几何形状ppt模板
合集下载
《几何图形初步认识》课件
几何图形在生活中的应用
建筑学
建筑设计、施工图绘制 等都离不开几何图形。
工程学
机械零件设计、工程结 构分析等需要运用几何
知识。
艺术
雕塑、绘画等艺术形式 中,几何图形也是重要
的创作元素。
日常生活
生活中的许多物品,如 桌子、椅子、门窗等, 都是几何图形的具体应
用。
02
平面几何图形
圆形
总结词
完美的对称性,只有一条对称轴
圆柱体
总结词
由两个平行圆面和一个侧面组成,侧面 是一条弯曲的线段。
VS
详细描述
圆柱体是一个三维图形,由一个顶部的圆 面、一个底部的圆面和一个连接它们的侧 面组成。侧面是一条从顶部圆心到底部圆 心的弯曲线段,其形状类似于一个椭圆。
圆锥体
总结词
有一个圆形底面和一个侧面组成,侧面由一条曲线围绕底面圆心而成。
03
立体几何图形
正方体
总结词
具有六个面,每个面都是正方形,对 角线相等。
详细描述
正方体是一个特殊的长方体,它的六 个面都是正方形,并且所有面的面积 都相等。正方体的对角线长度也相等 ,并且是所有棱长的√3倍。
球体
总结词
所有点距离球心等距,表面积与体积的计算公式。
详细描述
球体是一个三维图形,其中所有点都位于一个中心点(即球 心)的距离相等。球体的表面积和体积有特定的计算公式, 对于半径为r的球体,其表面积S=4πr²,体积V=(4/3)πr³。
《几何图形初步认识》ppt课件
目 录
• 几何图形简介 • 平面几何图形 • 立体几何图形 • 几何图形的性质与特点 • 几何图形的周长、面积和体积计算 • 实践与应用:生活中的几何图形
几何图形(39张PPT)数学
第6章 图形的初步知识
6.1 几何图形
学习目标 1.在具体情况中认识立方体、长方体、圆柱体、圆锥体、球体,并能理解和描述它们的某些特征,进一步认识点、线、面、体,体验几何图形是怎样从实际情况中抽象出来的.2.了解几何图形、立体图形与平面图形的概念.掌握重点 认识常见几何体并能描述它们的某些特征.突破难点 体验几何图形与现实生活中图形的关系,区分立体图形与平面图形.
解
返回
解 立方体由6个面围成,它们都是平的;圆柱由3个面围成,其中有2个平的,1个曲的.解 圆柱的侧面和两个底面相交成2条线,它们都是曲的.解 立方体有8个顶点,经过每个顶点有3条线段(棱).
典例精析
例1 (教材补充例题)如图所示的图形.平面图形有_____________;立体图形有_____________.
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
①,②,⑥
③,④
⑤
②,③,⑤
①,④,⑥
19
13.如图是一个三棱柱,观察这个三棱柱,请回答下列问题:(1)这个三棱柱共有多少个面?(2)这个三棱柱一共有多少条棱?(3)这个三棱柱共有多少顶点?
解 这个三棱柱共有5个面.解 这个三棱柱一共有9条棱.解 这个三棱柱共有6个顶点.
C
解析 观察图形可知,其中一面、两面、三面涂色的小正方体的个数分别为x1=6,x2=12,x3=8,则x1-x2+x3=2.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
《几何图形初步》ppt下载2
如因图为, ∠A∠BAEO+B∠D是B直E角=∠,ABODN是, ∠AOC 的平分线,OM 是∠BOC 的平分线. (已2)知1一9点条整射时线,O时A钟,若上从时点针O与再分引钟两之条间射的线夹O角B是和( OC,)使∠AOB=50°,∠BOC=10°,求∠AOC 的度数. ①解:同设角∠(α等=角xº),的则余∠角β=相1等8.0º-xº.
因为∠AOB = 90°, ∠COD = 90°, 所以∠AOC = 90°-∠BOC,
总(3)是又当等锐于因角∠∠AA为OOBC的∠的一大半A小. O发生C改=变∠时,∠CMOONF的大-∠小也A会发O生F改=变9吗0?°为-∠什么A?OF=90°-∠EOF=∠DOE.
所以与∠AOD互补的角有∠AOC,∠BOD,∠DOE.
(3) 方位角
如(1)图若,∠A∠A=O2B0°是18直′,角∠,B =O2N0是°1∠5A′3O0″C,的∠C平=分2线0.,OM 是∠BOC 的平分线.
