空间里的平行关系教学设计
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计第一章:引言1.1 课程目标让学生理解平面的概念让学生掌握平行线的定义让学生能够识别和画出平行线1.2 教学内容平面:介绍平面的定义和性质平行线:介绍平行线的定义和性质平行公理:介绍平行公理及其推论1.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行关系的性质利用图形和实物模型,帮助学生直观地理解平行的概念1.4 教学资源准备平面和直线模型提供相关的练习题和思考题1.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线概念的理解程度第二章:平面的定义和性质2.1 教学目标让学生理解平面的定义和性质让学生能够描述和区分不同的平面图形2.2 教学内容平面:介绍平面的定义和性质平面图形:介绍矩形、正方形、三角形等平面图形的性质2.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平面的性质利用图形和实物模型,帮助学生直观地理解平面的概念2.4 教学资源准备平面和直线模型提供相关的练习题和思考题2.5 教学评估通过课堂讨论和练习题来评估学生对平面概念的理解程度第三章:平行线的定义和性质3.1 教学目标让学生掌握平行线的定义和性质让学生能够识别和画出平行线3.2 教学内容平行线:介绍平行线的定义和性质平行线的判定:介绍平行线的判定方法3.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行线的性质利用图形和实物模型,帮助学生直观地理解平行线的概念3.4 教学资源准备平面和直线模型提供相关的练习题和思考题3.5 教学评估通过课堂讨论和练习题来评估学生对平行线概念的理解程度第四章:平行公理及其推论4.1 教学目标让学生理解平行公理及其推论让学生能够运用平行公理解决实际问题4.2 教学内容平行公理:介绍平行公理的定义和证明平行公理的推论:介绍平行公理的推论及其应用4.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行公理的性质利用图形和实物模型,帮助学生直观地理解平行公理的概念4.4 教学资源准备平面和直线模型提供相关的练习题和思考题4.5 教学评估通过课堂讨论和练习题来评估学生对平行公理及其推论的理解程度第五章:练习与应用5.1 教学目标让学生巩固对平面和平行线的理解让学生能够运用所学的知识解决实际问题5.2 教学内容练习题:提供相关的练习题,帮助学生巩固对平面和平行线的理解实际问题:提供一些实际问题,让学生运用所学的知识解决问题5.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平面和平行线的概念5.4 教学资源提供相关的练习题和思考题提供一些实际问题5.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线的理解程度第六章:实际问题中的平行关系6.1 教学目标让学生能够将实际问题抽象为平面和平行线的问题让学生运用所学的知识解决实际问题6.2 教学内容实际问题:提供一些实际问题,让学生运用所学的知识解决问题问题解决策略:介绍如何将实际问题转化为平面和平行线的问题,并运用平行关系来解决6.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平面和平行线的概念6.4 教学资源提供相关的实际问题提供解决问题的指导和方法6.5 教学评估通过课堂讨论和练习题来评估学生对实际问题中平行关系的理解程度第七章:平行线的判定与证明7.1 教学目标让学生掌握平行线的判定方法让学生能够运用平行线的判定方法进行证明7.2 教学内容平行线的判定方法:介绍同位角相等、内错角相等、同旁内角互补等判定方法平行线的证明:介绍如何运用判定方法进行平行线的证明7.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行线的判定方法利用图形和实物模型,帮助学生直观地理解平行线的判定方法7.4 教学资源提供相关的图形和实例提供证明题和思考题7.5 教学评估通过课堂讨论和练习题来评估学生对平行线的判定与证明的理解程度第八章:平行线的应用让学生能够运用平行线的知识解决实际问题让学生能够运用平行线的知识进行几何图形的分析和设计8.2 教学内容平行线的应用问题:提供一些应用问题,让学生运用所学的知识解决问题几何图形的分析与设计:介绍如何运用平行线的知识进行几何图形的分析和设计8.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平行线的应用8.4 教学资源提供相关的应用问题提供几何图形的分析和设计指导8.5 教学评估通过课堂讨论和练习题来评估学生对平行线的应用的理解程度第九章:复习与巩固9.1 教学目标让学生复习和巩固对平面和平行线的理解让学生能够运用所学的知识解决实际问题9.2 教学内容复习平面和平行线的概念和性质复习平行线的判定与证明方法提供一些实际问题,让学生运用所学的知识解决问题采用问题驱动的教学方法,引导学生通过观察和思考来复习和巩固知识利用图形和实物模型,帮助学生直观地理解平面和平行线的概念9.4 教学资源提供相关的图形和实例提供复习题和思考题9.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线的理解程度第十章:总结与拓展10.1 教学目标让学生总结对空间里的平行关系的理解让学生能够拓展所学的知识,探索更深层次的平行关系10.2 教学内容总结平面和平行线的概念、性质、判定和应用拓展平行关系的深入探索,如空间中的平行线、异面直线等10.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来总结和拓展知识利用图形和实物模型,帮助学生直观地理解平行关系的深入探索10.4 教学资源提供相关的图形和实例提供总结和拓展的指导材料10.5 教学评估通过课堂讨论和练习题来评估学生对空间里的平行关系的理解程度,以及学生对平行关系拓展知识的探索程度。
7.2 空间中的平行关系
7.2空间中的平行关系教学设计(人教A版普通高中教科书数学必修第二册第八章)一、教学目标:1、知识与技能目标:通过复习三个平行的关系,使学生在《立体几何》的证明中能够正确运用定理证明三个平行,从而使学生重新认识学习立体几何的目的,明确立体几何研究的内容;使学生初步建立空间观念,会看空间图形的直观图;使学生知道立体几何研究问题的一般思想方法。
2、过程与方法目标:通过对具体情形的分析,归纳得出一般规律,让学生具备初步归纳能力;借助图形,通过整体观察、直观感知,使学生形成积极主动、勇于探索的学习方式,完善思维结构,发展空间想象能力。
3、情感、态度、与价值观目标:在教学过程中培养学生创新意识和数学应用意识,提高学生学习数学的兴趣并注意在小组合作学习中培养学生的合作精神。
二、教学重点与难点:重点:培养空间想象能力,明确证明空间中的平行关系的一般思想方法,并会应用。
难点:在证明的过程中做辅助线或辅助平面。
三、教学方法:引导式教学法四、学情分析:1、由于这是复习课,学生已经系统学习了立体几何的知识,本节课就是让学生更深入地对空间中几何图形的平行位置和数量关系进行推理和计算;2、学生在学习过程中将会遇到一些问题:不能很好地使用直观图来表示立体图形、不能准确的做出辅助线、证明过程书写不规范等等。
五、教学过程:(一)考纲要求:(1)以空间直线、平面位置关系的定义为出发点认识和理解空间中的平行关系;(2)理解直线和平面平行、平面和平面平行的判定定理与性质定理;(3)能用公理、定理和已经获得的结论证明一些空间位置关系的简单命题。
设计意图:明确考纲要求,做到心中有数;(二)知识梳理:1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理2.(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理1.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.2.三种平行关系的转化设计意图:使学生更明确本节课的主题----三个平行的关系;通过知识点的复习与梳理,为学生构建完整的知识体系;(三)考点分层突破考点一与线、面平行相关命题的判定例1.(多选题)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是() A.若m∥α,m∥β,则α∥β B.若m∥α,n∥α,则m∥nC.若m⊥α,n⊥α,则m∥nD.若α⊥γ,α⊥β,则γ与β可能平行,也可能相交答案CD解析对于A,若α∩β=n,m∥n,则m∥α,m∥β,所以A错误.对于B,若m∥α,n∥α,则m与n可能是异面直线,相交直线或平行直线,所以B错误.对于C,若m⊥α,n⊥α,由线面垂直的性质定理知m∥n,C正确.对于D,若α⊥γ,α⊥β,则γ与β可能相交或平行,D正确.练习(多选题)(2021·潍坊调研)在正方体ABCD-A1B1C1D1中,下列结论正确的是()A.AD1∥BC1B.平面AB1D1∥平面BDC1C.AD1∥DC1D.AD1∥平面BDC1答案ABD解析如图,因为AB//C1D1,所以四边形AD1C1B为平行四边形.