运算放大器容性负载驱动分析

运算放大器容性负载驱动分析
运算放大器容性负载驱动分析

运算放大器容性负载驱动分析

运算放大器容性负载驱动分析

问:为什么我要考虑驱动容性负载问题?

答:通常这是无法选择的。在大多数情况下,负载电容并非人为地所加电容。它常常是人们不希望的一种客观存在,例如一段同轴电缆所表现出的电容效应。但是在有些情况下,要求对运算放大器的输出端的直流电压进行去耦。例如,当运放被用作基准电压的倒相或驱动一个动态负载时。在这种情况下,你也许在运放的输出端直接连接旁路电容。不论哪种情况,容性负载都要对运放的性能有影响。

问:容性负载如何影响运放的性能?答:为简单起见,可将放大器看成一个振荡器。每个运放都有一个内部输出电阻RO,当它与容性负载相接时,在运放传递函数上产生一个附加的极点。正。在图2(a)中,在运放的两个输入端之间接电阻RD。此时电路的增益可由给定公式计算。因为是噪声增益而不是信号增益支配稳定性,所以

图2提高效大器噪声增益电路电路稳定性的提高不影响信号增益。为保证电路稳定,最简单的方法是使噪声带宽至少应比容性负载极点频率低10倍频程。

图3环路增益波特图这种方法的缺点是输入端电压噪声和输入失调电压被放大产生附加的输出电压噪声和输出失调电压增加。用一个电容CD与电阻RD串联可以消除附加的直流失调电压,但增加的电压

噪声是器件固有的,不能消除。当选用CD时,其电容值应尽可能大。为保证噪声极点至少低于“噪声带宽”10倍,CD最小应取10A NOISE/2πRDGBP。

(2)环路外补偿法这种方法是在运放的输出端和负载电容之间串入一个电阻RX,。虽然RX加在反馈环路的外部,但它可将负载电容产生的附加零点频率fZ作用到反馈网络的传递函数,从而可以减小高频环路相移。为了保证电路稳定,RX的取值应该使附加零点频率至少比运放电路闭环带宽低10倍。电路加入RX使电路性能不会像方法1那样增加输出噪声,但是从负载端看进去的输出阻抗要增加。由于RX和RL构成分压器,从而会使信号增益降低。如果RL已知并且适当地恒定,那么增益降低值可通提高运放电路的增益来补偿。这种方法用于驱动传输线路非常有用。RL和RX值必须等于电缆的特征阻抗(通常为50Ω和75Ω),以免产生驻波。因此,先确定RX值,其余其它电阻值要使放大器的增益加倍,用来补偿由电阻分压作用降低的信号增益,从而解决问题。

(3)环路内补偿法如果RL值未知,或者是动态值,那么增益级的有图4环路外补偿法效输出电阻必须很低。在这种情况下,在整个反馈环路内接一个电阻RX是很有用的,。在这个电路中,由于直流和低频反馈都是来自负载电阻RL,所以从输入端到负载的信号增益不受分压器RX和RL的影响。

图5环路内补偿法RX=RORGRFCF=RO+RXRF·CL在这个电路中外接的电容CF是用来抵消CL产生的附加极点和零点。为

了简便起见,CF产生的零点频率应该与CL产生的极点频率相一致,CF产生的极点频率应该与CL产生的零点频率相一致。因此整个传递函数和相频响应好像似没有电容作用一样。为了确保极点和零点作用相互抵消,图5中的方程必须求解准确。还应注意方程成立的条件:RF RO,RG RO,RL RO。如果负载电阻很大,这些条件容易满足。

当RO未知时,计算则很困难。在这种情况下,设计过程变成猜谜游戏。应该注意“SPICE”这个词:运算放大器的SPICE 模型是一种不能精确地表示运放开环输出电阻RO的模型,所以这种模型不能完全取代传统的补偿网络设计方法。还应当强调指出的是,为了采用这种方法,CL必须已知(且为常数)。在许多应用中,放大器驱动一个电路外部的负载,当负载改换时,CL也应该适当变化。只有当CL接入闭环系统时,使用上述电路才最适合。这种在基准电压的缓冲器或倒相器中,驱动一个大的去耦电容。这里CL是固定值,可以精确地抵消极点和零点的作用。与前两种方法相比,这种方法非常适合用于低直流输出电阻和低噪声的情况。而且像对基准电压源进行去耦的那么大的容性负载(一般几微法),用其它方法补偿都是不切实际的。

上述三种补偿方法都各有其优点和缺点。为了对你的应用做出最好的选择,应该对它们有足够的认识。这三种方法都适合用于“标准”用法,即单位增益稳定,电压反馈运算放大器(VFA)。对于特殊应用的放大器,读者应该采用其它方法。

问:我的运放有一个“补偿”脚。当驱动容性负载时,为使电路保持稳定,我能用它对运放进行补偿吗?