① 定义 2解5:×6∠0B′=O2C0°=1∠5A′ OB+∠AOC = 90°+α,
即∠A1B8C0-=x∠=AB2(Ex+-∠3C0)B,E= 7x°. 同所角以(∠等B角OD)的=补∠A角O相C等=30°(同角的补角相等). 如所图以, ∠A∠BACO=B7是x°直= 角7×,14O°=N是98∠°.AOC 的平分线,OM 是∠BOC 的平分线.
=50°+10° (1) 当∠AOC=50°时,求∠MON 的大小;
所以∠BOC =∠AOB+∠AOC = 90°+50°=140°, 因为∠FOD=90°,
O 图① A
∠AOC =∠AOB+∠BOC
=60°; (2) 角也可以看作由一条射线绕着它的端点旋转而形成的图形.
因为∠AOB = 90°, ∠COD = 90°, 所以∠AOC = 90°-∠BOC,
总(3)是又当等锐于因角∠∠AA为OOBC的∠的一大半A小. O发生C改=变∠时,∠CMOONF的大-∠小也A会发O生F改=变9吗0?°为-∠什么A?OF=90°-∠EOF=∠DOE.
所以与∠AOD互补的角有∠AOC,∠BOD,∠DOE.
(3) 方位角
如(1)图若,∠A∠A=O2B0°是18直′,角∠,B =O2N0是°1∠5A′3O0″C,的∠C平=分2线0.,OM 是∠BOC 的平分线.
① 定义 2解5:×6∠0B′=O2C0°=1∠5A′ OB+∠AOC = 90°+α,
即∠A1B8C0-=x∠=AB2(Ex+-∠3C0)B,E= 7x°. 同所角以(∠等B角OD)的=补∠A角O相C等=30°(同角的补角相等). 如所图以, ∠A∠BACO=B7是x°直= 角7×,14O°=N是98∠°.AOC 的平分线,OM 是∠BOC 的平分线.
=50°+10° (1) 当∠AOC=50°时,求∠MON 的大小;
所以∠BOC =∠AOB+∠AOC = 90°+50°=140°, 因为∠FOD=90°,
O 图① A
∠AOC =∠AOB+∠BOC
=60°; (2) 角也可以看作由一条射线绕着它的端点旋转而形成的图形.
常用的几何图形画法ppt课件
(2)
(3)
(4)
(5)
(6)
(7)
13
第三章 几何作图
§3—4 圆弧连接
从扳手的图形可以看出, 圆弧连接的实质是几何要素间 相切的关系。
作图时需要解决的两个问题:
1.确定连接圆弧圆心的位置 2.准确定出切点(连接点)的位置
圆弧连接的形式有:
1.用圆弧连接两已知直线 2.用圆弧连接两已知圆弧 3.用圆弧连接一直线和一圆弧
19 第三章 几何作图
例:已知圆O1(半径R1)O2(半径R2)连接 圆弧的半径为R,试完成连接作图(与O1外 切,O2内切)。
作图步骤:
20 第三章 几何作图
3.用圆弧连接直线和圆弧 连接直线和圆弧的作图方法同前面介绍的两种连接情况类似,即分别
按照连接直线和圆弧的方法求出圆心和切点,下面举例说明。
(2)
(3)
(4)
第三章 几何作图
(5)
10
§3—3 椭圆画法
椭圆是非圆曲线,由于一些机件具有椭圆形结构,因此在作图时应掌握 椭圆的画法。
画椭圆的方法比较多,在实际作图中常用的有同心圆法和四心法,下 面介绍这两种画法。
一、同心圆法
用同心圆法画椭圆的基本方法是,在确定了椭圆长短轴后,通过作 图 求得椭圆上的一系列点再将其光滑连接。 例:已知长轴AB、短轴CD,试用同心圆法作 出椭圆。
26 第三章 几何作图
五、平面图形的尺寸标注示例:
27 第三章 几何作图
五、平面图形的尺寸标注示例:
28 第三章 几何作图
一般情况下,要在平面图形中绘制一段圆弧,除了要知道圆弧 的半径外还需要有确定圆心位置的尺寸。
从下可以看到,有的圆、圆弧有两个确定圆心位置的尺寸如R18, 而有的一个也没有如R30。
空间几何体的结构课件(共46张PPT)
S
C
B
D
A
四棱锥:S-ABCD
P
Q C
B
D
A
×
其他的三棱锥底面的平面去截棱锥,底面与 截面之间的部分是棱台.