故AD1∥BC1,从而A正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而B正确;由图易知AD1与DC1异面,故C错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,所以AD1∥平面BDC1,故D正确.设计意图:让学生学习到以下2点: 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.考点二线面平行、面面平行的判定定理与性质定理例2.(辽宁卷)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.证法1:中位线法证法2 平行四边形法证法3:构造平行平面法设计意图:既让学生及时巩固了本节重点知识,又让学生明白,同一问题可以由不同方法去解决,体现一题多解.利用线面平行的判定定理证明直线与平面平行的关键是在平面内找到一条与已知直线平行的直线.利用面面平行的性质证明线面平行时,关键是构造过该直线与所证平面平行的平面,这种方法往往借助于比例线段或平行四边形.例3.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH∥GH.证明如图,连接AC交BD于点O,连接MO,因为四边形ABCD是平行四边形,所以O是AC的中点.又M是PC的中点,所以AP∥OM.根据直线和平面平行的判定定理,则有P A∥平面BMD.因为平面P AHG∩平面BMD=GH,根据直线和平面平行的性质定理,所以P A∥GH.设计意图在应用线面平行的性质定理进行平行转化时,一定注意定理成立的条件,通常应严格按照定理成立的条件规范书写步骤,如:把线面平行转化为线线平行时,必须说清经过已知直线的平面和已知平面相交,这时才有直线与交线平行.练习(2019·北京卷)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.设计意图:本题带有探索性,该题会引领学生去探索。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计第一章:引言1.1 教学目标让学生了解平行关系的概念。
培养学生观察和识别空间中平行关系的能力。
1.2 教学内容平行关系的定义。
平行关系的性质。
1.3 教学方法观察和分析实际生活中的平行关系实例。
小组讨论和分享观察结果。
1.4 教学资源图片或实物展示平行关系的实例。
1.5 教学步骤1. 引入平行关系的概念,让学生思考在日常生活和学习中是否遇到过平行关系。
2. 展示一些实际生活中的平行关系实例,如教室里的书桌、街道上的交通标志等。
3. 引导学生观察和分析这些实例,发现平行关系的特征。
4. 学生分组讨论,分享观察结果,总结平行关系的性质。
5. 教师进行总结和强调平行关系的重要性。
第二章:平行线的性质2.1 教学目标让学生掌握平行线的性质。
培养学生运用平行线的性质解决问题的能力。
2.2 教学内容平行线的定义。
平行线的性质。
2.3 教学方法观察和分析实际生活中的平行线实例。
小组讨论和分享观察结果。
2.4 教学资源图片或实物展示平行线的实例。
2.5 教学步骤1. 回顾上一章的内容,引导学生思考平行关系的特征。
2. 引入平行线的概念,展示一些实际生活中的平行线实例,如黑板上的两条直线、书桌上的两条直线等。
3. 引导学生观察和分析这些实例,发现平行线的特征。
4. 学生分组讨论,分享观察结果,总结平行线的性质。
5. 教师进行总结和强调平行线的重要性。
第三章:平行公理3.1 教学目标让学生理解平行公理的概念。
培养学生运用平行公理解决问题的能力。
3.2 教学内容平行公理的定义。
平行公理的证明。
3.3 教学方法观察和分析实际生活中的平行关系实例。
小组讨论和分享观察结果。
3.4 教学资源图片或实物展示平行关系的实例。
3.5 教学步骤1. 引导学生回顾上一章的内容,了解平行线的性质。
2. 引入平行公理的概念,解释平行公理的含义。
3. 展示一些实际生活中的平行关系实例,引导学生运用平行公理进行分析。
空间中的平行关系(优质课)教案
1.5空间中的平行关系(优质课)教案教学目标:了解直线和平面的三种位置关系; 理解并掌握直线与平面平行的判定定理; 理解并掌握直线与平面平行的性质定理; 理解并掌握平面与平面平行的性质定理.教学过程:一、直线与平面的位置关系//a α二、直线和平面平行1.定义:如果一条直线和一个平面没有公共点,那么这条直线与这个平面平行.2.判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭特别说明:1、定理中的三个条件缺一不可.2、该定理的作用:证明线面平行.3、该定理可简记为“线线平行,则线面平行.” 3. 性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.推理模式 ////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭特别说明:1、定理中的三个条件缺一不可.2、该定理的作用:证明线线平行.3、该定理可简记为“线面平行,则线线平行.” 三、平面和平面的位置关系四、平面与平面平行 1.两平面互相平行的定义如果两个平面没有公共点,那么这两个平面平行. 2.两平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.推理模式:.简言之:线面平行面面平行推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行. 3.两个平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行.推理模式:////a a b b αβγαγβ⎫⎪=⇒⎬⎪=⎭.简言之:面面平行⇒线线平行特别说明:平面与平面平行的其它性质(1)两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面. (2)夹在两个平行平面之间的平行线段相等.(3)经过平面外一点,有且仅有一个平面和已知平面平行.,//,////a a b b a b A αβαβαβ⊂⎫⎪⊂⇒⎬⎪=⎭⇒a(4)两条直线被三个平行平面所截,截得的对应线段成比例.类型一线面平行例1:b是平面α外的一条直线,可以推出b∥α的条件是()A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的任何一条直线都不相交解析:∵b∥α,∴b与α无公共点,从而b与α内任何一条直线无公共点.答案:D练习1:(2014·甘肃天水一中高一期末测试)直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多有一个公共点答案:D练习2:点M、N是正方体ABCD-A1B1C1D1的棱A1A与A1B1的中点,P是正方形ABCD的中心,则MN与平面PCB1的位置关系是()A.平行B.相交C.MN⊂平面PCB1D.以上三种情形都有可能答案:A如图,∵M、N分别为A1A和A1B1中点,∴MN∥AB1,又∵P是正方形ABCD的中心,∴P、A、C三点共线,∴AB1⊂平面PB1C,∵MN⊄平面PB1C,∴MN∥平面PB1C.练习3:在正方体ABCD-A1B1C1D1中和平面C1DB平行的侧面对角线有________条.答案:3例2:(2014江西丰城三中高一期末测试)如图,已知E、F分别是三棱锥A-BCD的侧棱AB、AD的中点,求证:EF∥平面BCD.解析:找到平面BCD中与EF平行的直线,即可由定理证明结论.答案:证明:∵E、F分别是AB、AD的中点,∴EF∥BD.又∵EF⊄平面BCD,BD⊂平面BCD,∴EF∥平面BCD.练习1:((2014·山东济南一中月考)如图所示,已知P是▱ABCD所在平面外的一点,M是PB的中点,求证:PD∥平面MAC.答案:连接BD交AC于点O,连接OM.根据题意,得O是BD的中点,M是PB的中点.∴在△BPD中,OM是中位线,∴OM∥PD.又∵OM⊂平面MAC,PD⊄平面MAC.∴PD∥平面MAC.练习2:(2014·陕西宝鸡园丁中学高一期末测试)如图,已知正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 对角线的交点,求证:C 1O ∥平面AB 1D 1.答案:连接A 1C 1交B 1D 1于点O 1, ∵AO ∥C 1O 1,AO =C 1O∴四边形AOC 1O 1是平行四边形, ∴C 1O ∥AO 1.又∵C 1O ⊄平面AB 1D 1, AO 1⊂平面AB 1D 1, ∴C 1O ∥平面AB 1D 1.例3:已知直线a ∥平面α,a ∥平面β,α∩β=b ,求证a ∥b .解析:若直接证明两条直线a 与b 平行,则相当困难,注意到线面平行的条件,联想到性质定理,则可想到用构造法作辅助平面来帮助证明.答案:在平面α上任取一点A ,在β上任取一点B ,且A 、B 都不在直线b 上.∵a ∥α,a ∥β,∴A ∉a ,B ∉a ,∴由a 与A ,a 与B 可分别确定平面γ1,γ2, 设γ1∩α=c ,γ2∩β=d , 则a ∥c ,且a ∥d ,∴c ∥d . 又d ⊂β,且c ⊄β,∴c ∥β. 又c ⊂α且α∩β=b ,∴c ∥b . 而a ∥c ,∴a ∥b .练习1:三个平面α、β、γ两两相交,有三条交线l 1、l 2、l 3,如果l 1∥l 2.求证:l 3与l 1、l 2平行. 