答:可以。这是对容性负载进行补偿的最简单的方法。现在许多运放都带有使单位增益稳定的内部补偿电路。但是许多运放只有在很高噪声增益下才能一直保持固有的稳定性。这类运放有一个与外部电容相连的引脚,用来减少主极点频率。为了在低增益时工作稳定,外接电容必须靠近这个引脚,以减小增益带宽积。当驱动容性负载时,增加外接电容过补偿)可以提高稳定性,但是带宽降低。

问:到现在为止,你只讨论了VFA的容性负载驱动问题,是吗?那么对于电流反馈运算放大器(CFA)的容性负载驱动问题应如何处理?上述讨论的那些方法,我可以使用吗?

答:当驱动容性负载时,对CFA的一些特性要特别注意,但容性负载对电路的影响是相同的。与运放输出电阻相连的容性负载产生附加极点,从而增加相移并降低相位裕度,有可能产生尖峰、振铃,甚至振荡。但是,因为CFA不存在增益带宽积这个概念(带宽依赖于增益的程度很小),所以通过简单增加噪声增益的方法,对提高电路稳定性没有显著作用。这样便使第一种方法失效。另外,电容绝不应接入CFA反馈环路,这样又使第三种方法失效。对驱动容性负载的CFA 进行补偿最合适的方法是方法2,在环路外串接一个电阻。

问:你上述介绍了一些很有用的方法,但是我还不能处理容性负载驱动问题。另外,我的印制线路板已经制好,并且不想报废。请问是否有驱动容性负载自身很稳定的运放?

答:有。ADI公司提供一些很有用的运放,它们既能驱动“无限制”容性负载,同时又能保持优良的相位裕度,如表1所示。表1还给出了驱动容性负载可高达规定值的另一类运放。所谓驱动容性负载“无限制”并不是意味着驱动10μF容性负载像驱动阻性负载那样具有相同的转换速率。

PMOS管驱动电路

PMOS管驱动电路 MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC芯片中多采用MOS管作为功率开关。但是由于MOS管的寄生电容大,一般情况下N MOS开关管的栅极电容高达几十皮法。这对于设计高工作频率DC-DC转换器开关管驱动电路的设计提出了更高的要求。 在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路。这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹。本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路。电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压1.5V ,负载电 容为60pF时,工作频率能够达到5MHz以上。 与NMOS一样,导通的PMOS的工作区域也分为非饱和区,临界饱和点和饱和区。当然,不论NMOS还是PMOS,当未形成反型沟道时,都处于截止区,其电压条件是 VGSVTP (PMOS), 值得注意的是,PMOS的VGS和VTP都是负值。

PMOS集成电路是一种适合在低速、低频领域内应用的器件。PMOS集成电路采用-24V电压供电。如图5所示的CMOS-PMOS接口电路采用两种电源供电。采用直接接口方式,一般CMOS的电源电压选择在10~12V就能满足PMOS对输入电平的要求。 MOS场效应晶体管具有很高的输入阻抗,在电路中便于直接耦合,容易制成规模大的集成电路。

DC—DC开关电源容性负载能力设计分析

DC—DC开关电源容性负载能力设计分析 【摘要】在大容性负载动态跳变的设备中,要求电源输出端有快速响应,这就要求开关电源有较强的带容性负载的能力。通过分析开关电源负载响应速度,对电源输出容性负载调试的两种方式进行了简要的描述,以期与同行业者共同探讨。 【关键词】开关电源;容性负载;电源设计;DC-DC 随着电子技术的高速发展,电子设备的小型化和低成本化使电源向轻、薄、小和高效率方向发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。其中,应用最广泛的就是DC-DC开关电源。 在DC-DC开关电源的应用中,输出负载端外接电容能起到滤波、抑制干扰的作用,在某些大容性负载动态跳变的设备中,要求电源输出端有快速响应,这就要求开关电源有较强的带容性负载的能力,并且有好的稳定性能。 1.开关电源负载响应速度分析 开关电源的瞬态特性一般包括了它的电压调整特性和负载调整特性。电压调整特性指开关电源对输入电压变化的瞬态响应,负载调整特性指开关电源对负载电流变化的瞬态响应。在采用电流控制的开关电源系统中,输入电压的变化会使得电感电流立即发生变化,从而改变输出电压,而不需要像电压控制系统中通过电压环路的调节改变输出电压,因此峰值电流控制系统对输入电压变化的瞬态响应能力好,恢复时间短,线性调整能力好。 图1 输出变化图 如图1所示为负载变化所引起的输出VOUT的变化,其中1阶段V1为输出滤波电容C的等效串联电感ESL所引起;2阶段V2由电容C的等效串联电阻ESR 决定;3阶段中电压呈反向上升,同样是由ESL决定,其值为V1;第4阶段是由于负载突然增大,而电感电流需要满足新的要求,所出现的电容C放电所引起。其中V1与V2分别表示如下: V1=(I2-I1)/Trise·ESL V2=I2-I1·ESR 在忽略电容电压纹波,及电感电流纹波的情况下,我们可以简单计算4阶段所下降的电压△VC4。其中△I=I1-I2,m1=(V out-Vin)//L,根据电荷守恒定律,可得: △VC4=△I2/(2m1C)

