2016华工计算机计算方法(数值分析)考试试卷_共4页
完整word版,《数值计算方法》试题集及答案(1-6) 2..
《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。
答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。
数值计算方法试题及答案
(2)用n8的复化梯形公式(或复化Simpson公式)计算出该积分的近似值。
e
2
x
数值试题
四、1、(15分)方程x3x10在x不同的等价形式(1)x3对应迭代格式
xn1
1xn
1.5附近有根,把方程写成三种
x1对应迭代格式xn1xn1;(2)
x1
1x
;(3)x
3
x1对应迭代格式xn1xn1。判
六、(下列2题任选一题,4分)1、1、数值积分公式形如
0xf(x)dxS(x)Af(0)Bf(1)Cf(0)Df(1)(1)(1)试确定参数A,B,C,D使公式代数精度尽量高;(2)
1
2、
设f(x)C[0,1],推导余项公式
误差。2、用二步法
4
R(x)
1
xf(x)dxS(x)
,并估计
yn10yn1yn1h[f(xn,yn)(1)f(xn1,yn1)]
4
数值试题
AX
1
__________,cond(A)
1
__________。
f(x0)f(x1)
具有最高的代
f(x)dx
5、为使两点的数值求积公式:1
x2__________。数精确度,则其求积基点应为x1__________,
6、设ARnn,ATA,则(A)(谱半径)__________
填小于、大于、等于)
1A2
147、设
012
A
2
。(此处
,则k__________。
三、简答题:(9分)1、1、方程x42x在区间1,2使用高斯消去法解线性代数方程组,一般为什么要用选主元的技术?
x
华工计算机计算方法(数值分析)考试试卷
考完试了,顺便把记得地题目背下来,应该都齐全了.我印象中也就只有这些题,题目中地数字应该是对地,我也验证过,不过也不一定保证是对地,也有可能我也算错了.还有就是试卷上面地题目可能没有我说地这么短,但是我也不能全把文字背下来,大概意思就是这样吧.每个部分地题目地顺序可能不是这样,但总体就是这四大块.至于每道题目地分值,我记得地就写出来了,有些题目没注意.我题目后面写地结果都是我考试时算出来地,考完了也懒得验证了,可能不一定对,自己把握吧,仅供参考.华南理工大学计算机计算方法(数值分析)考试试卷一填空题(分)1.(分)* ,准确值,求绝对误差(*) ,相对误差(*) ,有效数位是.(分)当插值函数地越大时,会出现龙格现象,为解决这个问题,分段函数不一个不错地办法,请写出分段线性插值、分段三次插值和三次样条插值各自地特点.3.(分)已知和相近,将–变换成可以使其计算结果更准确.4.(分)已知–,求牛顿迭代法地迭代式子.解题思路:. 这里地绝对误差和相对误差是没有加绝对值地,而且要注意是用哪个数减去哪个数得到地值,正负号会不一样;. 可以从它们函数地连续性方面来说明;. 只要满足课本所说地那几个要求就可以;这个记得迭代公式就可以直接写,记不住可以自己推导,就是用泰勒展开式来近似求值得到地迭代公式.我最终地结果是:1.2.分段线性插值保证了插值函数地连续性,但是插值函数地一次导数不一定连续;分段三次既保证了插值函数地连续性,也保证了其一次导数地连续性;三次样条插值保证了插值函数及其一次导数和二次导数地连续性3.()4.– ( –)( )二计算题(分)已知() –,用对分法求其在[ , ]区间内地根,误差要满小于,需要对分多少次?请写出最后地根结果.解题思路:每次求区间地中值并计算其对应地函数值,然后再计算下一个区间中值及函数值,一直到两次区间中值地绝对值小于为止.我最终算得地对分次数是,根地结果为.2.根据以下数据回答相应问题:(1)请根据以上数据构造三次插值函数;(2)请列出差商表并写出三次插值函数.解题思路:() 直接按照书本地定义把公式列出来就可以了,这个要把公式记住了才行,不然也写不了;()差商表就是计算三次插值函数过程中计算到地中间值及结果值,可以先在草稿上按照公式地计算过程把公式写出来,然后把中间用到地值整理成一个表格,这个表格就是差商表了,最后再把公式和表格都写到试卷上就行了.当然也可以先把表格写出来,再用表格地数据写出公式都可以.因为我考试地时候也是先写表格,但是我感觉算地时候容易错,特别是除数地位置,很容易搞错相减地两个地值.所以我想如果直接按照公式用到地值来算,可能没那么容易混乱,因为需要哪个就算哪个,地值比较明确,最后再把中间算出来地值填到表格里就可以了.当然这要看个人喜好了.这里地结果有点长,不好写在这里,自己搞定吧,不难,只是直接套公式就可以了.3. 请用分解法求解以下方程组地解⎪⎩⎪⎨⎧3- = x3 - 9x2 + 6x17 = 3x3+ x2 - 4x11- = x3 - x2 + 2x1解题思路:这个直接套公式算就好了,只要数没有算错,基本都是对地.有时候要注意看是列主元还是直接法,我当时好像没注意,这里应该没有要求用列主元.