答案:如图,α∩β=l 1,β∩γ=l 2,α∩γ=l 3,l 1∥l 2.⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫l 1∥l 2l 2⊂γl 1⊄γ⇒l 1∥γ l 1⊂α α∩γ=l 3⎭⎪⎬⎪⎫⇒l 1∥l 3 l 1∥l 2⇒l 3∥l 1∥l 2.练习2:如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,N 是PB 的中点,过A 、N 、D 三点的平面交PC 于点M ,求证:AD ∥MN .答案:∵ABCD 为平行四边形,∴AD ∥BC ,又BC ⊂平面PBC , AD ⊄平面PBC ,∴AD ∥平面PBC ,又AD ⊂平面ADMN ,平面PBC ∩平面ADMN =MN ,∴AD ∥MN .类型二 平面与平面平行例3:如图,在三棱柱ABC -A 1B 1C 1中,E 、F 、G 、H 分别是AB 、AC 、A 1B 1、A 1C 1的中点,求证:平面EFA 1∥平面BCHG .解析:运用平面平行的判定.答案:∵E、F分别为AB、AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.练习1:如图所示,已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面BDC1.答案:∵AB A1B1,C1D1A1B1,∴AB C1D1.∴四边形ABC1D1为平行四边形.∴AD1∥BC1.又AD1⊂平面AB1D1,BC1⊄平面AB1D1,∴BC1∥平面AB1D1.同理BD∥平面AB1D1.又∵BD∩BC1=B,∴平面AB1D1∥平面BDC1.练习2:已知正方体ABCD-A1B1C1D1中,E、F分别是AA1、CC1的中点,求证:平面BDF∥平面B1D1E. 答案:如图,取BB 1的中点G,连接EG、GC1,则有EG A1B1.又A1B1C1D1,∴EG C1D1.∴四边形EGC1D1是平行四边形,∴D1E GC1.又BG C1F,∴四边形BGC1F为平行四边形,∴BF∥C1G,∴BF∥D1E.又BF⊄平面B1D1E,D1E⊂平面B1D1E,∴BF∥平面B1D1E.又BD∥B1D1,同理可得BD∥平面B1D1E.又∵BF∩BD=B,∴由平面与平面平行的判定定理得,平面BDF∥平面B1D1E.练习3:在正方体EFGH-E1F1G1H1中,平面E1FG1与平面EGH1,平面FHG1与平面F1H1G,平面F1H1H与平面FHE1,平面E1HG1与平面EH1G中互相平行的对数为()A.0 B.1C.2 D.3答案:本题考查面面平行的判定.∵EG∥E1G1,FG1∥EH1,EG∩EH1=E,E1G1∩FG1=G1,∴平面EGH1∥平面E1FG1,经验证其他3对均不平行,故选B.例4:将已知:平面α∥平面β,AB 、CD 是夹在这两个平面之间的线段, 且点E 、G 分别为AB 、CD 的中点,AB 不平行于CD ,如图所示. 求证:EG ∥α,EG ∥β.解析:由平面平行的性质除法得到结论.答案:如图所示,过点A 作AH ∥CD ,交平面β于点H ,设F 是AH 的中点,连接HD ,则AH 綊CD , ∴四边形ACDH 为平行四边形. 连接EF 、FG 和BH ,∵E 、F 分别是AB 、AH 的中点,∴EF ∥BH . ∵EF ⊄平面β,且BH ⊂平面β,∴EF ∥β.又F 、G 分别是AH ,CD 的中点,且AC ∥HD , ∴FG ∥HD .又∵FG ⊄平面β,HD ⊂平面β,∴FG ∥β. ∵EF ∩FG =F ,∴平面EFG ∥β, 又α∥β,∴平面EFG ∥α.∵EG ⊂平面EFC ,∴EG ∥α,EG ∥β. 练习1:知平面α、β、γ,α∥β∥γ,异面直线l 、m 分别与平面α、β、γ相交于A 、B 、C 和D 、E 、F .求证:AB BC =DE EF.答案:连接DC ,设DC 与平面β相交于G ,则平面ACD 与平面α、β分别交于AD 、BG , 平面DCF 与平面β、γ分别相交于直线GE 、CF , ∵α∥β,β∥γ,∴BG ∥AD ,GE ∥CF , ∴AB BC =DG GC ,DG GC =DE EF ,∴AB BC =DE EF. 练习2:若平面α∥平面β,直线a ⊂α,直线b ⊂β,那么a 、b 的位置关系是( )A .无公共点B .平行C .既不平行也不相交D .相交 答案:A1.(2014·江西丰城三中高一期末测试)已知直线a 、b 和平面α,下列命题中正确的是( )A .若a ∥α,b ⊂α,则a ∥bB .若a ∥α,b ∥α,则a ∥bC .若a ∥b ,b ⊂α,则a ∥αD .若a ∥b ,a ∥α,则b ⊂α或b ∥α 答案:D2.P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出四个命题:①OM ∥平面PCD ;②OM ∥平面PBC ;③OM ∥平面PDA ;④OM ∥平面PBA . 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 答案:B3.过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( )A .都平行B .都相交且交于同一点C .都相交但不一定交于同一点D .都平行或都交于同一点 答案:D4.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND,则MN 与平面BDC 的位置关系是________.答案: 平行5.在下列条件中,可判断平面α与平面β平行的是( )A 、,αβ都垂直于γB 、α内存在不共线的三点到β的距离相等C 、,l m 是α内两条直线,且//,//l m ββD 、,l m 是两条异面直线,且//,//,//,//l m l m ααββ答案:D6. 有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a ,α∩β=b ,且a ∥b (α、β、γ分别表示平面,a 、b 表示直线),则γ∥β; ③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β. 其中正确的有________.(填序号) 答案: ③_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.(2014·江西丰城三中高一期末测试)已知直线a 、b 和平面α,下列命题中正确的是( )A .若a ∥α,b ⊂α,则a ∥bB .若a ∥α,b ∥α,则a ∥bC .若a ∥b ,b ⊂α,则a ∥αD .若a ∥b ,a ∥α,则b ⊂α或b ∥α答案: D 若a ∥α,b ⊂α,则a ∥b 或a 与b 是异面直线;若a ∥α,b ∥α,则a 与b 相交、平行或异面;若a ∥b ,b ⊂α,则a ∥α或a ⊂α,故选D.2.P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出四个命题:①OM ∥平面PCD ;②OM ∥平面PBC ;③OM ∥平面PDA ;④OM ∥平面PBA . 其中正确命题的个数是( )A.1B.2C.3D.4答案:B由已知OM∥PD,∴OM∥平面PCD且OM∥平面P AD.故正确的只有①③,选B. 3.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交且交于同一点C.都相交但不一定交于同一点D.都平行或都交于同一点答案:D4..若平面α∥平面β,直线a⊂α,直线b⊂β,那么a、b的位置关系是()A.无公共点B.平行C.既不平行也不相交D.相交答案:A5.若两直线a、b相交,且a∥平面α,则b与α的位置关系是________.答案:相交或平行能力提升6.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在惟一一条与a平行的直线答案:D7.已知a是一条直线,过a作平面β,使β∥平面α,这样的β()A.只能作一个B.至少有一个C.不存在D.至多有一个答案:D8.已知α∥β,O是两平面外一点,过O作三条直线和平面α交于不在同一直线上的A、B、C三点,和平面β交于A′、B′、C′三点,则△ABC与△A′B′C′的关系是________,若AB=a,A′B′=b,B′C′=c,则BC的长是________.答案:相似ac b9.在正方体ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC 的中点,点M在四边形EFGH及其内部运动,则M满足________________时,有MN∥平面B1BDD1.答案:M在线段FH上移动10.正方体ABCD-A1B1C1D1中,平面AA1C1C和平面BB1D1D的交线与棱CC1的位置关系是________,截面BA1C1和直线AC的位置关系是________.答案:平行平行11.在正方体ABCD-A1B1C1D1,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点,如图所示.(1)求证:E、F、B、D四点共面;(2)求证:平面AMN∥平面EFBD.答案:(1)分别连接BD、ED、FB,由正方体性质知,B1D1∥BD.∵E、F分别是C1D1和B1C1的中点,∴EF 12B1D1,EF12BD.∴E、F、B、D四点共面.(2)连接A1C1交MN于P点,交EF于点Q,分别连接PA、QO.∵M、N分别为A1B1、A1D1的中点,∴MN∥EF,EF⊂面EFBD,∴MN∥面EFBD.∵PQ AO,∴四边形PAOQ为平行四边形,∴PA∥QO.而QO⊂面EFBD,∵PA∥面EFBD,且PA∩MN=P,PA、MN⊂面AMN,∴平面AMN∥面EFBD.。