运算放大器容性负载驱动分析

运算放大器容性负载驱动分析 运算放大器容性负载驱动分析 问:为什么我要考虑驱动容性负载问题? 答:通常这是无法选择的。在大多数情况下,负载电容并非人为地所加电容。它常常是人们不希望的一种客观存在,例如一段同轴电缆所表现出的电容效应。但是在有些情况下,要求对运算放大器的输出端的直流电压进行去耦。例如,当运放被用作基准电压的倒相或驱动一个动态负载时。在这种情况下,你也许在运放的输出端直接连接旁路电容。不论哪种情况,容性负载都要对运放的性能有影响。 问:容性负载如何影响运放的性能?答:为简单起见,可将放大器看成一个振荡器。每个运放都有一个内部输出电阻RO,当它与容性负载相接时,在运放传递函数上产生一个附加的极点。正。在图2(a)中,在运放的两个输入端之间接电阻RD。此时电路的增益可由给定公式计算。因为是噪声增益而不是信号增益支配稳定性,所以 图2提高效大器噪声增益电路电路稳定性的提高不影响信号增益。为保证电路稳定,最简单的方法是使噪声带宽至少应比容性负载极点频率低10倍频程。 图3环路增益波特图这种方法的缺点是输入端电压噪声和输入失调电压被放大产生附加的输出电压噪声和输出失调电压增加。用一个电容CD与电阻RD串联可以消除附加的直流失调电压,但增加的电压

噪声是器件固有的,不能消除。当选用CD时,其电容值应尽可能大。为保证噪声极点至少低于“噪声带宽”10倍,CD最小应取10A NOISE/2πRDGBP。 (2)环路外补偿法这种方法是在运放的输出端和负载电容之间串入一个电阻RX,。虽然RX加在反馈环路的外部,但它可将负载电容产生的附加零点频率fZ作用到反馈网络的传递函数,从而可以减小高频环路相移。为了保证电路稳定,RX的取值应该使附加零点频率至少比运放电路闭环带宽低10倍。电路加入RX使电路性能不会像方法1那样增加输出噪声,但是从负载端看进去的输出阻抗要增加。由于RX和RL构成分压器,从而会使信号增益降低。如果RL已知并且适当地恒定,那么增益降低值可通提高运放电路的增益来补偿。这种方法用于驱动传输线路非常有用。RL和RX值必须等于电缆的特征阻抗(通常为50Ω和75Ω),以免产生驻波。因此,先确定RX值,其余其它电阻值要使放大器的增益加倍,用来补偿由电阻分压作用降低的信号增益,从而解决问题。 (3)环路内补偿法如果RL值未知,或者是动态值,那么增益级的有图4环路外补偿法效输出电阻必须很低。在这种情况下,在整个反馈环路内接一个电阻RX是很有用的,。在这个电路中,由于直流和低频反馈都是来自负载电阻RL,所以从输入端到负载的信号增益不受分压器RX和RL的影响。 图5环路内补偿法RX=RORGRFCF=RO+RXRF·CL在这个电路中外接的电容CF是用来抵消CL产生的附加极点和零点。为

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

运算放大器基本电路大全

运算放大器基本电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电

MOS管驱动电路综述

MOS 管驱动电路综述 2009年09月03日 星期四 21:20 在使用MOS 管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS 的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET 及MOSFET 驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS 管的介绍,特性,驱动以及应用电路。 1,MOS 管种类和结构 MOSFET 管是FET 的一种(另一种是JFET ),可以被制造成增强型或耗尽型,P 沟道或N 沟道共4种类型,但实际应用的只有增强型的N 沟道MOS 管和增强型的P 沟道MOS 管,所以通常提到NMOS ,或者PMOS 指的就是这两种。 G D P 沟道b)a)G D N 沟道图1-19 栅极G (gate electrode)gate ,门的意思,中文翻译做栅,栅栏。electrode ,电极。 源极S (source)source 资源,电源,中文翻译为源极。起集电作用的电极。 漏极D (drain)drain 排出,泄漏,中文翻译为漏极。起发射作用的电极。 至于为什么不使用耗尽型的MOS 管,不建议刨根问底。 对于这两种增强型MOS 管,比较常用的是NMOS 。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS 。下面的介绍中,也多以NMOS 为主。 MOS 管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS 管中存在,