我最终算得地结果是, , ,其中算出来地矩阵分别是: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-123121 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12531124. (分)已知下列矩阵方程,根据以下要求回答问题: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡210131012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-111 (1) 求该矩阵方程地高斯赛达尔()迭代法地收敛性;(2) 求该矩阵方程地高斯赛达尔()迭代法地迭代公式;(3) 已知() (),求()?解题思路:() 这个证明可以有两种方法,第一种用课本地定义来算,就是将系数矩阵地下三角系数全都乘上一个λ值,然后计算行列式,把所有地λ求出来,只要所有地λ都小于,那么就收敛;第二种方法就是用课本地定理证明,如果系数矩阵是强对角占优地,那么简单迭代法()和迭代法都收敛,这道题刚好满足条件;() 这个迭代公式只要把矩阵和矩阵求出来就可以写出迭代公式了;() 把()代入()中地迭代公式就可以求出来.我地最终结果是:我直接用强对角占优证明,只写了两句话,不知道老师是不是要求我们用算地...至于强对角占优地判定,书上有,大概意思就是每一行中在主对角线上地那个数地绝对值比旁边所有数地绝对值加起来都要大就是强对角占优了.弱对角就是可以等于.详细定义翻书吧.(2) 我算出来地和矩阵如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--02/1003/10,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--03/1002/10,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2/13/12/1迭代公式就是() () ()(3) () (, , )5. 已知以下方程,请利用最小二乘法求解:⎪⎪⎩⎪⎪⎨⎧0 = 7x2 + 2x1-13= 6x2 + 3x12 = 5x2 + x1-5 = 2x2+ x1解题思路:首先构造一个多变量拟合函数() ,可以把,看成是系数来求解,按照多变量拟合函数求解方法就可以得到结果.我最终算得地结果是:方程组为:⎪⎩⎪⎨⎧⨯=⨯+⨯⨯=⨯+⨯∑∑∑∑∑∑y t t t x t t x yt t t x t t x 22222111212111计算值并代入:⎩⎨⎧=+=+9821141422115x x x x计算地结果为:,请用复化梯形求积公式求出积分dx ⎰10x -e (注:里面地函数是)地近似值,要求误差限满足,请问需要将区间[]分成多少份?解题思路:首先是先把复化梯形求积公式地误差公式写出来,这个要记得,利用误差公式计算出满足精度要求地即可.我最终算得地结果是:误差公式为’’(ŋ)ŋŋ≤≤,≥√≈,也就是满足条件.三证明题(分)已知函数(),其在区间[]内地三个插值点为,(). 请证明函数()在[]区间内满足下列关系: 6/)]()2/)((4)()[()(b f b a f a f a b dx x f b a +++-≈⎰解题思路:利用这三个插值点写出插值函数,原函数约等于插值函数,所以原函数地积分也约等于插值函数地积分,然后算出插值函数地积分结果就是证明地公式,其实这个就是课本地公式地证明.这个证明过程看课本吧.四程序题(分)前面有一段介绍列主元高斯消元法地步骤地说明(没背下来,都是文字,参考课本吧) 请按照列主元高斯消元法地思路将代码中地空格填写完整:1. 输入系数矩阵,右端项及ε;2. 选主元及消元:选主元: ≤≤若 <ε,则打印“求解失败”,停机;否则若≠,则交换地第行和行,交换行和行;消元:––3. 回代若≤ε,则打印“求解失败”,停机,否则(∑+=nijaijxj1)4.打印(…)解题思路:这个直接按照列主元高斯消去法地计算过程去写就好了.结果我写在代码里面了,是按照课本写地,我考试地时候写地应该也是这样.。
数值分析考试卷及详细答案解答汇总
姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。
2. 十进制123.3转换成二进制为1111011.0而1。
3. 二进制110010.1001转换成十进制为 50.5625 。
4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。
6.1112=0.69314718...,精确到 10一’的近似值是 0.693。
* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。
数值计算方法试题和答案解析