空间里的平行关系数学教案
空间里的平行关系数学教案一、教学目标1. 让学生理解平行线的概念,能够识别和描述空间中的平行关系。
2. 培养学生运用平行线的性质解决实际问题的能力。
3. 培养学生的观察能力、动手操作能力和逻辑思维能力。
二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:平行线之间的距离相等;平行线与第三条直线相交,构成的角相等。
3. 平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
三、教学重点与难点1. 教学重点:平行线的定义、性质和判定。
2. 教学难点:平行线的判定方法。
四、教学方法1. 采用直观演示法,通过教具模型展示平行线的特征和性质。
2. 采用分组讨论法,让学生分组探讨平行线的判定方法。
3. 采用练习法,让学生通过实际操作和解决问题,巩固所学知识。
五、教学准备1. 教具:直尺、三角板、量角器、多媒体课件。
2. 学具:每人一套平行线模型、练习题。
教案一、导入新课利用多媒体课件展示生活中的平行关系现象,如电梯按钮、楼梯台阶等,引导学生关注空间中的平行关系,激发学生学习兴趣。
二、自主学习1. 让学生自主探究平行线的定义,引导学生通过观察、操作、总结平行线的特征。
2. 学生分组讨论,总结平行线的性质,如距离相等、角相等。
三、课堂讲解1. 讲解平行线的定义,强调“在同一平面内,永不相交”的条件。
2. 讲解平行线的性质,通过实例演示和讲解,让学生理解并掌握平行线之间的距离相等、平行线与第三条直线相交构成的角相等。
3. 讲解平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补。
四、课堂练习1. 让学生利用平行线的性质,解决实际问题,如计算平行线之间的距离、求平行线与第三条直线的夹角等。
2. 让学生运用平行线的判定方法,判断给定的两条直线是否平行。
五、总结与反思1. 让学生回顾本节课所学内容,总结平行线的定义、性质和判定方法。
2. 引导学生思考平行线在实际生活中的应用,提高学生的应用能力。
空间里的平行关系数学教案
空间里的平行关系数学教案第一章:平行关系的引入教学目标:1. 理解平行关系的概念。
2. 能够识别和描述平面内的平行线。
教学内容:1. 引入平行关系的概念,通过实际例子说明平行线的特点。
2. 引导学生观察和描述平行线之间的距离和角度关系。
教学活动:1. 利用直尺和铅笔,让学生在纸上画出两条直线,并尝试调整它们的位置,使它们成为平行线。
2. 让学生观察并描述平行线之间的距离和角度关系,引导学生发现平行线的特性。
教学评估:1. 通过观察学生的画作,评估学生对平行线概念的理解程度。
2. 通过学生的描述,评估学生对平行线之间距离和角度关系的理解程度。
第二章:平行线的性质教学目标:1. 掌握平行线的性质。
2. 能够应用平行线的性质解决问题。
教学内容:1. 学习平行线的性质,包括同位角相等、内错角相等和同旁内角互补。
2. 应用平行线的性质解决实际问题。
教学活动:1. 通过示例和练习,让学生了解平行线的性质,并能够应用到实际问题中。
2. 让学生进行小组讨论,分享彼此的应用实例,并互相纠正错误。
教学评估:1. 通过学生的练习题,评估学生对平行线性质的理解和应用能力。
2. 通过小组讨论,评估学生之间的合作和沟通能力。
第三章:平行线的判定教学目标:1. 掌握平行线的判定方法。
2. 能够应用平行线的判定方法解决问题。
教学内容:1. 学习平行线的判定方法,包括同位角相等、内错角相等和同旁内角互补。
2. 应用平行线的判定方法解决实际问题。
教学活动:1. 通过示例和练习,让学生了解平行线的判定方法,并能够应用到实际问题中。
2. 让学生进行小组讨论,分享彼此的应用实例,并互相纠正错误。
教学评估:1. 通过学生的练习题,评估学生对平行线判定方法的理解和应用能力。
2. 通过小组讨论,评估学生之间的合作和沟通能力。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够应用平行线的性质和判定方法解决实际问题。
教学内容:1. 学习平行线的应用方法,包括计算平行线之间的距离和角度。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计一、教学目标知识与技能:1. 让学生理解平行线的概念,能够识别和判断空间中的平行关系。
2. 培养学生运用平行线的性质解决实际问题的能力。
过程与方法:1. 通过观察、操作、交流等活动,让学生体验平行线的特征,培养学生的空间观念。
2. 利用平行线的性质,让学生学会如何画平行线,提高学生的动手操作能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的创新精神和合作意识。
2. 让学生感受数学在生活中的应用,体验数学的价值。
二、教学内容1. 平行线的概念:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:在同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
3. 画平行线的方法:利用直尺和三角板,通过旋转、平移等操作,画出与已知直线平行的直线。
三、教学重点与难点重点:平行线的概念及其性质,画平行线的方法。
难点:如何判断和画出空间中的平行线。
四、教学准备1. 教具:直尺、三角板、多媒体设备。
2. 学具:学生用书、练习本、铅笔、橡皮。
五、教学过程1. 导入新课:通过展示生活中常见的平行关系图片,引导学生发现平行线的特征,激发学生的学习兴趣。
2. 探究新知:(1)学习平行线的概念:在同一平面内,不相交的两条直线叫做平行线。
(2)学习平行线的性质:在同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
(3)学习画平行线的方法:利用直尺和三角板,通过旋转、平移等操作,画出与已知直线平行的直线。
3. 巩固练习:(1)学生自主完成教材中的练习题,巩固对平行线概念、性质的理解。
(2)教师出示实际问题,引导学生运用平行线的性质解决问题。
4. 课堂小结:回顾本节课所学内容,总结平行线的概念、性质和画法。
5. 布置作业:学生回家后,完成课后练习题,巩固所学知识。
六、教学策略1. 直观演示法:通过实物模型、图形展示,让学生直观地理解平行线的概念和性质。
2. 操作实践法:让学生亲自动手操作,实践画平行线的方法,提高学生的动手能力。
空间里的平行关系数学教案
空间里的平行关系数学教案第一章:引言1.1 教学目标让学生理解平面的基本概念引导学生观察和识别日常生活中的平行关系1.2 教学内容平面及其特性平行关系的定义与性质1.3 教学活动引入平面图形,引导学生观察和描述平面的特性通过实际生活中的例子,让学生识别和解释平行关系1.4 教学评估观察学生对平面概念的理解程度评估学生对平行关系识别和解释的能力第二章:平行线的性质2.1 教学目标让学生掌握平行线的定义和性质培养学生运用平行线解决实际问题的能力2.2 教学内容平行线的定义与判定平行线的性质与推论2.3 教学活动通过图形和实例,引导学生理解和记忆平行线的定义和性质让学生通过实际问题,运用平行线的性质解决问题2.4 教学评估检查学生对平行线定义和性质的理解程度评估学生运用平行线解决实际问题的能力第三章:平行公理3.1 教学目标让学生理解和掌握平行公理的概念培养学生运用平行公理解决几何问题的能力3.2 教学内容平行公理的定义与证明平行公理的应用与推论3.3 教学活动通过图形和实例,引导学生理解和记忆平行公理的概念和证明让学生通过实际问题,运用平行公理解决问题3.4 教学评估检查学生对平行公理的理解程度评估学生运用平行公理解决几何问题的能力第四章:平行线的判定4.1 教学目标让学生掌握平行线的判定方法培养学生运用平行线判定解决几何问题的能力4.2 教学内容平行线判定定理与推论平行线判定在实际问题中的应用4.3 教学活动通过图形和实例,引导学生理解和记忆平行线判定定理和方法让学生通过实际问题,运用平行线判定解决问题4.4 教学评估检查学生对平行线判定定理和方法的理解程度评估学生运用平行线判定解决几何问题的能力第五章:平行关系在实际问题中的应用5.1 教学目标让学生理解平行关系在实际问题中的应用培养学生运用平行关系解决实际问题的能力5.2 教学内容平行关系在实际问题中的例子平行关系在解决几何问题中的应用5.3 教学活动通过实际例子,引导学生理解和识别平行关系在实际问题中的应用让学生通过解决几何问题,运用平行关系解决问题5.4 教学评估检查学生对平行关系在实际问题中的应用的理解程度评估学生运用平行关系解决实际问题的能力第六章:平行四边形的性质6.1 教学目标让学生掌握平行四边形的定义和性质培养学生运用平行四边形性质解决几何问题的能力6.2 教学内容平行四边形的定义与判定平行四边形的性质与推论6.3 教学活动通过图形和实例,引导学生理解和记忆平行四边形的定义和性质让学生通过实际问题,运用平行四边形的性质解决问题6.4 教学评估检查学生对平行四边形定义和性质的理解程度评估学生运用平行四边形解决几何问题的能力第七章:平行四边形的判定7.1 