下底面和上底面:原棱锥的底面和截面
分别叫做棱台的下底面和上底面。
侧面:原棱锥的侧面也叫做棱台的侧面
(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱
形 状 与 大 小
空间几何体 如果我们只考虑物体的形状和大小,而不考虑其它因素, 那么由这些物体抽象出来的空间图形就叫做空间几何体。
你能把这些几何体 分成两类么?
多面体: 若干个平面多边形围成的几何体
面----围成多面体的各个多边形 棱----相邻两个面的公共边 顶点-----棱与棱的公共点
(截后剩余部分)。
D’
D A’
顶点:上底面和侧面,下底面和侧面
的公共点叫做棱台的顶点。
侧棱 A
上
顶点
底
C’ 面
B’
侧C面
下底面
B
棱台的表示:用表示底面的各顶点的
字母表示。 如:棱台ABCD-
A底’面B是’C三’角D形’,四边形,五边形----的棱台分
别叫三棱台,四棱台,五棱台---
练习:下列几何体是不是棱台,为什么?
B1
C1
B1
C1
A1
B1 A
BC
A1
D1
A
B
A
D
5、判断下列几个命题中的对错
⑴有两个面平行,其余各面都是四边形的几何体叫棱柱 ( × )
⑵有两个面平行,其余各面都是平行四边行的几何体叫棱柱( × )
⑶ 有一个面是多边形,其余各面都是三角形的几何体叫棱锥( × )
《几何图形》图形认识初步PPT课件 图文
鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人
小时候的鲁迅就十分的要强,事事总想 走在别 人的前 面。鲁 迅成年 后,他 的性格 变得更 加刚强 ,从他 的文章 中,从 他面对 敌人的 迫害不 惧怕中 ,从他 与批评 他的人 的针锋 相对中 ,我们 都可以 看出他 的性格 。 在鲁迅病重期间,他写个一篇关于自己 身后事 的文章 ,其中 有一句 话说, “让他 们记恨 去,我 一个都 不原谅 !”这 句话就 是鲁迅 刚强性 格的绝 好体现 。 三、鲁迅是一个正义的、富有民族气节 的、忧 国忧民 的人
十七、所有的深爱都是秘密,所有的深 情都只 为你。 你是我 期待又 矛盾的 梦想, 抓住却 不能拥 抱的风 ,想喝 又怕醉 的酒。
十八、注定要在一起的人,晚点也真的 没关系 。愿你 能在人 海茫茫 中,和 你的命 中注定 撞个满 怀,所 爱之人 最后成 为你的 爱人。
十九、一个人对你好很容易,喜欢你也 很容易 ,重要 的是坚 持,一 个人和 你在一 起的时 候对你 好,是 喜欢你 ,但是 你们没 有在一 起,他 还对你 好,那 是真的 爱你。
到城雕
从古剪代纸 到现代 从长城 到立交 从植物 到动物
从2008北京奥运
• 对于生活中的各种各样的物体,数学中关注的是 1、它们的 形状 (如方的、圆的等);
2、 大小 (如长度、面积、体积等); 3、 位置 (如相交、垂直、平行等)。
它们的颜色、重量、材料等则是其他学科所关注。
4.1.1 几何图形
只看棱、顶点等到局部,得到的是 线段、点等
图形间的联系
以下立体图形的表面包含哪些平面图形?
长方体
六棱柱
小时候的鲁迅就十分的要强,事事总想 走在别 人的前 面。鲁 迅成年 后,他 的性格 变得更 加刚强 ,从他 的文章 中,从 他面对 敌人的 迫害不 惧怕中 ,从他 与批评 他的人 的针锋 相对中 ,我们 都可以 看出他 的性格 。 在鲁迅病重期间,他写个一篇关于自己 身后事 的文章 ,其中 有一句 话说, “让他 们记恨 去,我 一个都 不原谅 !”这 句话就 是鲁迅 刚强性 格的绝 好体现 。 三、鲁迅是一个正义的、富有民族气节 的、忧 国忧民 的人
十七、所有的深爱都是秘密,所有的深 情都只 为你。 你是我 期待又 矛盾的 梦想, 抓住却 不能拥 抱的风 ,想喝 又怕醉 的酒。
十八、注定要在一起的人,晚点也真的 没关系 。愿你 能在人 海茫茫 中,和 你的命 中注定 撞个满 怀,所 爱之人 最后成 为你的 爱人。
十九、一个人对你好很容易,喜欢你也 很容易 ,重要 的是坚 持,一 个人和 你在一 起的时 候对你 好,是 喜欢你 ,但是 你们没 有在一 起,他 还对你 好,那 是真的 爱你。
到城雕
从古剪代纸 到现代 从长城 到立交 从植物 到动物
从2008北京奥运
• 对于生活中的各种各样的物体,数学中关注的是 1、它们的 形状 (如方的、圆的等);
2、 大小 (如长度、面积、体积等); 3、 位置 (如相交、垂直、平行等)。
它们的颜色、重量、材料等则是其他学科所关注。
4.1.1 几何图形
只看棱、顶点等到局部,得到的是 线段、点等
图形间的联系
以下立体图形的表面包含哪些平面图形?