数值计算方法试题和答案解析(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x x k k n k k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
《数值计算办法》试题集及参考答案
《数值计算办法》试题集及参考答案work Information Technology Company.2020YEAR《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为,拉格朗日插值多项式为。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有(2)位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1),=]4,3,2,1,0[f (0);7、计算方法主要研究(截断)误差和(舍入)误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为(12+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15);11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。
计算机数值方法试题
标准适用数值计算方法试题一、填空(共 20 分,每题 2 分)1、设,取5位有效数字,则所得的近似值x=_____.2、设一阶差商,则二阶差商3、数值微分中,已知等距节点的函数值则由三点的求导公式,有4、求方程的近似根,用迭代公式,取初始值,那么5、解初始值问题近似解的梯形公式是6、,则A的谱半径=,A的=7、设,则=和=8、若线性代数方程组AX=b 的系数矩阵 A 为严格对角占优阵,则雅可比迭代和高斯 - 塞德尔迭代都 _____9、解常微分方程初值问题的欧拉(Euler )方法的局部截断偏差为_____10、设,当时,必有分解式,此中L为下三角阵,当其对角线元素足条件时,这类分解是独一的。
标准适用二、计算题(共 60 分,每题 15 分)1、设(1)试求在上的三次Hermite插值多项式H(x)使知足H( x)以升幂形式给出。
(2)写出余项的表达式2、已知的足,怎样利用结构一个收的迭代函数,使0, 1⋯收?3、试确立常数 A, B, C和,使得数值积分公式有尽可能高的代数精度。
试问所得的数值积分公式代数精度是多少?它能否为Gauss型的?4、推常微分方程的初值问题的数值解公式:三、证明题1、设(1)写出解的 Newton 迭代格式(2)证明此迭代格式是线性收敛的2、R=I - CA,假如,明:(1)A、C 都是非奇怪的矩阵(2)参照答案:一、填空题1、2、3、4、5、6、7、8、收敛9、O(h)10、二、计算题1、1、(1)(2)2、由,可得因故故, k=0,1, ⋯收。
3、,数求公式拥有 5 次代数精准度,它是Gauss型的4、数分方法结构数解公式:方程在区上分,得,步 h, 分用 Simpson 求公式得因此得数解公式:三、明1、明:( 1)因,故,由Newton迭代公式:n=0,1, ⋯得, n=0,1, ⋯( 2)因迭代函数,而,又,故此迭代格式是性收的。
2、明:( 1)因,因此I–R非奇怪,因I–R=CA,因此C,A都是非奇怪矩(2)故有( 2.1 )因 CA=I–R,因此 C=( I – R) A-1,即 A-1 =(I –R)-1 C-1-1又 RA =A –C,故由(里用到了教材98 引理的)移得(2.2)合( 2.1 )、 (2.2) 两式,得模拟试题一、填空题(每空 2 分,共 20 分)1、解非线性方程f(x)=0的牛顿迭代法拥有_______收敛2、迭代过程(k=1,2, ⋯)收的充要条件是___3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽 x 拥有的有效数字是___4、高斯 -- 塞尔德迭代法解线性方程组的迭代格式中求______________5、经过四个互异节点的插值多项式p(x), 只需知足_______,则 p(x) 是不超出二次的多项式6、对于 n+1 个节点的插值求积公式起码拥有___次代数精度 .7、插值型求积公式的求积系数之和___8、, 为使 A 可分解为 A=LL T,此中L为对角线元素为正的下三角形, a 的取值范围_9、若则矩阵A的谱半径(A)=___10 、解常微分方程初值问题的梯形格式是___阶方法二、计算题(每题15 分,共 60 分)1、用列主元消去法解线性方程组2、已知y=f(x)的数据以下x023f (x)132求二次插值多项式及 f ( 2.5 )3、用牛顿法导出计算的公式,并计算,要求迭代偏差不超出。
大学高等数学计算方法数值分析试卷及答案解析9
y x =专业、班级 姓 名 学 号 ------------------------------密-----------------------------封-------------------------- -线------------------------一、填空题.(每空4分,共40分.请将答案填入答题区.) 答题区:1. ,2. ,3.4.5.6. ,7. .1. 计算212!xx e x ≈++,这时所产生的误差称为 ,2 1.414≈,这时所产生的误差称为 。