教学目标让学生掌握平行四边形的判定方法培养学生运用平行四边形判定解决几何问题的能力7.2 教学内容平行四边形判定定理与推论平行四边形判定在实际问题中的应用7.3 教学活动通过图形和实例,引导学生理解和记忆平行四边形判定定理和方法让学生通过实际问题,运用平行四边形判定解决问题7.4 教学评估检查学生对平行四边形判定定理和方法的理解程度评估学生运用平行四边形判定解决几何问题的能力第八章:平行关系与坐标系8.1 教学目标让学生理解在坐标系中平行关系的表示和应用培养学生运用坐标系解决与平行关系相关的几何问题8.2 教学内容坐标系中平行线的表示和性质坐标系中平行公理和判定定理的应用8.3 教学活动通过坐标系图形和实例,引导学生理解和记忆平行线在坐标系中的表示和性质让学生通过实际问题,运用坐标系中平行关系解决问题8.4 教学评估检查学生对坐标系中平行关系表示和性质的理解程度评估学生运用坐标系解决与平行关系相关的几何问题的能力第九章:平行关系在几何证明中的应用9.1 教学目标让学生理解平行关系在几何证明中的应用培养学生运用平行关系进行几何证明的能力9.2 教学内容平行关系在几何证明中的重要性运用平行关系进行几何证明的步骤和方法9.3 教学活动通过几何证明实例,引导学生理解和识别平行关系在几何证明中的应用让学生通过解决几何证明问题,运用平行关系进行证明9.4 教学评估检查学生对平行关系在几何证明中应用的理解程度评估学生运用平行关系进行几何证明的能力10.1 教学目标培养学生运用平行关系解决更复杂几何问题的能力10.2 教学内容平行关系在更复杂几何问题中的应用10.3 教学活动让学生通过解决更复杂的几何问题,运用平行关系解决问题10.4 教学评估检查学生对平行关系知识的掌握程度和运用能力评估学生解决更复杂几何问题的能力重点和难点解析重点环节一:第一章引言中的平面概念理解和日常生活中的平行关系识别。
数学教案空间中的平行关系 专题教案
空间中的平行关系专题教案一.课标要求:1.平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;◆公理2:过不在一条直线上的三点,有且只有一个平面;◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;◆公理4:平行于同一条直线的两条直线平行;◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。
2.空间中的平行关系以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。
通过直观感知、操作确认,归纳出以下判定定理:◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;通过直观感知、操作确认,归纳出以下性质定理,并加以证明:◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;◆垂直于同一个平面的两条直线平行能运用已获得的结论证明一些空间位置关系的简单命题。
二.命题走向立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。
在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。
预测高考将以多面体为载体直接考察线面位置关系:(1)考题将会出现一个选择题、一个填空题和一个解答题;(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。
空间的平行关系教案
一、教学内容:空间平行关系的判定与性质,包括:1、线线平行;2、线面平行;3、面面平行。
二、学习目标1、掌握空间平行关系的判定与性质定理并会应用;2、通过对定理的学习,培养和发展空间想象能力、推理论证能力和运用图形进行交流的能力;3、通过操作确认、直观感知,培养几何直观能力;4、通过典型例子的分析和探索活动,理解数学概念和结论,体会蕴含其中的思想方法。
三、知识要点(一)直线与直线平行的判定方法1、利用定义:在同一个平面内,不相交的两条直线互相平行;2、利用平行公理:空间中平行于同一条直线的两条直线互相平行;3、利用直线与平面平行的性质定理:直线和平面平行,经过该直线的平面与已知平面相交,则该直线和交线平行;4、利用平面和平面平行的性质定理:两个平面互相平行,和第三个平面相交,它们的交线互相平行;5、利用直线和平面垂直的性质:垂直于同一个平面的两条直线互相平行;6、利用直线和平面平行的性质:一直线和两相交平面平行,则该直线和这两个平面的交线平行。
(二)直线与平面平行的判定方法1、利用定义:直线与平面无公共点,则该直线和该平面平行;2、利用直线与平面平行的判定定理:平面外一条直线和平面内一条直线平行,则该直线和该平面平行(线线平行,则线面平行)。
3、利用平面和平面平行的性质:两个平面互相平行,则一个平面内任意一条直线都平行于第二个平面。
(三)平面和平面平行的判定方法1、利用定义:两个平面没有公共点,则这两个平面平行;2、利用平面与平面平行的判定定理:一个平面内有两条相交直线分别与另一个平面内两条相交直线平行,则这两个平面平行;3、利用平面与平面平行的判定:一个平面内有两条相交直线分别平行于另一个平面,则这两个平面平行;4、利用平面与平面平行的传递性:平行于同一个平面的两个平面互相平行.5、利用直线与平面垂直的性质:垂直于同一条直线的两个平面互相平行;(四)直线与平面平行的性质1、性质定理:直线和平面平行,经过该直线的平面与已知平面相交,则该直线和交线平行;2、直线和平面平行的性质:一直线和两相交平面平行,则该直线和这两个平面的交线平行。
9.2 空间中的平行关系-教学设计
9.2.1空间中的平行直线【教学目标】1. 掌握平行线的基本性质,了解空间四边形的定义.2. 了解空间中图形平移的定义,理解空间中图形平移的性质.3. 渗透数形结合思想,渗透由平面到空间的转换思想,培养学生观察分析、空间想象的能力.【教学重点】平行线的基本性质.【教学难点】空间中图形平移的性质.【教学方法】这节课主要采用实物演示法.教师通过实物或模型演示,帮助学生理解平行线的性质,以及空间四边形的概念,培养学生的空间想象能力.通过证明题,向学生渗透将立体问题转化为平面问题来解决的思想.282930319.2.4 平面与平面的平行关系【教学目标】1.掌握平面与平面的位置关系的分类.掌握平面与平面平行的判定定理和性质定理,并会简单应用.2.通过直观演示,提高学生的空间想象能力.3.通过动手探究,体验数学学习的快乐,激发学习热情,初步培养创新意识.【教学重点】平面与平面平行的判定定理和性质定理.【教学难点】平面与平面平行的判定定理和性质定理的应用.【教学方法】主要采用讲练结合法.通过动手实践,引导学生“实践—观察—猜想—归纳”,得出平面与平面的位置关系的判定定理和性质定理.利用文字语言、符号语言和图形语言的相互转化,深化对定理的理解,通过例题,使学生明确定理应用的关键,培养学生将立体问题转化为平面问题的解题思想.【教学过程】32333435369.2.2 异面直线【教学目标】1. 理解异面直线的定义,会判定两条直线是否为异面直线,会求异面直线的夹角.2. 培养学生用数形结合的方法解决问题.注重培养学生的作图、读图的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质.【教学重点】异面直线的判定.【教学难点】异面直线的夹角.【教学方法】这节课主要采用实物演示法和类比教学法.先通过大量实例给学生以直观感知,再由平面几何两直线的位置关系引出异面直线的概念,由平面内两直线的夹角引出异面直线的夹角,并通过题目加深对各概念的理解.【教学过程】3738399.2.3 直线与平面平行【教学目标】1. 掌握空间直线和平面的位置关系.2. 掌握直线和平面平行的判定定理,性质定理;并能利用定理进行简单的证明.3. 通过动手,培养学生勇于实践、合理推理的能力,并使学生树立将空间问题向平面问题转化的思想,体会数学来源于生活,并服务于生活.【教学重点】直线与平面平行的判定定理,性质定理.【教学难点】直线与平面平行的判定定理,性质定理的理解和应用.【教学方法】主要采用讲练结合法.通过动手实践,引导学生“实践—观察—猜想—归纳”,得出直线与平面的位置关系,判断定理和性质定理.利用文字语言,符号语言和图形语言的相互转化,深化对定理的理解,通过例题,使学生明确定理应用的关键,培养学生将立体问题转化为平面问题的解题思想.40414243。
2022年《教学 空间中的平行关系》优秀教案
空间中的平行关系〔1〕教学目标:1、理解公理42、掌握等角定理及其应用教学重点:1、理解公理42、掌握等角定理教学过程:(一)复习平面几何中有关平行线的传递性的结论(二)公理4:平行于同一直线的两条直线平行〔应指出:此“公理〞并不是真正的公理,可以证明,但不一定给学生证明〕(三)异面直线的概念:不同在任一平面内的两条直线(四)异面直线的判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线〔注:第〔三〕、〔四〕两条课标均未设计,但应重视〕(五)等角定理:见教材(六)空间两直线成的角:过空间一点作两直线的平行线。