10种运算放大器

10种运算放大器

各种不同类型的运算放大器介绍 董婷 076112班 一.uA741M ,uA741I ,uA741C (单运放)高增益运算放大器 用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。 这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。目前价格1元/个。 Package 封装 Part Number 零件型号 Temperature Range 工作温 度范围 N D UA741C 0℃ - +70℃ ? ? UA741I -40℃ - +105℃ ? ? UA741M -55℃ - +125℃ ? ? 例如 : UA741CN uA741主要参数 ABSOLUTE MAXIMUM RATINGS 最大额定值 Symbo l 符号 Parameter 参数 UA741M UA741I UA741C Uni t 单位 VCC Supply voltage 电源电压 ±22 V Vid Differential Input Voltage 差分输入电压 ±30 V Vi Input Voltage 输入电压 ±15 V Ptot Power Dissipation 功耗 500 mW Toper Output Short-circuit Duration 输出 短路持续时间 Infinite 无限制 Operating Free-air Temperature Range 工作温度 -55 to +125 -40 to +105 0 to +70 ℃ Tstg Storage Temperature Range 储存温度范围 -65 to +150

感性与容性负载

感性负载 容性负载 通常情况下,一般把带电感参数的负载,即符合电压超前电流特性的负载,称为感性负载。通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。 这类产品在启动时需要一个比维持正 常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。 此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于车载交流供电器所 能承受的电压值,很容易引起车用逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的需要较高。 低阻测量时,对于感性负载问题:1避免用脉冲式测量2决定于L/R时间常数。 电路中类似电容的负载,可以使电流超前电压降低电路功率因数 一般把带电容参数的负载,即符合电压滞后电流特性的负载称为容性负载。充放电时,电压不能突变。其对应的功率因数为负值。对应的感性负载的功率因数为正值。 在高频领域,是指负载虚部为负值的负载。 容性负载:和电源相比,负载电流超前负载电压一个相位差,此时负载为容性负载(如补偿电容负载)。 一般电源控制类产品所给出的负载,如未加说明则是给出的是视在功率,即总容量功率。它既包括有功功率,也包括无功功率。 而一般感性负载说明中给出的往往是有功功率的大小,例如荧光灯,标注为15~40瓦的荧光灯,镇流器消耗功率约为8瓦,实际在考虑用定时器、感应开关在控制它时,则需要加上这8瓦。 具体不同的产品感性部分,即无功功率的大小,可以通过其给出的功率因数来计算。 混联电路中,若容抗比感抗大,电路呈容性,反之则为感性。 通常的用电器中并没有纯感性负载和纯容性负载。因为这两种负载不做有用功,只有在补偿电路中才使用纯感性负载或纯容性负载。又因为绝大多数负载除阻性外,多数为感性负载,因此补偿的时候多数就用电容来补偿,所以,纯容性负载用得比纯感性负载多。如电动机、变压器等等,通常为感性负载。而部分日光灯为容性负载。

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

负载驱动器电路的实现方案

负载驱动器电路的实现方案 在很多应用中,都需要用到能够为负载提供适当功率的放大器;另外还需保持良好的直流精度,而负载的大小决定了目标电路的类型。精密运算放大器能驱动功率要求不足 50 mW 的负载,而搭配了精密运算放大器输入级和分立功率晶体管输出级的复合放大器可以用来驱动功率要求为数 W 的负载。但是,在中等功率范围内却没有优秀的解决方案。在这个范围内,不是运算放大器无法驱动负载,就是电路过于庞杂而昂贵。 最近在设计惠斯登电桥驱动器时,这种两难处境更为明显。激励电压直接影响失调和范围,因此需要具有直流精度。这种情况下,源极电压和电桥之间的容差不足 1 mV。若以 7 V 至 15 V 电源供电,则电路必须以单位增益将电桥从 100 mV 驱动至 5 V。 使问题变得更为复杂的是,它能使用各种不同的桥式电阻例如,应变计的标准阻抗为 120 Ω或 350 Ω。若采用 120 Ω电桥,则放大器必须提供 42 mA 电流,才能保持 5 V 电桥驱动能力。此外,电路驱动能力必须高达 10 nF。这是考虑电缆和电桥耦合电容后得到的数值。 放大器选择 设计该电路的第一步,是选择可以驱动负载的放大器。其压差(VOH) 在目标负载电流情况下,必须位于电路的可用裕量范围内。针对该设计的最小电源电压为 7 V,最大输出为 5 V。若裕量为 250 mV,