2. 利用递推关系式115n n I I n-=-计算积分105n n x I dx x =+⎰,那么该算法是 (填“稳定”或者“不稳定”),若利用递推关系式1115n n I I n -⎛⎫=- ⎪⎝⎭计算该积分,那么该算法是 (填“稳定”或者“不稳定”)。
大 学至 学年第 学期试卷课程 计算方法 年级、专业 材料成型及控制工程专业试卷 ︵ A︶第1 页 ︵共 3 页 ︶大学 教 务处题号 一 二 三 四 五 六 七 八 九 十 总分 得分3. ()(1)(2)(9)f x x x x =---L ,那么[0,1]f =_________。
4. 数值积分公式[]101()(0)(1)2f x dx f f =+⎰的代数精度是 。
5. 用二分法求解()0f x =在区间[,]a b 根的误差估计式为 .6. 则A ∞=__________,1A = 。
7. 用迭代法(1)()k k XBX f +=+(其中(0)X 已知,0,1,2,k =L )求解线性方程组AX b =,则迭代法收敛的充要条件是:_________. 二.计算(共60分) 8. (10分)给定数据表: i x 0 1)(i x f 0 1'()i f x 1 2构造Hermit 插值多项式3()H x ,并计算(0.5)f .专业、班级 姓 名 学 号--------------------------密-------------------------封------------------------------线------------------------------------试 卷 ︵ A ︶ 第 2 页 ︵ 共 3 页 ︶教务处10.(10分)写出牛顿法求方程32()4100f x x x =+-=在区间[1,2]的根的迭代格式,0 1.5x =,求2x 。
【免费下载】数值分析计算方法试题集及答案
相对误差限.
解:设长方形水池的长为 L,宽为 W,深为 H,则该水池的面积为 V=LWH
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数值分析试题及答案
数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。
A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。
A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。
A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。
A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。
A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。
A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。
A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。
数值分析华理试题
数值计算方法试题一填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk k x l)(( ),∑==nk k j kx lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f .6、5个节点的牛顿—柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛.9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法.10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
《计算机数值方法》测试题二
《计算机数值方法》测试题一.判断题 ( 1 分× 10=10 分)(对打√,错打×)1. 数值方法是指解数值问题的计算机上可执行的系列计算公式。
()2. 已知 e=2.71828182⋯⋯ 计算 R=e-2.71828 ≈ 0.00000182 是截断误差。
()3. 不同的矩阵三角分解对应着不同的解法, 但在本质上, 都是经过 A=LU的分解计算,再解 Ly=b 和 Ux=y 的线性方程组。
() 4. 一般不用 n 次多项式做插值函数。
( ) 5. Runge 现象说明并非插值多项式的次数越高其精度就越高。
( ) 6. Romberg 算法是利用加速技术建立的。
( ) 7. 从复合求积的余项表达式看,计算值的精度与步长无关。
( )8. 可用待定系数法和函数值或公式的线性组合构造新的数值函数求解微分方程。