得到两条相交直线,这两条相交直线成的直角或锐角叫做两直线成的角(七)例子与练习1在立方体中过点能作条直线,与直线、都成角2空间三条直线,下面给出三个命题:①,那么;②假设a、b是异面直线,b、c是异面直线,那么a、c是异面直线;③假设a、b共面,b、c共面,那么a、c共面;上述命题正确的个数是3过空间一点能否作直线与两给定异面直线都相交?过一点能否作一平面与两给定的异面直线都相交?4空间四边形中,M、N分别是AB、CD的中点;求证:①与异面;②5以下命题:①垂直于同一直线的两条直线平行;②平行于同一直线的两条直线平行其中正确的选项是6、是异面直线,直线平行于直线,那么与〔〕A.一定是异面直线B.一定是相交直线C.不可能是平行直线D 不可能是相交直线课堂练习:略小结:本节课学习了公理4和等角定理,了解异面直线的概念和直线成角的概念课后作业:略空间中的平行关系〔2〕教学目标:1、直线与平面平行的概念2、直线与平面平行的判定与性质教学重点:直线与平面平行的判定与性质教学过程:(八)复习公理一:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(九)按直线与平面的公共点的个数给直线与平面的位置关系分类:1、直线与平面有且只有一个公共点——相交;2、直线与平面无公共点——平行;3、直线与平面有无数个公共点——直线在平面内(十)直线与平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,那么平面外的直线与这个平面平行——线线平行,线面平行此定理的证明方法是反证法应讲明证明方法步骤:反设、归谬、结论(十一)直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线与这两个平面的交线平行——线面平行,线线平行(十二)例子与练习例1、直线与平面平行的充要条件是这条直线与平面内的〔〕无数条直线都不相交解析:直线与平面平行,那么直线与平面内的任意直线都不相交,反之亦然;故应选C例2、“平面内有无穷条直线都和直线平行〞是“〞的〔〕即不充分也不必要条件解析:如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选B例3、:正方形与正方形不共面,=求证:平面证法一:如图,连结AM并延长交BC于G,那么==,所以又MN平面, EG平面故平面证法二:如图,过N作直线NH因为==, 所以HMMN平面MHN,所以平面卡片:判断直线与平面平行常用的方法有:1根据直线与平面平行的定义;2根据直线与平面平行的判定定理;3假设两平面平行,那么其中一个平面内的任意直线平行与另一平面此条可讲完下节后补充课堂练习:教材第47页练习A、B小结:本节课学习了直线与平面平行的概念,直线与平面平行的判定与性质课后作业:教材第60页习题1-2A:7、9空间中的平行关系〔3〕教学目标:1、平面与平面平行的概念2、平面与平面平行的判定与性质教学重点:平面与平面平行的判定与性质教学过程:(十三)直线与平面无公共点——平行(十四)平面与平面无公共点——平行(十五)平面与平面平行的判定定理:一个平面内有两条相交直线与另一平面平行,那么这两个平面平行——线面平行,面面平行此定理的证明方法是反证法应进一步稳固证明方法步骤:反设、归谬、结论推论:一个平面内有两条相交直线与另一平面内两条相交直线平行,那么这两个平面平行——线线平行,面面平行〔低一级的位置关系判定高一级的位置关系〕(十六)直线与平面平行的性质定理:如果两个平行平面都和第三个平面相交,那么它们的交线平行——面面平行,线线平行(十七)例子与练习1、:在正方体中;求证:平面平面解析:因为所以平面平面卡片:判断两平面平行的方法主要有:〔1〕两平面平行的定义;〔2〕如果一个平面内的两条相交直线平行于另一个平面,那么两平面平行;〔3〕如果一个平面内的两条相交直线平行于另一个平面内的两相交直线,那么两平面平行;2 平面证:假设不共线三点到平面的距离相等且不为0,那么该三点确定的平面β与平面的关系为〔〕A平行B相交C平行或相交D重合4 求证:平行于同一平面的两个平面平行课堂练习:教材第50页练习A、B小结:本节课学习了平面与平面平行的概念, 平面与平面平行的判定与性质课后作业:教材第60页习题1-2A::5、7。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计一、教学目标:1. 让学生理解平行线的概念,能够识别和判断空间中的平行关系。
2. 培养学生运用平行线的性质解决实际问题的能力。
3. 提高学生的空间想象力,培养学生的观察能力和思维能力。
二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:平行线上的任意一对对应角相等,同位角相等,内错角相等。
3. 平行线的判定:如果两条直线上的对应角相等,这两条直线平行。
4. 空间中的平行关系:判断空间中的直线是否平行,运用平行线的性质解决问题。
三、教学重点与难点:重点:平行线的定义、性质和判定。
难点:空间中的平行关系的判断。
四、教学方法:1. 采用问题驱动法,引导学生探究平行线的性质和判定。
2. 运用多媒体演示,帮助学生直观理解平行关系。
3. 采用小组合作学习,培养学生的团队协作能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识平行关系,激发学生的学习兴趣。
2. 新课导入:介绍平行线的定义,引导学生理解平行线的概念。
3. 案例分析:分析实际问题,运用平行线的性质解决问题。
4. 课堂练习:布置练习题,让学生巩固平行线的性质和判定。
六、教学评价:1. 评价学生对平行线概念的理解程度。
2. 评价学生运用平行线性质解决实际问题的能力。
3. 评价学生的空间想象力和观察能力。
七、教学资源:1. 多媒体教学课件。
2. 练习题和答案。
3. 教学模型和教具。
八、教学进度安排:1. 第一课时:介绍平行线的定义和性质。
2. 第二课时:讲解平行线的判定和实际应用。
3. 第三课时:练习和巩固平行线的知识。
九、教学反馈:1. 课后收集学生的练习作业,了解学生的掌握情况。
2. 在下一节课开始时,进行简短的测验,检查学生对平行线知识的掌握。
3. 及时与学生沟通,了解他们在学习过程中的困难和问题,给予个别指导。
十、教学改进:1. 根据学生的反馈和教学评价,调整教学方法和内容,以提高教学效果。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计一、教学目标1. 知识与技能:(1)让学生掌握平行线的定义和性质;(2)培养学生识别和画出空间中的平行线;(3)让学生能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、交流等活动,培养学生空间观念;(2)培养学生利用平行线的性质进行推理和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生勇于探究、积极思考的科学精神;(3)培养学生合作交流、尊重他人的团队意识。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线永不相交;(2)平行线之间的距离相等;(3)平行线可以延伸到无穷远。
3. 识别和画出空间中的平行线:(1)利用尺子和直尺画出平行线;(2)利用模型和实物帮助学生直观地理解平行线。
三、教学重点与难点1. 教学重点:(1)平行线的定义和性质;(2)识别和画出空间中的平行线。
2. 教学难点:(1)理解平行线永不相交的性质;(2)运用平行线的性质解决实际问题。
四、教学准备1. 教具:尺子、直尺、模型、实物等;2. 学具:学生尺子、直尺、练习本等。
五、教学过程1. 导入新课:(1)利用模型和实物引导学生观察平行线;(2)提问学生对平行线的认识,引导学生思考。
2. 探究新知:(1)介绍平行线的定义和性质;(2)让学生通过观察、操作、交流等活动,深入理解平行线的性质;(3)引导学生运用平行线的性质解决实际问题。
3. 巩固练习:(1)设计练习题,让学生独立完成;(2)组织学生进行小组讨论,共同解决问题;(3)引导学生总结解题方法。
4. 拓展与应用:(1)让学生运用平行线的性质解决实际问题;(2)引导学生发现生活中的平行线现象;(3)鼓励学生创造自己的平行线作品。
5. 总结与反思:(1)让学生回顾本节课所学内容,总结平行线的性质;(2)引导学生反思自己在学习过程中的收获和不足;(3)鼓励学生提出问题,为下一节课做好准备。
《空间中的平行关系》教案
