第4章一阶逻辑基本概念离散数学

合集下载

离散数学期末复习

离散数学期末复习

离散数学内容总结大纲第一篇 数理逻辑第1章 命题逻辑求命题公式的主析取范式及主合取范式例 求()()p r q p ∨⌝∧∨的主析取范式及主合取范式。

例 求(P →Q)∧R 的主析取范式及主合取范式。

例 求命题公式R Q P ∨∧)(的主析取范式和主合取范式。

例 求公式A =(p →⌝q )→r 的主析取范式与主合取范式。

例 求()r q p →→的主析取范式。

判断公式类型例 用等值演算法判断公式q ∧⌝ (p →q )的类型例 判断下列命题公式的类型(永真式、永假式、可满足式),方法不限。

(1)(2)证明例 证明:()()()r q r p r q p →∧→⇔→∨ 例 证明:r q p r q p →∧⇔→→)()( 例 推证:⌝Q ∧(P →Q)⇒⌝P例 前提:q p s q r p ∨→→,,,结论:s r ∨。

该结论是否有效?请说明原因。

在命题逻辑中构造下面推理的证明:例 如果小张守第一垒并且小李向B 队投球,则A 队获胜。

或者A 队未获胜,或者A 队成为联赛的第一名。

小张守第一垒。

A 队没有成为联赛的第一名。

因此小李没有向B 队投球。

解:先将简单命题符号化。

P:小张守第一垒;Q:小李向B队投球;R:A队取胜;S:A 队成为联赛第一名。

前提:(P∧Q)→R,R∨S,P,S结论:Q证明:(1) R∨S 前提引入(2) S 前提引入(3) R (1)(2)析取三段论(4) (P∧Q)→R 前提引入(5) (P∧Q) (3)(4)拒取式(6) P∨Q (5)置换(7) P 前提引入(8) Q (6)(7)析取三段论例一个公安人员审查一件盗窃案,已知下列事实:(1)甲或乙盗窃了录像机;(2)若甲盗窃了录像机,则作案时间不能发生在午夜前;(3)若乙的证词正确,则午夜时屋里灯光未灭;(4)若乙的证词不正确,则作案时间发生在午夜前;(5)午夜时屋里灯光灭了。

根据以上事实,推断谁是盗窃犯。

(在命题逻辑中构造推理证明。

离散数学第四章 一阶逻辑基本概念

离散数学第四章 一阶逻辑基本概念
将下列命题符号化. (1)兔子比乌龟跑得快. (2)有的兔子比所有的乌龟跑得快. (3)并不是所有的兔子都比乌龟跑得快. (4)不存在跑得同样快的两只兔子. 设F(x):x是兔子. G(y):y是乌龟.H(x,y):x比y跑得快. L(x,y):x与y跑得同样快. (1)xy(F(x)G(y)H(x,y)) (2) x (F(x) y (G(y)H(x,y)) (3) xy(F(x)G(y)H(x,y)) (4) x y(F(x)G(y) L(x,y))
(1) 非空个体域DI (2) 对每一个个体常项ai, a i DI, 称作ai在I中的解释 (3) 对每一个函数符号fi, 设其为m元的, 元函数, 称作fi在I中的解释
fi 是DI上的m
是一个n元
(4) 对每一个谓词符号Fi, 设其为n元的, Fi 谓词, 称作Fi在I中的解释
25
实例
例4.8 给定解释I 如下: (a) 个体域 D=N (b) a 2 (c) f ( x, y) x y, g ( x, y) xy (d) 谓词 F ( x, y) : x y 说明下列公式在 I 下的含义, 并讨论其真值 (1) xF(g(x,a),x) x(2x=x) 假命题 假命题
合式公式又称谓词公式, 简称公式
21
量词的辖域
定义4.5 在公式xA和xA中, 称x为指导变元, A为相应量 词的辖域. 在x和x的辖域中, x的所有出现称为约束出现, A中不是约束出现的其他变项称为自由出现 例4.6 公式 x(F(x,y)yG(x,y,z)) x的辖域:(F(x,y)yG(x,y,z)), 指导变元为x y的辖域:G(x,y,z), 指导变元为y x的两次出现均为约束出现 y的第一次出现为自由出现, 第二次出现为约束出现 z为自由出现.

