空间里的平行关系教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间里的平行关系教学设计
Teaching design of parallel relation in space
空间里的平行关系教学设计
前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,
从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代
的作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准的要
求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的
设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随
意修改调整及打印。
教学建议
一、知识结构
在平行线知识的基础上,教科书以学生对长方体的直观认识
为基础,通过观察长方体的某些棱与面、面与面的不相交,进而
把它们想象成空间里的直线与平面、平面与平面的不相交,来建
立空间里平行的概念.培养学生的空间观念.
二、重点、难点分析
能认识空间里直线与直线、直线与平面、平面与平面的平行
关系既是本节教学重点也是难点.本节知识是线线平行的相关知
识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义.
1.我们知道在同一平面内的两条直线的位置关系有两种:
相交或平行,由于垂直和平行这两种关系与人类的生产、生活密
切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系.
2.例如:在图中长方体的棱AA与面ABCD垂直,面AABB与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直.
(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直.
正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面ABCD的位置关系,把棱AB向两方延长,面ABCD向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DDCC是互相平行的,棱AA与面BBCC、与面DDCC也是互相平行的.
再看面ABCD与ABCD,这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AABB与DDCC也是互相平行的.
3.直线与平面、平面与平面平行的判定
(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。(直线与平面平行的判定)
(2)如果一个平面内两条直线都与另一个平面平行,那么这两个平面互相平行。(空间里平面与平面平行的判定)
三、教法建议
1.空间里的平行关系,是高中学习《立体几何》的重要部分,本节知识在初中阶段让学生积累一些感性的认识.学习这节内容要注意联系实物(如火柴盒,教室)中的线与线、线与面、面与面的关系就容易得多了.
2.本节在已有的对长方体的直观认识的基础上,通过对长方体的棱与面、面与面的不相交的观察,介绍了空间里的直线与平面、平面与平面平行的关系.目的主要是培养空间思维,但只是一个初步的感性认识,只需基本了解,不需要系统地学习.3.教学时应该注意的是这里所说的平面一定是无限延伸的.两面墙平行,是指两面墙所在的平面平行,不是指墙这一小部分平行.
教学设计示例
一、教学目标
1.能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系.
2.此外,在教学“空间里的平行关系”中,要培养学生的空间想象力.
3.通过平行关系在生活中的应用,培养学生的应用意识.
二、引导性材料
复习提问:
1.平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?
2.试说出两直线平行的意义.
前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系.(可让学生以教室为实例,说出一些线与面,面与面的垂直关系.)
前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”.(教师演示:一根木条或铅笔与桌面平行.)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题.
三、知识产生和发展过程的教学设计
问题1—1:观察下图(也可要求学生携带一个长方体的包装纸盒)中的长方体,棱AB与面ABCD的位置关系是什么?如果将棱AB向两边无限伸展,同时也将面ABCD向各个方向延展,它们之间有无可能相交?
问题1-2:图中,你能以棱AB与面ABCD为一个具体例子,用类似于定义“平行线”的方法,给直线与平面平行下一个定义吗?
(由学生口答,教师帮助完善,得出定义.)
问题1-3:图中,除了棱AB外,还有与面ABCD平行的棱吗?有哪几条?
(由学生分别说出棱BC,CD,AD都与面ABCD平行.)
问题1-4:除了面ABCD外,棱AB还与哪个平面平行?
问题2—1:如下图的长方体中,面ABCD与面ABCD能否相交?怎样定义空间里的两平面平行?
问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?
(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解.)
四、例题解析
例题:如下图,在长方体中,棱CD与哪些面平行?面ABCD与哪些棱平行?
答:棱CD与面ABBC、面ABCD平行;
面AADD棱BB、棱BC、棱CC、棱BC平行;
面ABBA与面DCCD平行.
(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面.面面平行的问题.也可让学生自己来提出问题.由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系的感知,发展想象能力.)
五、练习
课本练习第l、2题.
六、小结
本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系.
我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题.