( ) 9. 局部截断误差 e k ( h )与 y (x k )的计算值 y k 有关。
() 10.对大型线性方程组和非线性方程采用逐次逼近更为合适。
( ) 二.填空题 ( 2 分× 5=10 分)1. 设 x ∈ [a,b] , x ≠ x0,则一阶均差 f (x ) = 。
2. 矩阵 A 的 F-范数||A||F= 。
3. Euler 公式为 。
4. 矩阵 A 的条件数 Cond ( A )∞= 。
5. 设 x 为准确值, x *为 x 的一个近似值, 近似值 x * 的相对误差 E r(x * )= 。
三.选择题 ( 2 分× 5=10 分)1.设 x=Pi ;则 x * =3.1415 有( )位有效数字。
(A) 4 位 (B)5 位 (C)6 位2.顺序主元 aii≠ 0( i=1,2 ⋯⋯ k )的充要条件是 A 的顺序主子式 D ( i=1,2 ⋯⋯ n-1)( )。
i (A) 不全为 0 (B) 全不为 0 (C) 全为 0 3.若存在实数 P ≥ 1 和 c > 0,则迭代为 P 阶收敛的条件是( )。
数值分析计算方法试题集及答案
第一章绪论 一. 填空题 x* -x4、 设x j —1.216, x^ - 3.654均具有3位有效数字,则 X 1X 2的相对误差限为 0.0055 ________ 。
5、 设为=1.216,x 2 =3.654均具有3位有效数字,则 为 他 的误差限为 0.01 _______________ 。
6、 已知近似值X A = 2.4560是由真值x T 经四舍五入得到,则相对误差限为0.0000204 .7、 递推公式二血 ,如果取y 0=逅".41作计算,则计算到 血时,误差为y n = 10y n-i -1, n = 1,2,11 8-10 ;这个计算公式数值稳定不稳定 不稳定 .28、 精确值二* =3.14159265…,则近似值=3.141和二2* =3.1415分别有_J3 _____________ 位和4 _ 位有效数字。
9、 若x 二e 、2.71828二x ,则x 有_6_位有效数字,其绝对误差限为 1/2*10 -。
10、 设x*的相对误差为2%,求(x*) n 的相对误差0.02n数值分析复习试题1. x 为精确值x 的近似值;y * = f x *为一元函数y1二 f X 的近似值;二f x*, y*为二元函数y2f x, y 的近似值,请写出下面的公式:*e 二 x* -x :f x*x*;r yi* :x* f f x*x*;r x*y2*f x*, y*:x(X*)+ 硏(x*,y*):y舍入误差 _______ 。
6 _____ 位和 7位; 又取 乔“.73 (三位有效数字),则1.73<丄汉10-22计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有ry2*:11、近似值x'0.231关于真值x =0.229有(2 )位有效数字;2..2001 • ”1999 。
(完整版),数值计算方法试题及答案,推荐文档
数 ,使其代数精确度尽量高,并指出其代数精确度的次数。
五、(8 分)已知求 a (a 0) 的迭代公式为:
xk 1
1 2 (xk
a xk
)
x0 0 k 0,1,2
证明:对一切 k 1,2,, xk a ,且序列xk 是单调递减的,
从而迭代过程收敛。
六、(9
3
分)数值求积公式 0
f
( x)dx
( )。
(1) 0 h 2 , (2) 0 h 2 , (3) 0 h 2 , (4) 0 h 2 三、1、(8 分)用最小二乘法求形如 y a bx2 的经验公式拟合以下
数据:
xi
19
25
30
38
yi
19.0
32.3
49.0
73.3
2、(15 分)用 n 8 的复化梯形公式(或复化 Simpson 公式)计算
2、设函数 f (x) 于区间a,b上有足够阶连续导数, p a,b为 f (x) 的
一个 m
重零点,Newton
迭代公式
xk 1
xk
m
f (xk ) f '(xk )
的收敛阶至
少是 __________阶。
3、区间a,b上的三次样条插值函数 S(x) 在a,b上具有直到
__________阶的连续导数。
数值计算方法试题二
一、判断题:(共 16 分,每小题2分)
1、若 A 是 n n 阶非奇异阵,则必存在单位下三角阵 L 和上三角阵
U ,使 A LU 唯一成立。 ( )
2、当 n 8 时,Newton-cotes 型求积公式会产生数值不稳定性。
( )
3、形如
ab
数值计算方法试题及答案
数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。
2、迭代格式局部收敛的充分条件是取值在()。
3、已知是三次样条函数,则=( ),=(),=()。
4、是以整数点为节点的Lagrange插值基函数,则( ),( ),当时( )。
5、设和节点则和。