《空间中的平行关系》教案教学目标、知识与技能()认识和理解空间平行线的传递性,会证明空间等角定理.()通过直观感知,归纳直线和平面平行及平面和平面平行的判定定理.()掌握直线和平面平行,平面与平面平行的判定定理和性质定理,并能利用这些定理解决空间中的平行关系问题.、过程与方法通过类比和转换的思维方法,将空间中的某些立体图形问题转化为平面图形的问题,从而化难为易,化繁为简,带未知为已知,使问题得到很好的解决(线∥线线∥面面∥面).教学重难点重点:平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定.难点:自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用.教学过程一、导入看图观察,图中的关系是什么?二、平面中的平行关系. 平行直线()空间两条直线的位置关系①相交:在同一平面内,有且只有一个公共点;②平行:在同一平面内,没有公共点.()初中几何中的平行公理:过直线外一点有且只有一条直线和这条直线平行.【说明】此结论在空间中仍成立.()公理(空间平行线的传递性):平行于同一条直线的两条直线互相平行.即:如果直线,那么 .【说明】此公理是判定两直线平行的重要方法:寻找第三条直线分别与前两条直线平行.. 等角定理等角定理:如果一个角的两边和另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.需要说明的是:对于等角定理中的条件:“方向相同”.()若仅将它改成“方向相反”,则这两个角也相等.()若仅将它改成“一边方向相同,而另一边方向相反”,则这两个角互补.此定理及推论是证明角相等问题的常用方法.. 空间图形的平移如果空间图形的所有点都沿同一方向移动相同的距离到'的位置,则说图形在空间做了一次平移.注意:图形平移后与原图形全等,即对应角和对应两点间的距离保持不变.图形平移有如下性质:()平移前后的两个图形全等;()对应角的大小平移前后不变;()对应两点的距离平移前后不变;()对应两平行直线的位置关系在平移前后不变;()对应两垂直直线的位置关系在平移前后不变.. 证明空间两直线平行的方法()利用定义用定义证明两条直线平行,需证两件事:一是两直线在同一平面内;二是两直线没有公共点.()利用公理用公理证明两条直线平行,只需证一件事:就是需找到直线,使得,同时,由公理得 .. 直线与平面平行()直线和平面的位置关系有三种,用公共点的个数归纳为()线面平行的判定定理:如果不在一个平面内的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.符号表示为:(Ⅰ)该定理常表述为:“线线平行,则线面平行.”(Ⅱ)用该定理判断直线和平面α平行时,必须具备三个条件:①直线不在平面α内,即 .②直线在平面α内,即.③两直线、平行,即 .这三个条件缺一不可.()线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和两平面的交线平行.符号表示:若 ,则 , 即“线面平行,则线线平行”.【说明】. 此定理可以作为直线与直线平行的判定定理. 定理中有个条件:①直线和平面α平行,即α;②平面α、β相交,即α∩β=;③直线在平面β内,即 .三者缺一不可.()线面平行定理的应用应用线面平行的判定定理证明线面平行,关键是找到平面内与平面外相互平行的直线.应用线面平行性质定理解题的关键是利用已知条件作辅助平面,然后把已知中的线面平行转化为直线和交线平行.. 两个平面的位置关系同平面内两条直线的位置关系相类似;可以从有无公共点来区分:①如果两个平面有不共线的三个公共点,那么由公理可知:这两个平面必然重合;②如果两个平面有一个公共点,那么由公理可知:这两个平面相交于过这个点的一条直线;③如果两个平面没有公共点,那么就说这两个平面相互平行.由此可知两个不重合的平面的位置关系:()平行——没有公共点;()相交——至少有一个公共点(或有一条公共直线).. 面面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行.已知:、,,∥,∥(如图所示)求证:∥证明:用反证法假设∥,,∥同理有∥由公理知∥,这与相矛盾.∥注意:()此定理用符号表示为()应用本定理的关键是:要证面面平行,转化为证线面平行,即在内找两条相交直线、都平行于.()这个定理有推论:“若一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行.”. 面面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.已知:,平面,(如图所示)求证:证明:没有公共点,而,,、没有公共点又、,注意:()本定理可作为线线平行的判定定理使用.()面面平行的性质还有:①这条性质同时是线面平行的一种判定方法.②夹在两平行平面间的两条平行线段相等.③对三个平面这是平面平行的传递性.三、典例解析例.已知:如图,空间四边形中,分别是边的中点.求证:四边形是平行四边形.证明:在中,分别是中点,则.同理,.所以.所以四边形是平行四边形.例.已知:空间四边形中,分别是的中点.求证:.证明:连接.在中,因为分别是的中点,所以 .又因 .所以 .例.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内.已知:.求证:.证明:设与确定的平面为,且,则.又知,,由平行公理可知,与重合.所以.四、课后小结应用线面平行的判定定理证明线面平行,关键是找到平面内与平面外相互平行的直线.应用线面平行性质定理解题的关键是利用已知条件作辅助平面,然后把已知中的线面平行转化为直线和交线平行.两平面平行问题常常转化为线面平行,而线面平行又可以转化为线线平行.所以注意转化思想的应用,两平面平行的性质定理是证明空间两直线平行的重要依据,故应切实掌握好.五、课后作业练习、.六、板书设计。
空间里的平行关系数学教案
空间里的平行关系数学教案空间里的平行关系数学教案教学建议一、知识结构在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念.二、重点、难点分析能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点.本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义.1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系.2.例如:在图中长方体的棱AA与面ABCD垂直,面AABB与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直.(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直.正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面ABCD的位置关系,把棱AB向两方延长,面ABCD向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DDCC是互相平行的,棱AA与面BBCC、与面DDCC也是互相平行的.再看面ABCD与ABCD,这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AABB与DDCC也是互相平行的.3.直线与平面、平面与平面平行的判定(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。
(直线与平面平行的判定)(2)如果一个平面内两条直线都与另一个平面平行,那么这两个平面互相平行。
(空间里平面与平面平行的判定)三、教法建议1.空间里的平行关系,是高中学习《立体几何》的`重要部分,本节知识在初中阶段让学生积累一些感性的认识.学习这节内容要注意联系实物(如火柴盒,教室)中的线与线、线与面、面与面的关系就容易得多了.2.本节在已有的对长方体的直观认识的基础上,通过对长方体的棱与面、面与面的不相交的观察,介绍了空间里的直线与平面、平面与平面平行的关系.目的主要是培养空间思维,但只是一个初步的感性认识,只需基本了解,不需要系统地学习.3.教学时应该注意的是这里所说的平面一定是无限延伸的.两面墙平行,是指两面墙所在的平面平行,不是指墙这一小部分平行.教学设计示例一、教学目标1.能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系.2.此外,在教学“空间里的平行关系”中,要培养学生的空间想象力.3.通过平行关系在生活中的应用,培养学生的应用意识.二、引导性材料复习提问:1.平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?2.试说出两直线平行的意义.前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系.(可让学生以教室为实例,说出一些线与面,面与面的垂直关系.)前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”.(教师演示:一根木条或铅笔与桌面平行.)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题.三、知识产生和发展过程的教学设计问题1—1:观察下图(也可要求学生携带一个长方体的包装纸盒)中的长方体,棱AB与面ABCD的位置关系是什么?如果将棱AB向两边无限伸展,同时也将面ABCD向各个方向延展,它们之间有无可能相交?问题1-2:图中,你能以棱AB与面ABCD为一个具体例子,用类似于定义“平行线”的方法,给直线与平面平行下一个定义吗?(由学生口答,教师帮助完善,得出定义.)问题1-3:图中,除了棱AB外,还有与面ABCD平行的棱吗?有哪几条?(由学生分别说出棱BC,CD,AD都与面ABCD平行.)问题1-4:除了面ABCD外,棱AB还与哪个平面平行?问题2—1:如下图的长方体中,面ABCD与面ABCD能否相交?怎样定义空间里的两平面平行?问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解.)四、例题解析例题:如下图,在长方体中,棱CD与哪些面平行?面ABCD与哪些棱平行?答:棱CD与面ABBC、面ABCD平行;面AADD棱BB、棱BC、棱CC、棱BC平行;面ABBA与面DCCD平行.(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面.面面平行的问题.也可让学生自己来提出问题.由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系的感知,发展想象能力.)五、练习课本第90页练习第l、2题.六、小结本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系.我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题.。