长方体
六棱柱
几何图形PPT教学课件
• 7.读图,回答下列问题。
• (1)图中A、B、C、D、E五处,属背斜的 是________。
• (2)从地形上看,C处是________,形成 原因是 ________________________________ ______。
• (3)泰山的成因类型与图中________处一 致;地震多发地带位于图中________处。
超过岩石的承受能力时,岩体断发裂生面 破裂,
并沿
发生明显的位移。
• (2)断层的位移类型
• ①水平方向:会错断原有的各种地貌, 或在断层附近派生出若干地貌。
压力
• 3.中央火喷山出口
• (1)成因:岩浆火在山巨口 大的
作用下,
沿着地壳的
或管道喷出。
• (2)组在成断:层包构造括地带,由于岩石和破火坏山,易锥受两风部化侵分蚀。,
”字或“8”字状( 建设成本;
线路尽量与等高线 ②降低技术
平行);
难度;③工
①同蒲铁路 沿汾河谷地 伸展;②陇 海铁路的西
线 ③避开陡坡和断层 程施工要安 段沿渭河谷
路 、滑坡、泥石流等 全;④降低 地伸展;③
走 地质灾害多发地段 运营成本和 襄渝铁路沿
向;
提高运营安 汉水谷地伸
影响 线网密度
山区交通 建设的一 般原则
D.砾岩
• 3.图示地段发生过的地质作用不能确定 的是( )
• A.水平拉伸作用 B.岩浆活动
• C.变质作用
D.堆积作用
• 【解析】 第1题,图中①处为断层地带, 因岩层破碎易遭侵蚀而形成河谷。第2题, 从断层左侧的岩层关系可以看出③处位 于砾岩的下方,而断层右侧显示砾岩的 下方是石灰岩,说明③处原为石灰岩, 后因接触高温岩浆而变质形成大理岩, 第3题,图中有岩浆活动形成的花岗岩, 变质作用形成的大理岩,堆积作用形成 的沉积物④,不能确定是否发生了水平 拉伸作用。
几何图形(PPT)全面版
4.1几何图形
创设情境,引入新知
北京
金字塔—埃及
生活中各种不同的图形
自主预习
我们周围的物体,如果只注意它们的形状、 大小和位置,而不考虑它们的其它性质,就得 到各种几何图形。这就是几何研究的对象。
我们之前已经学习过哪些常见基本几何图形?
类似地观察罐头、足球或篮球的外形,可以得 圆柱、球、圆等.长方体、圆柱、球、长(正)方 形、圆、线段、点等,以及小学学过的三角形、四 边形等,都是从物体外形中得出的.
从实物中抽象出的各种图形统称为几何图形.
自主预习 从刚才多姿多彩的图形世界中, 我 们抽象出来的几何图形有:
三角形
长方形
正方体
圆柱
长方体
球
五边形
圆锥
圆形
正方形
四棱锥
圆台 棱台
常见的立体图形
有些几何图形(如长方体、正方体、圆柱、圆锥、球等) 的各部分不都在同一平内,这样的几何图形叫做立体图形.
长方体
正方体
圆柱
球
圆锥
圆台
常见的平面图形
有些几何图形(如线段、角、三角形、长方形、圆等) 的各部分都在同一平内,这样的几何图形叫做平面图形.
三角形
长方形
五边形
圆形
正方形
课本练习,寻找熟悉的平面图形?
六边形
认识一下棱柱和棱锥: 你能再举出一些棱柱、棱锥的实例吗?
六棱柱
四棱锥
三棱柱
图4.1- 4中实物的形状对应哪些立体图形?把相应 的实物与图形用线连接起来.
正方体 球
六棱柱
圆锥 长方体
四棱锥
自主探究
思考:
这些常见的几何体又是由最基本 的元素构成的,那么究竟是哪些基本的元 素呢?