6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。
7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。
8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。
9、解初值问题的改进欧拉法是阶方法。
10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。
二、二、选择题(每题2分)1、解方程组的简单迭代格式收敛的充要条件是()。
(1), (2) , (3) , (4)2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。
(1),(2),(3),(4),(1)二次;(2)三次;(3)四次;(4)五次4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。
(1), (2), (3), (4)三、1、2、(15(1)(1) 试用余项估计其误差。
(2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。
四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。
判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。
选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。
2、(8分)已知方程组,其中,(1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。
(2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。
计算机的数值方法试题
数值计算方法试题一、填空(共20分,每题2分)1、设,取5位有效数字,则所得的近似值x=_____.2、设一阶差商,则二阶差商3、数值微分中,已知等距节点的函数值则由三点的求导公式,有4、求方程的近似根,用迭代公式,取初始值,那么5、解初始值问题近似解的梯形公式是6、,则A的谱半径=,A的=7、设,则=和=8、若线性代数方程组AX=b 的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都_____9、解常微分方程初值问题的欧拉(Euler)方法的局部截断误差为_____10、设,当时,必有分解式,其中L为下三角阵,当其对角线元素足条件时,这种分解是唯一的。
二、计算题(共60 分,每题15分)1、设(1)试求在上的三次Hermite插值多项式H(x)使满足H(x)以升幂形式给出。
(2)写出余项的表达式2、已知的满足,试问如何利用构造一个收敛的简单迭代函数,使0,1…收敛?3、试确定常数A,B,C和,使得数值积分公式有尽可能高的代数精度。
试问所得的数值积分公式代数精度是多少?它是否为Gauss型的?4、推导常微分方程的初值问题的数值解公式:三、证明题1、设(1)写出解的Newton迭代格式(2)证明此迭代格式是线性收敛的2、设R=I-CA,如果,证明:(1)A、C都是非奇异的矩阵(2)参考答案:一、填空题1、2.31502、3、4、1.55、6、7、8、收敛9、O(h)10、二、计算题1、1、(1)(2)2、由,可得因故故,k=0,1,…收敛。
3、,该数值求积公式具有5次代数精确度,它是Gauss型的4、数值积分方法构造该数值解公式:对方程在区间上积分,得,记步长为h,对积分用Simpson求积公式得所以得数值解公式:三、证明题1、证明:(1)因,故,由Newton迭代公式:n=0,1,…得,n=0,1,…(2)因迭代函数,而,又,则故此迭代格式是线性收敛的。
2、证明:(1)因,所以I–R非奇异,因I–R=CA,所以C,A都是非奇异矩阵(2)故则有(2.1)因CA=I–R,所以C=(I–R)A-1,即A-1=(I–R)-1C又RA-1=A-1–C,故由(这里用到了教材98页引理的结论)移项得(2.2)结合(2.1)、(2.2)两式,得模拟试题一、填空题(每空2分,共20分)1、解非线性方程f(x)=0的牛顿迭代法具有_______收敛2、迭代过程(k=1,2,…)收敛的充要条件是___3、已知数e=2.718281828...,取近似值x=2.7182,那麽x具有的有效数字是___4、高斯--塞尔德迭代法解线性方程组的迭代格式中求______________5、通过四个互异节点的插值多项式p(x),只要满足_______,则p(x)是不超过二次的多项式6、对于n+1个节点的插值求积公式至少具有___次代数精度.7、插值型求积公式的求积系数之和___8、,为使A可分解为A=LL T, 其中L为对角线元素为正的下三角形,a的取值范围_9、若则矩阵A的谱半径(A)=___10、解常微分方程初值问题的梯形格式是___阶方法二、计算题(每小题15分,共60分)1、用列主元消去法解线性方程组2、已知y=f(x)的数据如下x 0 2 3f(x) 1 3 2求二次插值多项式及f(2.5)3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考完试了,顺便把记得的题目背下来,应该都齐全了。
