43 D .437. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为( )A. 21- B23 C 23-D 218. 函数1cos sin xy x -=的周期是( ) A .2πB .πC .2πD .4π9. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524- C .257 D .725-五、课后反馈表1、学生对老师形象气质的满意度()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意2、学生对课程内容的满意度()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意3、学生对授课教师的满意度()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意4、学生对授课教师的精神状态满意度()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意5、学生对课程进度的满意度()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意学生签字:日期:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数知识点
(一)基本初等函数Ⅱ(三角函数)
1.角度制与弧度制的互化:,23600π= ,1800π=
1 rad = ≈57.30°=57°18ˊ ; 1°= ≈0.01745(rad )
2.任意角的三角函数
设α是一个任意角,它的终边上一点p (x,y ), r=22y x +
(1)正弦sin α= 余弦cos α= 正切tan α= (2)各象限的符号:
sin α cos α tan α
3.同角三角函数的基本关系: (1)平方关系: (2)商数关系:
4.诱导公式:奇变偶不变,符号看象限
(1)sin (2kπ+α)= ,cos (2kπ+α)= ,tan(2kπ+α)= (k ∈Z) (2)sin (π+α)= ; cos(π+α)= ; tan(π+α)= (3)sin(−α)= ; cos(−α)= ; tan(−α)= (4)sin(π−α)= ; cos(π−α)= ; tan(π−α)= (5) sin(π2−α)= ; cos(π
2−α)=
(6) sin(π
2+α)= ; cos (π
2+α)=
5.正弦函数、余弦函数和正切函数的图象与性质
x
y
O
x
y O
+
y
O
sin y x = cos y x = tan y x =
图象
定义域 R R
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
值域
[]1,1-
[]1,1-
R
最值
当22
x k π
π=+
()k ∈Z
时,max 1y =;
当22
x k π
π=-()k ∈Z
时,min
1y =-.
当()2x k k π=∈Z 时,
max 1y =;
当2x k ππ=+()k ∈Z 时,
min 1y =-.
既无最大值也无最小值
周期性 2π
2π
π
奇偶性
奇函数
偶函数
奇函数
单调性
在2,22
2k k π
πππ⎡⎤
-
+
⎢⎥⎣
⎦
()k ∈Z 上是增函数;
在32,22
2k k π
πππ⎡⎤+
+
⎢⎥⎣
⎦ ()k ∈Z 上是减函数.
在[]()2,2k k k πππ-∈Z 上
是增函数;
在[]2,2k k πππ+()k ∈Z
上是减函数.
在,2
2k k π
πππ⎛
⎫
-
+
⎪⎝
⎭
()k ∈Z 上是增函数.
对称性
对称中心
()(),0k k π∈Z
对称轴
()2
x k k π
π=+
∈Z
对称中心
(),02k k ππ⎛
⎫+∈Z ⎪⎝
⎭
对称轴()x k k π=∈Z
对称中心
(),02k k π⎛⎫
∈Z ⎪⎝⎭
无对称轴
函
数 性 质
6.三角函数的伸缩变化,先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)
平移个单位长度
得 的图象()ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)
1
到原来的纵坐标不变 得 的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)
为原来的倍横坐标不变 得 的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得 的图象。
先伸缩后平移
sin y x =的图象(1)(01)
A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
得 的图象(01)(1)
1
()
ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得 的图象
(0)(0)
ϕϕϕω
><−−−−−−−→向左或向右平移
个单位
得 的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得 的图象。
(二)三角函数恒等变换 [补:辅助角公式、降幂公式]
7.三角函数公式:
(三)解三角形
8.正弦定理 :
9.余弦定理:
三角形面积定理. S = = = 补:
1.弧长及扇形面积公式
弧长公式:r l .α= 扇形面积公式:S=r l .2
1
α----是圆心角且为弧度制。
r-----是扇形半径
2.三角函数线
正弦线:MP; 余弦线:OM; 正切线: AT.
(3) 若 o<x<
2
,则sinx<x<tanx
16. 几个重要结论:3。