创设情境,引入新知
北京
金字塔—埃及
生活中各种不同的图形
自主预习
我们周围的物体,如果只注意它们的形状、 大小和位置,而不考虑它们的其它性质,就得 到各种几何图形。这就是几何研究的对象。
我们之前已经学习过哪些常见基本几何图形?
类似地观察罐头、足球或篮球的外形,可以得 圆柱、球、圆等.长方体、圆柱、球、长(正)方 形、圆、线段、点等,以及小学学过的三角形、四 边形等,都是从物体外形中得出的.
从实物中抽象出的各种图形统称为几何图形.
自主预习 从刚才多姿多彩的图形世界中, 我 们抽象出来的几何图形有:
三角形
长方形
正方体
圆柱
长方体
球
五边形
圆锥
圆形
正方形
四棱锥
圆台 棱台
常见的立体图形
有些几何图形(如长方体、正方体、圆柱、圆锥、球等) 的各部分不都在同一平内,这样的几何图形叫做立体图形.
长方体
正方体
圆柱
球
圆锥
圆台
常见的平面图形
有些几何图形(如线段、角、三角形、长方形、圆等) 的各部分都在同一平内,这样的几何图形叫做平面图形.
三角形
长方形
五边形
圆形
正方形
课本练习,寻找熟悉的平面图形?
六边形
认识一下棱柱和棱锥: 你能再举出一些棱柱、棱锥的实例吗?
六棱柱
四棱锥
三棱柱
图4.1- 4中实物的形状对应哪些立体图形?把相应 的实物与图形用线连接起来.
正方体 球
六棱柱
圆锥 长方体
四棱锥
自主探究
思考:
这些常见的几何体又是由最基本 的元素构成的,那么究竟是哪些基本的元 素呢?
人教版数学几何图形PPT模板
2.几何图形都是由__点__、__线__、__面__、_体___组成的,_点___是构成图形的 基本元素.用运动的观点看,点动成_线___,线动成_面___,面动成__体__. 练习2.如图,将一条线段AB绕着端点A旋转120°,得到的平面图形为
(C ) A.三角形 B.圆锥 C.扇形 D.不能确定
•
1.阅读说明文,首先要整体感知文章 的内容 ,把握 说明对 象,能 区分说 明对象 分为具 体事物 和抽象 事理两 类;其 次是分 析文章 内容, 把握说 明对象 的特征 。事物 性说明 文的特 征多为 外部特 征,事 理性说 明文的 特征多 为内在 特征。
•
2.该类题目考察学生对文本的理解, 在一定 程度上 是在考 察学生 对这类 题型答 题思路 。因此 一定要 将这些 答题技 巧熟记 于心, 才能自 如运用 。
•
3. 结合实际,结合原文,根据知识库 存,发 散思维 ,大胆 想象。 由文章 内容延 伸到现 实生活 ,对现 实生活 中相关 现象进 行解释 。对人 类关注 的环境 问题等 提出解 决的方 法,这 种题考 查的是 学生的 综合能 力,考 查的是 学生对 生活的 关注情 况。
•
4.做好这类题首先要让学生对所给材 料有准 确的把 握,然 后充分 调动已 有的知 识和经 验再迁 移到文 段中来 。开放 性试题 ,虽然 没有规 定唯一 的答案 ,可以 各抒已 见,但 在答题 时要就 材料内 容来回 答问题 。
七年级数学上册(人教版)
第四章 几何图形初步
4.1 几何图形
4.1.2 点、线、面、体
1.几何体也简称_体___,包围着体的是_面___,面有_平__面___和__曲__面__两种;面 和面相交的地方是_线___,线有_直__线___和__曲__线___;线和线相交的地方是 __点__. 练习1.如图所示的几何体,它由__3__个平面和__1__个曲面围成;面与面相交 有__4__条直线和__2__条曲线;线与线相交有__4__个顶点.