我印象中也就只有这些题,题
目中的数字应该是对的,我也验证过,不过也不一定保证是对的,也有可能我也算错了。
还有就是试卷上面的题目可能没有我说的这么短,但是我也不能全把文字背下来,大概意
思就是这样吧。
每个部分的题目的顺序可能不是这样,但总体就是这四大块。
至于每道题
目的分值,我记得的就写出来了,有些题目没注意。
我题目后面写的结果都是我考试时算
出来的,考完了也懒得验证了,可能不一定对,自己把握吧,仅供参考。
华南理工大学2016计算机计算方法(数值分析)考试试卷
一填空题(16分)
1.(6分)X* = 3.14,准确值x = 3.141592,求绝对误差e(x*) = ,相对误差e r(x*) =
,有效数位是。
2.(4分)当插值函数的n越大时,会出现龙格现象,为解决这个问题,分段函数不一个
不错的办法,请写出分段线性插值、分段三次Hermite插值和三次样条插值各自的特点。
3.(3分)已知x和y相近,将lgx – lgy变换成可以使其计算结果更准确。
4.(3分)已知2x3 – 3x2 +2 = 0,求牛顿迭代法的迭代式子。
解题思路:1. 这里的绝对误差和相对误差是没有加绝对值的,而且要注意是用哪个数减去哪个数得到的值,正负号会不一样;2. 可以从它们函数的连续性方面来说明;3. 只要满足课本所说的那几个要求就可以;这个记得迭代公式就可以直接写,记不住可以自己推导,
就是用泰勒展开式来近似求值得到的迭代公式。
我最终的结果是:
1.-0.001592 -0.000507 3
2.分段线性插值保证了插值函数的连续性,但是插值函数的一次导数不一定连续;
分段三次Hermite既保证了插值函数的连续性,也保证了其一次导数的连续性;
三次样条插值保证了插值函数及其一次导数和二次导数的连续性
3.lg(x/y)
4.x k+1 = x k – (2x3 – 3x2 +2)/(6x2 -6x)
二计算题(64分)
1.已知f(x) = x3 –x -1,用对分法求其在[0 , 2]区间内的根,误差要满小于0.2,需要对分多
少次?请写出最后的根结果。
解题思路:每次求区间的中值并计算其对应的函数值,然后再计算下一个区间中值及函数值,一直到两次区间中值的绝对值小于0.2为止。
我最终算得的对分次数是4,根的结果为11/8.
2.根据以下数据回答相应问题:
x-2045
y51-31
(1)请根据以上数据构造Lagrange三次插值函数;
(2)请列出差商表并写出Newton三次插值函数。
解题思路:(1) 直接按照书本的定义把公式列出来就可以了,这个要把公式记住了才行,不然也写不了;(2)差商表就是计算Newton三次插值函数过程中计算到的中间值及结
果值,可以先在草稿上按照Newton 公式的计算过程把公式写出来,然后把中间用到的值整理成一个表格,这个表格就是差商表了,最后再把公式和表格都写到试卷上就行了。
当然也可以先把表格写出来,再用表格的数据写出公式都可以。
因为我考试的时候也是先写表格,但是我感觉算的时候容易错,特别是除数的位置,很容易搞错相减的两个x 的值。
所以我想如果直接按照Newton 公式用到的值来算,可能没那么容易混乱,因为需要哪个就算哪个,x 的值比较明确,最后再把中间算出来的值填到表格里就可以了。
当然这要看个人喜好了。
这里的结果有点长,不好写在这里,自己搞定吧,不难,只是直接套公式就可以了。
3.请用LU 分解法求解以下方程组的解
⎪⎩
⎪⎨⎧3- = x3 - 9x2 + 6x17
= 3x3+ x2 - 4x11- = x3 - x2 + 2x1解题思路:这个直接套公式算就好了,只要数没有算错,基本都是对的。
有时候要注意看是列主元还是直接法,我当时好像没注意,这里应该没有要求用列主元LU 。
我最终算得的结果是x1=1/2, x2=-1/2, x3=3/2,其中算出来的LU 矩阵分别是:
L= U=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-123121⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--12531124.(12分)已知下列矩阵方程,根据以下要求回答问题:
=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡210131012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-111(1)求该矩阵方程的高斯-赛达尔(Seidel)迭代法的收敛性;
(2)求该矩阵方程的高斯-赛达尔(Seidel)迭代法的迭代公式;
(3)已知X (0) = (0,0,0)T ,求X (1)?