则可用裕量(VDD – VOUT)等于 1.75 V。目标负载电流为 42 mA。 精密、双通道运算放大器 ADA4661-2 具有轨到轨输入和输出特性。该器件的大输出级可驱动大量电流。源电流为 40 mA 时,数据手册中的压差电压规格为 900 mV,因此可轻松满足 1.75 V 裕量要求。 压差限制了电路采用低压电源工作,而功耗则限制了电路采用高压电源工作。可计算芯片升温,确定最大安全工作温度。 MSOP 封装简化了原型制作,但 LFCSP 封装的热性能更佳,因此如有可能应当采用 LFCSP 封装。 MSOP 的热阻(θJA) 等于 142°C/W,LFCSP 的热阻等于 83.5°C/W。最大芯片升温可通过将热阻乘以最大功耗计算得到。当电源为 15 V 且输出为 5 V 时,裕量为 10 V。最大电流为 42

“可恶”的运算放大器电容负载

“可恶”的运算放大器电容负载 他们说如果使用放大器驱动电容负载(图 1、C<**>LOAD),一个不错的经验是采用一个50 或100 欧的电阻器(R<**>ISO) 将放大器与电容器隔开。这个附加电阻器可能会阻止运算放大器振荡。 图 1.支持电容负载的放大器可能需要在放大器输出与负载电容器之间连接一个电阻器。 使用50 或100 欧姆(R<**>ISO) 电阻不一定每次都管用。问题是,“如果C<**>LOAD 超过产品说明书中推荐的运算放大器电容负载值时该怎么办?” 如果您无法找到任何说明书指导,或您的负载电容(C<**>LOAD)确实超过了产品说明书推荐值,那问题的答案就要取决于:

?放大器增益带宽积(GBWP 或f<**>U) ?放大器的开环输出电阻(R<**>O) ?电容器负载值(C<**>LOAD) 图 1 中的频率与增益图显示了当R<**>ISO 和C<**>LOAD 加到放大器输出端时放大器开环增益曲线的情况。如果使用这三个变量,您就可以计算出适当的R<**>ISO 值。 下面是确定R<**>ISO 值时的规则: (公式1) (公式2) 这两个规则可确保电路的稳定。 适合这一概念的应用是将输入驱动至SAR-ADC。在这种情况下,需要该信号在转换器的采集时间内(t<**>ACQ) 内稳定。公式 3 中的K 是ADC 时间常数乘法器,其可提供半L** 的高精度。 对于ADS7886等16 位转换器而言,K 等于11.78。 (公式3) 我们来应用这些公式,采用以下参数进行计算: ?对于OPA365 ?f<**>U = 50 MHz

?R<**>0 = 30 欧姆 ?增益= 1 V/V ?对于ADS7886 ?t<**>ACQ = 300 ns ?C<**>IN = 21 pF ?C<**>LOAD = 390 pF OPA365产品说明书显示,100 pF 的负载会产生30% 的过冲(图2)。 图 2. OPA365过冲与电容负载 公式1、2 和3 可帮助解决该过冲问题。 ?公式1,R<**>ISO => 3.33 欧姆

什么是阻性负载,感性负载,容性负载

什么是阻性负载?感性负载?容性负载? 解答这个问题前先解释几个名词:有功功率、无功功率、视在功率。 有功功率:在交流电路中,凡是消耗在电阻元件上,功率不可逆转换的那部分功率(如转变为热能,光能,或机械能),称为有功功率; 无功功率:电路中,电感元件建立磁场,电容元件建立电场消耗的功率称为无功率,这个功率是随交流电的周期,与电源不断的进行能量转换,而并不消耗能量; 视在功率:交流电源所能提供的总功率,称为视在功率,在数值上即是,电压与电流的乘积,单位VA,视在功率即是交流电源的容量;阻性负载: 即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯、电炉等)。通俗一点的讲,仅是通过电阻类的元件进行工作的纯阻性负载称为阻性负载。 感性负载 通常情况下,一般把负载带电感参数的负载,即符合和电源相比负载电流滞后负载电压一个相位差的特性的负载为感性(如负载为电动机、变压器)。通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。 这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。 此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于车载交流供电器所能承受的电压值,很容易引起车用逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。

容性负载 电路中类似电容的负载,可以使负载电流超前负载电压一个相位差(和电源相比),降低电路功率因数。 一般把负载带电容参数的负载,即符合电压滞后电流特性的负载成为容性负载。充放电时,电压不能突变。其对应的功率因为为负值。对应的感性负载的功率因数为正值。 一般电源控制类产品,所给出的负载,如未加说明则是给出的是视在功率;即总容量功率;它既包括有功功率,也包括无功功率;而一般感性负载说明中给出的往往是有功功率的大小,例如荧光灯,标注为15~40瓦的荧光灯,镇流器消耗功率约为8瓦,实际在考虑用定时器,感应开关在控制它时,则要加上这8瓦;具体不同的产品感性部分,即无功功率的大小,可以通过其给出的功率因数来计算。 混联电路中容抗比感抗大,电路呈容性反之为感性。 通常的用电器中并没有纯感性负载和纯容性负载。因为这两种负载不做有用功。 只有在补偿电路中才使用纯感性负载或纯容性负载。又因为绝大多数负载除阻性外,多数为感性负载,因此补偿的时候多数就用电容来补偿,所以,纯容性负载用得比纯感性负载多。如电动机,变压器等等,通常为感性负载。部分日光灯为容性负载。举例: 纯感性负载就是一组电感。通常用来补偿电路中的容性电流。 在电路中带线圈的用电设备,其线圈部分即为纯感性负载。如电动机、变压器、电风扇、日光灯镇流器等。 纯感性负载的电流是不能突变。感性负载应用广泛。在电路中带电容的用电设备,其电容部分即为纯容性负载。如补偿电容