人教版《图形与几何》PPT1(共27张PPT)
二、温故知新
分别求出下面长方体、正方体的表面积和体积(单位:cm)
7.5×4×4+42×2=152(cm2) 4×4×7.5=120(cm3)
1.52×6=13.5(cm2) 1.53=3.375(cm3)
二、温故知新
体积与容积的区别与联系
异同点
体积
容积
区别
意义
不同
测量 方法 不同
单位 名称 不同
图形③:3×3×3-11=16(个)
从正面看 第1课时 图形与几何
现在你能画出这个物体的立体图形了吗? 顺次连接点A、点B′、点D′、点C′,即可得到旋转后的图形。
(1)举例说明1cm3、1dm3、1m3各有多大,1L、1mL的水大约有多少。
从左面看 从上面看
从物体外部测量长、宽、高。
说一说你是怎样旋转并画出的。
旋根正据方转从 体中一的心个体方积是向=棱唯看长一到×的不棱平长动面×的图棱形点长摆,。出用的字立母体表图示形是不V一=a定3。相同。 容你能积摆单出位这:个L物和体m的L;计立体量图固形体吗时?用体积单位。 S长=方体的体积=长×宽×高,用字母表示是V=abh;
第一单元学习了观察物体。
在现图分人别形民A在求②B教你出:的下育能4垂面×出画长4线×版方出上4体社-这1、找0五正=个5到方年4物体(级点的个体下B表)的的面册积立对和体应体积图点(单形B位′,:了cm使)吗A?B′= m如果³、要d把m①³、、②c、m③³。分别继续补搭成一个大正方体,每个图形至少还需要多少个小正方体?
联系
物体所占空间的 大小,叫做物体 的体积。
从物体外部测量 长、宽、高。
一个容器所能容纳物体的体积, 叫做这个容器的容积。
从容器里面测量长、宽、高。
高中数学立体几何PPT课件
目录
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.
【21页】《几何图形》PPT模板文件(第1时)
几何图形
第1课时
下列图形中有你认识的几何图形吗?请指出来。
图中有:
球、棱锥、圆柱、 长方体、三角形、 长方形(矩形)、 线段、点······
这些都是几何图形
点、线、面、体以及它们的组合都是几何图形。
几何图形可分为立体图形和平面图形两类。
问题1:你认识这些几何体吗? 请说出它们的名称。
正方体
长方体
从上面看
从左面看
从正面看
从上面看 从左面看
从正面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
利用正方体,摆成下面的图形,分别从正 面、左面、上面观察这个图形,各能得到什么 平面图形?
从正面看
从上面看
从左面看
你有收获吗?
立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥······ 平面图形:长方形、正方形、三角形、圆、五边形、六边形······ 从正面看、从左面看、从上面看······
圆柱体
圆锥体
球体
问题2:你能举出一些在日常生活中形状与上述几何
体类似的物体吗?
正方体 长方体
圆柱
球体
圆锥体
问题3:你能把下列几何图形分成两类吗?并要说出理由.
(1)
(2)
(3)
(4)
(5)
(6)
几何图形: 立体图形: 各个部分不在同一个平面内. (1), (2) (点,线,面,体)
平面图形: 各个部分都在同一个平面内.
(3),(4),(5),(6)
生活中你会常见很多实物,由下列实物能想象出你 熟悉的立体图形(几何体)吗?
球
正方体
圆锥
长
圆
方
台
第1课时
下列图形中有你认识的几何图形吗?请指出来。
图中有:
球、棱锥、圆柱、 长方体、三角形、 长方形(矩形)、 线段、点······
这些都是几何图形
点、线、面、体以及它们的组合都是几何图形。
几何图形可分为立体图形和平面图形两类。
问题1:你认识这些几何体吗? 请说出它们的名称。
正方体
长方体
从上面看
从左面看
从正面看
从上面看 从左面看
从正面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
利用正方体,摆成下面的图形,分别从正 面、左面、上面观察这个图形,各能得到什么 平面图形?
从正面看
从上面看
从左面看
你有收获吗?
立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥······ 平面图形:长方形、正方形、三角形、圆、五边形、六边形······ 从正面看、从左面看、从上面看······
圆柱体
圆锥体
球体
问题2:你能举出一些在日常生活中形状与上述几何
体类似的物体吗?
正方体 长方体
圆柱
球体
圆锥体
问题3:你能把下列几何图形分成两类吗?并要说出理由.
(1)
(2)
(3)
(4)
(5)
(6)
几何图形: 立体图形: 各个部分不在同一个平面内. (1), (2) (点,线,面,体)
平面图形: 各个部分都在同一个平面内.
(3),(4),(5),(6)
生活中你会常见很多实物,由下列实物能想象出你 熟悉的立体图形(几何体)吗?