初中数学空间里的平行关系教案
初中数学空间里的平行关系教案初中数学空间里的平行关系教案作为一名教师,往往需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。
那么大家知道正规的教案是怎么写的吗?下面是店铺精心整理的初中数学空间里的平行关系教案,欢迎阅读,希望大家能够喜欢。
一、学什么1、说课内容:苏教版第三册P63-64练习十五。
2、教学目标的设计:我们来看学生对这部分知识了解了那些?从学生的认知背景分析:线段是一种常见的平面图形。
在实际生活中,含有线段的物体很多,而且,学生在一年级时,对长方形和正方形的四条边也就是线段都有初步的感性认识,但那只是初步形象的认识,要上升到理性认识还有一定的难度。
因此,我对教学目标思考定位为:通过操作,抽象概括线段的特征,发展空间观念。
这是本课应达成的知识性目标,但它已不在是本节课的关键。
重要的是引导学生积极参与数学活动,通过不同形式的学习使不同水平的学生能够在原有的基础上有不同程度的提高。
这才是本课的关键。
(1)对学生后继学习的作用。
认识线段是下一课学习厘米,米、分米及进行测量等实践活动的基础,测量物体的长和宽要根据线段的特征:直的、有两个端点(从这个端点到另一个端点)来确定,对学生来说更加抽象;到四年级学习直线、射线时,不仅要引导学生充分想象,和线段的特征相联系,也要用认识线段的方法做迁移。
因此,本课的能力目标是:不仅认识线段,还要会画不定长的线段。
(2)就其应用价值来分析。
用线段构建的模型可以有效的描述自然现象和社会现象;更为学生提供了语言、思想和方法。
建模的过程,学生能进一步体会到知识来源于实践,用于实践的道理,并对学生空间观念的形成有重要的意义。
因此,本课的情感目标就定为:运用所学的数学知识解决实际问题,以激发学生学习数学的兴趣。
3、学习重点、难点从学生的思维角度出发,他们是以形象思维为主。
所以让学生动手操作主动建构出线段的特征是本课的学习重点。
但二年级学生感知粗糙不精细,思维不够严密,又是第一次接触线段这一概念,往往对线段的几何图形的画法(尤其是两个端点)易忽视,形成片面、肤浅的认识,所以对线段的画法及把周围物体的一些边看作线段成了本课的学习难点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间里的平行关系教学设计
Teaching design of parallel relation in space
空间里的平行关系教学设计
前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,
从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代
的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要
求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的
设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文下载后内容可随
意修改调整及打印。
教学建议
一、知识结构
在平行线知识的基础上,教科书以学生对长方体的直观认识
为基础,通过观察长方体的某些棱与面、面与面的不相交,进而
把它们想象成空间里的直线与平面、平面与平面的不相交,来建
立空间里平行的概念.培养学生的空间观念.
二、重点、难点分析
能认识空间里直线与直线、直线与平面、平面与平面的平行
关系既是本节教学重点也是难点.本节知识是线线平行的相关知
识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义.
1.我们知道在同一平面内的两条直线的位置关系有两种:
相交或平行,由于垂直和平行这两种关系与人类的生产、生活密
切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系.
2.例如:在图中长方体的棱AA与面ABCD垂直,面AABB与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直.
(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直.
正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面ABCD的位置关系,把棱AB向两方延长,面ABCD向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DDCC是互相平行的,棱AA与面BBCC、与面DDCC也是互相平行的.
再看面ABCD与ABCD,这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AABB与DDCC也是互相平行的.
3.直线与平面、平面与平面平行的判定
(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。
(直线与平面平行的判定)
(2)如果一个平面内两条直线都与另一个平面平行,那么这两个平面互相平行。
(空间里平面与平面平行的判定)
三、教法建议
1.空间里的平行关系,是高中学习《立体几何》的重要部分,本节知识在初中阶段让学生积累一些感性的认识.学习这节内容要注意联系实物(如火柴盒,教室)中的线与线、线与面、面与面的关系就容易得多了.
2.本节在已有的对长方体的直观认识的基础上,通过对长方体的棱与面、面与面的不相交的观察,介绍了空间里的直线与平面、平面与平面平行的关系.目的主要是培养空间思维,但只是一个初步的感性认识,只需基本了解,不需要系统地学习.3.教学时应该注意的是这里所说的平面一定是无限延伸的.两面墙平行,是指两面墙所在的平面平行,不是指墙这一小部分平行.
教学设计示例
一、教学目标
1.能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系.
2.此外,在教学“空间里的平行关系”中,要培养学生的空间想象力.
3.通过平行关系在生活中的应用,培养学生的应用意识.
二、引导性材料
复习提问:
1.平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?
2.试说出两直线平行的意义.
前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系.(可让学生以教室为实例,说出一些线与面,面与面的垂直关系.)
前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”.(教师演示:一根木条或铅笔与桌面平行.)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题.
三、知识产生和发展过程的教学设计
问题1—1:观察下图(也可要求学生携带一个长方体的包装纸盒)中的长方体,棱AB与面ABCD的位置关系是什么?如果将棱AB向两边无限伸展,同时也将面ABCD向各个方向延展,它们之间有无可能相交?
问题1-2:图中,你能以棱AB与面ABCD为一个具体例子,用类似于定义“平行线”的方法,给直线与平面平行下一个定义吗?
(由学生口答,教师帮助完善,得出定义.)
问题1-3:图中,除了棱AB外,还有与面ABCD平行的棱吗?有哪几条?
(由学生分别说出棱BC,CD,AD都与面ABCD平行.)
问题1-4:除了面ABCD外,棱AB还与哪个平面平行?
问题2—1:如下图的长方体中,面ABCD与面ABCD能否相交?怎样定义空间里的两平面平行?
问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?
(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解.)
四、例题解析
例题:如下图,在长方体中,棱CD与哪些面平行?面ABCD与哪些棱平行?
答:棱CD与面ABBC、面ABCD平行;
面AADD棱BB、棱BC、棱CC、棱BC平行;
面ABBA与面DCCD平行.
(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面.面面平行的问题.也可让学生自己来提出问题.由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系的感知,发展想象能力.)
五、练习
课本练习第l、2题.
六、小结
本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系.
我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题.
-------- Designed By JinTai College ---------。