mos驱动+自举

MOS管驱动电路综述 2008-12-25 15:15 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。 包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。 寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS 管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。 通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

运算放大器的稳定性6―电容性负载稳定性

运算放大器稳定性 第 6 部分(共 15 部分)电容性负载稳定性:R ISO 、高增益及 CF 、噪声增益 作者:Tim Green ,德州仪器 本系列的第六部分是新《电气工程》杂志 (Electrical Engineering ) 中“保持容性负载稳定的六种方法”栏目的开篇。这六种方法是 R ISO 、高增益及 CF 、噪声增益、噪声增益及 CF 、输出引脚补偿 (Output Pin Compensation ),以及具有双通道反馈的 R ISO 。本部分将侧重于讨论保持运算放大器输出端容性负载稳定性的前三种方法。第 7 和第 8 部分将详细探讨其余三种方法。我们将采用稳定性分析工具套件中大家都非常熟悉的工具来分析每种方法,并使用一阶分析法来进行描述。该描述方法是:通过 Tina SPICE 环路稳定仿真进行相关确认;通过 Tina SPICE 中的 V OUT /V IN AC 传递函数分析来进行检验;最后采用 Tina SPICE 进行全面的实际瞬态稳定性测试 (Transient Real World Stability Test)。在过去长达 23 年中,我们在真实环境以及实际电路情况下进行了大量测算,充分验证了这些方法的有效性。然而,由于资源的限制,本文所述电路并未进行实际制作,在此仅供读者练习或在自己的特定应用(如分析、合成、仿真、制作以及测试等)中使用。 运算放大器示例与 R O 计算 在本部分中,用于稳定性示例的器件将是一种高达 +/40V 的高电压运算放大器 OPA452。这种“功能强大的运算放大器”通常用于驱动压电致动器 (piezo actuator),正如您可能已经猜到的那样,该致动器大多为纯容性的。该放大器的主要参数如图 6.1 所示。图中未包含小信号 AC 开环输出阻抗 R O 这一关键参数,在驱动容性负载时,该参数对于简化稳定性分析极其重要。由于参数表中不含该参数,因而我们需要通过测量得出 R O 。由于 Analog & RF Models 公司 (https://www.360docs.net/doc/197501131.html,/%7Ewksands/) 的 W. K. Sands 为该放大器构建了 SPICE 模型,因而我们可用 Tina SPICE 来测量 R O 。对于数据表参数而言,W. K. Sands SPICE 模型已经过长期而反复的考证具有极高的精确性,更重要的是,它是真正的硅芯片部件! 运算放大器稳定性   OPA452 Supply: +/-10V to +/-40V Slew Rate: +7.2V/us, -10V/us Vout Saturation: Io=50mA, (V-)+5V, (V+)-5.5V Io=10mA, (V-)+2V, (V+)-2V 图 6.1:OPA542 重要参数 为了测试 R O ,我们在图 6.2 的开环增益和相位与OPA452 频率关系图上标注“工作点 (operating point )”。通过测试此“工作点”(无环路增益的频率与增益点)的 R OUT ,R OUT = R O (如欲了解R O 及 R OUT 的详细探讨,敬请参见本系列的第 3 部分)。 R O Test Point