球
正方体
圆锥
长
圆
方
台
简单几何图形绘制(共10张PPT)
⑶ 连接O1O,求得与已知圆弧的切点。 ⑷ 由O向已知直线作垂线,求得与已知直线的切点。 ⑸ 以O为圆心,R为半径画连接圆弧。
圆弧连接作图小结:
一、无论哪种形式的连接,连接圆弧的圆 心都是利用动点运动轨迹相交的概念 确定的。
☆距直线等距离的点的轨迹是直线的平行
线。
☆与圆弧等距离的点的轨迹是同心圆弧。
⑴ 以O1为圆心,R1+R为半径
R
画圆弧。
⑵ 以O2为圆心,R2+R为半径
O3
●
画圆弧。
⑶ 分别连接O1O3、O2O3
求得两个切点。
⑷ 以O3为圆心, R为半径画连
接圆弧。
● C1 O1
C2 ●
O2
⒊ 用半径为R的圆弧连接两已知圆弧(内切)
⑴ 以O1为圆心,R-R1为 半径画圆弧。
⑵ 以O2为圆心,R-R2为
⑴中间以线O段1为:圆–缺心少,中一R个1间+定R位为线尺半寸径段,必:须依缺靠与少另一一线段个的连定接关位系才尺能画寸出的,线段必须依靠与另一线段的连接关
系才能画出的线段 ⑶ 分别连接O1O3、O2O3
⑵ 以O2为圆心,R-R2为
⑴ ⒋
以 用O半1径为为圆–R心的,连圆R弧1接+连R接为线已半知径段圆作弧圆:和弧直。缺线 少两个定位尺寸,必须依靠与其它线段的连接关
系才能画出的线段(求出连接圆弧的切点和圆心确定连接线段)
已知线段:
中间线段:
Ф15,Ф30,R12,R25
R35
连接线段: R40,R50, R5
• 已知线段:Ф15,Ф30,R12,R25
• 中间线段:R35
• 连接线段:R40,R50 ,R5
尺寸基准:标注尺寸的起点 ⑵ 由点O分别向两已知直线作垂线,垂足即切点。 ⒋ 用半径为R的圆弧连接已知圆弧和直线 ⑸ 以O为圆心,R为半径画连接圆弧。 ⑸ 以O为圆心,R为半径画连接圆弧。 ⑶ 连接O1O,求得与已知圆弧的切点。 ⑵ 以O2为圆心,R-R2为 定位尺寸:确定平面图形上线段间相对位置的尺寸 中间线段:缺少一个定位尺寸,必须依靠与另一线段的连接关系才能画出的线段 ☆与圆弧等距离的点的轨迹是同心圆弧。 一、无论哪种形式的连接,连接圆弧的圆 ⑷ 由O向已知直线作垂线,求得与已知直线的切点。 中间线段:缺少一个定位尺寸,必须依靠与另一线段的连接关系才能画出的线段 ⑶ 分别连接O3O1、 三、平面图形的分析和画法 二、连接圆弧的圆心是由作图确定的,故
圆弧连接作图小结:
一、无论哪种形式的连接,连接圆弧的圆 心都是利用动点运动轨迹相交的概念 确定的。
☆距直线等距离的点的轨迹是直线的平行
线。
☆与圆弧等距离的点的轨迹是同心圆弧。
⑴ 以O1为圆心,R1+R为半径
R
画圆弧。
⑵ 以O2为圆心,R2+R为半径
O3
●
画圆弧。
⑶ 分别连接O1O3、O2O3
求得两个切点。
⑷ 以O3为圆心, R为半径画连
接圆弧。
● C1 O1
C2 ●
O2
⒊ 用半径为R的圆弧连接两已知圆弧(内切)
⑴ 以O1为圆心,R-R1为 半径画圆弧。
⑵ 以O2为圆心,R-R2为
⑴中间以线O段1为:圆–缺心少,中一R个1间+定R位为线尺半寸径段,必:须依缺靠与少另一一线段个的连定接关位系才尺能画寸出的,线段必须依靠与另一线段的连接关
系才能画出的线段 ⑶ 分别连接O1O3、O2O3
⑵ 以O2为圆心,R-R2为
⑴ ⒋
以 用O半1径为为圆–R心的,连圆R弧1接+连R接为线已半知径段圆作弧圆:和弧直。缺线 少两个定位尺寸,必须依靠与其它线段的连接关
系才能画出的线段(求出连接圆弧的切点和圆心确定连接线段)
已知线段:
中间线段:
Ф15,Ф30,R12,R25
R35
连接线段: R40,R50, R5
• 已知线段:Ф15,Ф30,R12,R25
• 中间线段:R35
• 连接线段:R40,R50 ,R5
尺寸基准:标注尺寸的起点 ⑵ 由点O分别向两已知直线作垂线,垂足即切点。 ⒋ 用半径为R的圆弧连接已知圆弧和直线 ⑸ 以O为圆心,R为半径画连接圆弧。 ⑸ 以O为圆心,R为半径画连接圆弧。 ⑶ 连接O1O,求得与已知圆弧的切点。 ⑵ 以O2为圆心,R-R2为 定位尺寸:确定平面图形上线段间相对位置的尺寸 中间线段:缺少一个定位尺寸,必须依靠与另一线段的连接关系才能画出的线段 ☆与圆弧等距离的点的轨迹是同心圆弧。 一、无论哪种形式的连接,连接圆弧的圆 ⑷ 由O向已知直线作垂线,求得与已知直线的切点。 中间线段:缺少一个定位尺寸,必须依靠与另一线段的连接关系才能画出的线段 ⑶ 分别连接O3O1、 三、平面图形的分析和画法 二、连接圆弧的圆心是由作图确定的,故
几何图形拼贴画ppt课件
22
23
24
25
26
27
28
29
30
31
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
32
圆形
三角形
正方形
同学们,接下来让 我们来猜猜用圆形、三 角形和正方形能够组成 什么图形呢?