解题思路:(1) 这个证明可以有两种方法,第一种用课本的定义来算,就是将系数矩阵的下三角系数全都乘上一个λ值,然后计算行列式,把所有的λ求出来,只要所有的|λ|都小于1,那么就收敛;第二种方法就是用课本的定理证明,如果系数矩阵是强对角占优的,那么简单迭代法(Jacobi )和Seidel 迭代法都收敛,这道题刚好满足条件;
(2) 这个迭代公式只要把L 矩阵和U 矩阵求出来就可以写出迭代公式了;(3) 把X(0)代入(2)中的迭代公式就可以求出来。
我的最终结果是:
(1)我直接用强对角占优证明,只写了两句话,不知道老师是不是要求我们用算的。
至于强对角占优的判定,书上有,大概意思就是每一行中在主对角线上的那个数的绝对值比旁边所有数的绝对值加起来都要大就是强对角占优了。
弱对角就是可以等于。
详细定义翻书吧。
(2)我算出来的L 和U 矩阵如下:
L=,U=,g=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--02/1003/10⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--03/1002/10⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-2/13/12/1迭代公式就是X (k+1) = LX (x+1) + UX (k) + g
(3)X (1) = (1/2, 1/6, 5/12)T
5.已知以下方程,请利用最小二乘法求解:
⎪⎪⎩⎪⎪⎨⎧0
= 7x2 + 2x1-13
= 6x2 + 3x12 = 5x2 + x1-5 = 2x2+ x1解题思路:首先构造一个多变量拟合函数f(t1,t2) = x1t1 + x2t2,可以把x1,x2看成是系数来求解,按照多变量拟合函数求解方法就可以得到结果。
我最终算得的结果是:
方程组为:⎪⎩⎪⎨⎧⨯=⨯+⨯⨯=⨯+⨯∑∑∑∑∑∑y
t t t x t t x y t t t x t t x 22222111212111计算值并代入:⎩⎨⎧=+=+98
2114142
2115x x x x 计算的结果为:x1=2.744, x2=0.836
6.请用复化梯形求积公式求出积分(注:里面的函数是e -x )的近似值,要求dx ⎰
10x -e 误差限满足5x10-5,请问需要将区间[0,1]分成多少份?
解题思路:首先是先把复化梯形求积公式的误差公式写出来,这个要记得,利用误差公式计算出满足精度要求的n 即可。
我最终算得的结果是:
误差公式为|-f’’(ŋ)/12n 2|=|-e -ŋ/12n 2|= e -ŋ/12n 2≤1/12n 2≤5x10-5,
n ≥100√6≈40.8,也就是n=41满足条件。
三 证明题(10分)
已知函数y=f(x),其在区间[a,b]内的三个插值点为a,(a+b )/2,b. 请证明函数f(x)在[a,b]区间内满足下列关系:
6
/)]()2/)((4)()[()(b f b a f a f a b dx x f b a +++-≈⎰解题思路:利用这三个插值点写出插值函数,原函数约等于插值函数,所以原函数的积分也约等于插值函数的积分,然后算出插值函数的积分结果就是证明的公式,其实这个就是课本的Simpson 公式的证明。
这个证明过程看课本吧。
四 程序题(10分)
前面有一段介绍列主元高斯消元法的步骤的说明(没背下来,都是文字,参考课本吧)请按照列主元高斯消元法的思路将代码中的空格填写完整:
1.输入系数矩阵A ,右端项b 及ε;
2.选主元及消元:
for k=1 to n-1 do
选主元:T = |ai k ,k| = max k≤i≤n|a ik |
若T <ε,则打印“求解失败”,停机;否则
若i k ≠k ,则交换A 的第i k 行和k 行,交换bi k 行和b k 行;
消元:for i=k+1 to n do
T = ai k /ak k
b i = b i – T x b k
for j=k+1 to n do
a ij = a ij –T x a kj
3.回代
若|ann|≤ε,则打印“求解失败”,停机,否则
xn = b n / a nn
for i = n-1 downto 1 do
x i = (b i -) / a ii ∑+=n
i j aijxj 14.打印xi(i=1,2,3…,n)
解题思路:这个直接按照列主元高斯消去法的计算过程去写就好了。
结果我写在代码里面了,是按照课本写的,我考试的时候写的应该也是这样。