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

最新运算放大器设计总结

运算放大器的基本参数 1. 开环电压增益A OL 不带负反馈的状态下,运算放大器对直流信号的放大倍数。电压反馈运算放大器采用电 压输入/电压输出方式工作,其开环增益为无量纲比,所以不需要单位。但是,数值较小时,为方便起见,数据手册会以V/mV或V/ yV代替V/V表示增益,电压增益也可以dB形式表示,换算关系为dB = 20 xiogAVOL。因此,1V/ ^V的开环增益相当于120 dB,以此类推。该参数与频率密切相关,随着频率的增加而减小,相位也会发生偏移。 对于反向比例放大电路,只有当AOL >> R+Rf时,Vo=-Rf/RVi才能够成立。 Frequency (Hz) 2. 单位增益带宽B1 (Gain-Bandwidth Product) 开环电压增益大于等于 1 (OdB )时的那个频率范围,以Hz为单位。它将告诉你将小 信号(?土100mV )送入运放并且不失真的最高频率。在滤波器设计电路中,假定运放滤波器增益为 1V/V,则单位增益带宽大于等于滤波器截止频率f cut-off x 100。 3.共模抑制比CMRR 差分电压放大倍数与共模电压放大倍数之比,CMRR=|Ad/Ac|。共模输入电压会影响到 输入差分对的偏置点。由于输入电路内部固有的不匹配,偏置点的改变会引起失调电压改变, 进而引起输出电压改变。其实际的计算方法是失调电压变化量比共模电压变化量,一般来说CMRR= △ Vos/ △ Vcom , TI及越来越多的公司将其定义为CMRR= △ Vcom/ △ Vos。在datasheet中该参数一般为直流参数,随着频率的增加而降低。

CCMMDN-MODE REJECTION RATIO vt. FREQUENCY 4. 输入偏置电流Ibias 输入偏置电流被定义为:运放的输入为规定电位时,流入两个输入端的电流平均值。记为IB。为了运放能正常的工作,运放都需要一定的偏置电流。IB=(IN+IP)/2。 当信号源阻抗很高时,就必须关注输入偏流,因为如果运放有很大的输入偏流,就会对信号源构成负载,因而会看到一个比预想要低的信号源输出电压,如果信号源阻抗很高,那 么最好使用一个以CMOS或者JFET作为输入级的运放,也可以采用降低信号源输出阻抗的方法,就是使用一个缓冲器,然后用缓冲器来驱动具有很大输入偏流的运放。 在双级输入级的情况下,可以使用对失调电流进行调零的方法,就是使从两个输入端看到的阻抗相互匹配。在CMOS和JFET输入电路的情况下,一般来说,失调电流不是问题,也没有必要进行阻抗匹配了。 5. 输入失调电流Ios 当运放的输出端置于规定电位时,流入运放两个输入端的电流之差的绝对值。 I OS=|IN-IP| 6. 电源抑制比PSRR 电源电压的改变量与由此引起的输入失调电压改变量之比的绝对值,单位是dB。对于双电源运放,PSSR= △ V cc士/ △ V os士。PSSR随着频率的增加而下降。开关电源产生的噪声频率从50kHz到500kHz或更高,在这些高频下,PSSR的值几乎为零,所以,电源上的 噪声会引起运放输出端上的噪声,对此必须使用恰当的旁路技术。

感性负载与容性负载

的区别 线圈负载叫感性,电容负载叫容性,纯电阻负载叫阻性 比如电机是感性负载,电容是容性负载,电炉电阻丝,白炽灯,碘坞灯等是阻性负载在电工或电子行业中对负载阻抗特性的定义,分为纯电阻型、电感型及电容型。 简称阻性、感性、容性。 几种负载在直流电路中的特点是: 电阻性负载:电流电压的关系符合基本欧母定律,I=U/R。 感性负载:允许电流流过,但电流滞后于电压,可储能于电感。 容性负载:阻止电流流过,也可储能于电容。 几种负载在交流电路中的特点是: 电阻性负载:电流电压的相位相同。 感性负载:电流滞后于电压。 容性负载:电流超前于电压。 电机类的设备都算是感性负载,开关电源类的,如IT设备都算是容性负载。感性负载就是工作时电压相位超前于电流相位,纯感性的话电压相位超前电流相位90度,纯容性负载就是工作时电压相位滞后于电流相位,纯容性负载的话电压相位滞后于电流相位90度。 1)感性无功功率在用电设备中,凡是用绕组和磁铁组成的,在交流电路中产生电和磁交变的功能。在能量转换过程中,有部分磁能仍回复到电能,那部分电流没有消耗有功功率,称为感性无功功率。在电感性负载的电路中,电流滞后电压一个角度Ψ,cosΨ称为功率因数。

(2)容性无功功率在电容器二块极板间产生充放电,电容电流不消耗有功功率,这个电流引起的功率称为容性无功功率。在电容性负载的电路中,电流超前电压一个角度Ψ,cosΨ也称为功率因数。因此容性无功功率可以抵消感性无功功率而提高功率因数。 (3)无功功率补偿的原理在交流电路中,纯电阻负载电流IR与电压U同相位;纯电感负载电流IL滞后电压纯电容负载电流IC则超前于电压。也就是说纯电感和纯电容中的电流相位差为,可互相抵消,所以在电源向负载供电时,感性负载向外释放的能量由并联电容器将能量储存起来;当感性负载需要能量时,再由电容将能量释放出来。这样感性负载所需要的无功功率可就地解决,减少负载与电源间能量交换的规模,减少损耗. 无功功率补偿的基本原理是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是无功功率补偿的基本原理。 有功功率:在交流电路中,凡是消耗在电阻元件上,功率不可逆转换的那部分功率(如转变为热能,光能,或机械能),称为有功功率; 无功功率:电路中,电感元件建立磁场,电容元件建立电场消耗的功率称为无功率,这个功率是随交流电的周期,与电源不断的进行能量转换,而并不消耗能量;视在功率:交流电源所能提供的总功率,称为视在功率,在数值上即是,电压与电流的乘积,单位VA,视在功率即是交流电源的容量; 阻性负载: 即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯、电炉等) 通俗一点的讲,仅是通过电阻类的元件进行工作的纯阻性负载称为阻性负载。 感性负载