11
原来圆形、三角形和正方形可以组合
成一只可爱的 小猪 呢!哼哼哼…
圆形
三角形
正方形
小猪
12
圆形
三角形
正方形
长方形
同学们,让我们来继 续猜猜用圆形、三角形、 正方形和长方形能够组成 什么图形呢?
13
原来圆形、三角形、正方形
几何形体拼贴画
1
有哪些几何形状呢?
三角形
圆形
正方形
长方形
菱形
心形
2
各 种 三 角 形
3
风车
邮筒
4
各 种 圆 形
5
太阳花
小熊
6
各 种 方 形
7
8
圆形
三角形
同学们,让我们猜猜用 圆形和三角形能够组成 什合
成一只可爱的 小鸡 呢!啾啾啾…
圆形
三角形
小鸡
10
和长方形还可以组合成一条可爱的 小 鱼 呢!
圆形
三角形
正方形
长方形
小鱼
14
原来圆形、三角形、正方形
和长方形还可以组合成一辆 小 货 车 呢!
圆形
三角形
正方形
长方形
小货车
15
原来圆形、三角形、正方形
和长方形还可以组合成一所 小 房 子 呢!
圆形
三角形
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Text
Text
Concept
Text
Text
Text
Add Your Text
DIAGRAM
Add Your Text Add Your Text Add Your Text Add Your Text
Add Your Text Add Your Text Add Your Text Add Your Text
TEXT TEXT TEXT TEXT TEXT
3-D PIE CHART
Text2 Text1
Text5
Text3 Text4
BLOCK DIAGRAM
Add Your Text Add Your Text
concept
Concept
Concept
Concept
PPT模板下载
[ Image information in product ] ▪ Title Image : www.multibits.co.kr - CD: Computer&Communication (ImageState) ▪ Note to customers : This image has been licensed to be used within this PowerPoint template only.
2
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
3
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
ThemeGallery
is a Design Digital Content & Contents mall developed by Guild Design Inc.
CYCLE DIAGRAM
Add Your Text
Text
Text
Cycle name
Text
Text
Text
DIAGRAM
Text
Text
Text
Add Your Title
DIAGRAM
Add Your Text
Add Your Text
Add Your Text
Text
Add Your Text
Add Your Text
Add Your Text
DIAGRAM
1
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
Add Your Title Text
•Text 1 •Text 2 •Text 3 •Text 4 •Text 5
Text
Text Text Text
Text
Add Your Title Text
•Text 1 •Text 2 •Text 3 •Text 4 •Text 5
DIAGRAM
Text
You may not extract the image for any other use.
DIAGRAM
Title
Add your text
ThemeGallery
is a Design Digital Content & Contents mall developed by Guild Design Inc.
DIAGRAM2001来自20022003
2004
PROGRESS DIAGRAM
Phase 1
Phase 2
Phase 3
BLOCK DIAGRAM
TEXT TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TABLE
Title A Title B Title C Title D Title E Title F
▪On the [View] menu, point to [Master], and then click [Slide Master] or [Notes Master]. Change images to the one you like, then it will apply to all the other slides.
PPT模板下载
CONTENTS
1
Click to add Title
2
Click to add Title
3
Click to add Title
4
Click to add Title
HOT TIP
How do I incorporate my logo to a slide that will apply to all the other slides?
DIAGRAM – POWERPOINT2002
Add Your Text Add Your Text Add Your Text
Add Your Title
DIAGRAM
Text
Text
Text
Add Your Text
Add Your Text
Add Your Text
DIAGRAM
Text