详细讲解MOSFET管驱动电路

详细讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N 沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的

十八、运放容性负载问题

十八、运放容性负载问题 18 运算放大器容性负载驱动问题 Grayson King,Analog Devices Inc. 问:为什么我要考虑驱动容性负载问题? 答:通常这是无法选择的。在大多数情况下,负载电容并非人为地所加电容。它常常是人们不希望的一种客观存在,例如一段同轴电缆所表现出的电容效应。但是在有些情况下,要求对运算放大器的输出端的直流电压进行去耦。例如,当运放被用作基准电压的倒相或驱动一个动态负载时。在这种情况下,你也许在运放的输出端直接连接旁路电容。不论哪种情况,容性负载都要对运放的性能有影响。 问:容性负载如何影响运放的性能? 答:为简单起见,可将放大器看成一个振荡器。每个运放都有一个内部输出电阻RO,当它与容性负载相接时,在运放传递函数上产生一个附加的极点。正如图1(b)波特图幅频特性曲线表示,附加极点的幅频特性 斜率比主极点20dB/十倍频程更徒。从相频特性曲线图1(c)中可以看出,每个附加极点的相移都增加-90°。我们可用图1(b)或图1(c)来判断电路的稳定性。从图1(b)中可以看出,当开环增益和反馈衰减之和大于1时,电路会不稳定。同样,在图1(c)中,如果某一工作频率低于闭环带宽,在这个频率下环路相移超过-180°时,运放会出现振荡。电压反馈型运算放大器(VFA)的闭环带宽等于运放增益带宽积(GBP,或单位增益频率)除以电路闭环增益(A CL )。运算放大器电路的相位裕度定义为使电路不稳定所要求的闭环带宽处对应的附加相移(即环路相移十相位裕度=-180°)。当相位裕度为0时,环路相移为-180°,此运放电路不稳定。通

常,当相位裕度小于45°时,会出现问题,例如频响“尖峰”,阶跃响应中的过冲或“振铃”。为了使相位裕度留有余地,容性负载产生的附加极点至少应比电路的闭环带宽高10倍,如果不是这样电路可能不稳定。 问:那么我应该如何处理容性负载? 答:首先我们应该确定运放是否能稳定地驱动自身负载。许多运放数据手册都给出“容性负载驱动能力”这项指标。还有一些运放提供“小信号过冲与容性负载关系曲线”,从中你可以看到过冲与附加负载电容呈指数关系增加,当达到100%时,运放不稳定。如果有 可能,应该使运放过冲远离100%。还应注意这条曲线对应指定增益。对于VFA,容性负载驱动能力随增益成比例增加。所以,如果在增益为1时,VFA可稳定驱动100pF容性负载,那么在增益为10时,便能驱动1000pF容性负载。也有少数运放的产品说明中给出开环输出电阻RO,从而可以计算出上述附加极点的频率fP= 1/2πROCL。如果附加极点fP大于上述电路带宽10倍,则电路稳定。如果运放的产品说明没有提供容性负载驱动能力或开环输出电阻的指标,也没有给出过冲与容性负载关系曲线,那么要保证电路稳定,你必须对容性负载采取必要的补偿措施。要使标准运放驱动容负载工作稳定有许多处理方法,下面介绍几种。 (1)提高噪声增益法 使低频电路稳定的有效方法,也是设计者常常忽略的方法,就是增加电路的闭环增益(即噪声增益),而不改变信号增益,这样可在开环增益与反馈衰减到0dB带宽之积恒定条件下降低噪声带宽。具体电路如图2所示。在图2(a)中,在运放的两个输入端之间接电阻RD。此时电路的增益可由给定公式计算。因为是噪声增益而不是信号增益支配稳定性,所以电路稳定性的提高不影响信号增益。为保证电路稳定,最简单的方法是使噪声带宽至少应比容性负载极点频率低10倍频程。 图3 环路增益波特图 这种方法的缺点是输入端电压噪声和输入失调电压被放大产生附加的输出电压噪声和输出失调电压增加。用一个电容CD与电阻RD串联可以消除附加的直流失调电压,但增加的电压噪声是器件固有的,不能消

相关文档
最新文档