《离散数学》-一阶逻辑-基本概念

《离散数学》-一阶逻辑-基本概念

《离散数学》-⼀阶逻辑-基本概念⼀阶逻辑这个⼀块属于离散数学的内容,它的功能就是将⾃然事物给符号化以为体系的确⽴奠定语⾔基础。

回想⽆论学汉语还是英语的语法,我们都是从句⼦的主⼲学起,那么数学作为⼀门语⾔,它的句⼦当然也有所谓的主⼲。

个体词:个体次是所研究对象可以独⽴存在的具体的或者抽象的客体。

具体⽽特定的客体个体成为个体常项,⼀般⽤⼩写字母a、b、c表⽰。

⽽将抽象或泛指的个体词成为个体变项,⼀般⽤英⽂字母x、y、z表⽰,并称个体变项的取值范围为个体域。

举例说明:(1)“5是素数”,5、素数都是个体词语,5是个体常项⽽素数是个体变项.(2)“x>y”,x、y都是个体变项.谓词:这⾥似乎类似于⾃然语⾔中谓语动词,往往是形容“⼀个动作”,但是在这⾥,谓词是形容“⼀种关系”,当然和个体词类似,根据这种描绘个体之间的关系的确定与否(具体或者抽象泛指),我们也可以把谓词分为常项和变项。

举例说明:(1) X是有理数。

“是有理数”是常项谓词。

(2) X与y有具体关系L。

这⾥及其迷惑⼈的是语句“有具体关系L”,但是本质上关系L还是抽象的不确定的,因此这⾥“有具体关系L”是变项谓词。

下⾯要做的就是将这种描述关系的语句进⾏符号化,这⾥其实有点类似于函数的概念,因为谓词描述的是个体之间的关系,因此它必须依赖于个体。

我们⽤F、G、H来进⾏符号化的表⽰。

F(a)、F(x)分别表⽰个体常项a、个体变项x满⾜的性质F(a)和F(x).更⼀般的情况,P(x1,x2,x3…xn)表⽰个体x1,x2,…xn具有关系P。

对于不含个体变项的谓词,我们成为0元谓词。

Ex1:将下列命题在⼀阶逻辑中⽤0元谓词符号化,并讨论他们的真值(1) 只有2是素数,4才是素数。

G(2)表⽰2是素数,G(4)表⽰4是素数,则我们将这个命题符号化的结果: G(2) —> G(4),由于命题的条件为假,因此该命题为真。

(2) 如果5⼤于4,则4⼤于6G(5,4)表⽰“5⼤于4”,命题符号化之后的结果: G(5,4) —> G(4,6),条件为真结论为假,因此命题为假。

离散数学 一阶逻辑

离散数学 一阶逻辑

离散数学一阶逻辑离散数学是一门研究离散结构及其运算规律的学科,它涉及到数学中的逻辑、代数、集合论、图论等多个方面。

其中,一阶逻辑作为离散数学中的重要分支,具有广泛的应用和研究价值。

本文将从逻辑的基本概念、一阶逻辑的语法和语义、一阶逻辑的推理规则、一阶逻辑的应用等几个方面来介绍一阶逻辑,旨在帮助读者全面了解一阶逻辑的基本概念和使用方法,并为其后续学习和应用提供指导。

首先,我们来介绍逻辑的基本概念。

逻辑是研究判断的科学,它主要关注真理与推理的关系。

在逻辑中,我们使用语句来表示判断,语句可以是真或假。

同时,逻辑将语句分为简单语句和复合语句。

简单语句是指不能再分解为更简单语句的语句,而复合语句则由多个简单语句通过逻辑运算连接而成。

逻辑运算包括取反(¬)、合取(∧)、析取(∨)、蕴含(→)等。

接下来,我们进一步介绍一阶逻辑的语法和语义。

一阶逻辑是最基本且最常用的逻辑系统之一,它包括基本命题、谓词和量词。

基本命题是指具有真或假值的简单语句,如“今天是星期一”。

谓词是一种描述性的语句构造,它通过将一些对象与一些性质关联起来,来表示复杂的判断。

例如,“x是红色”的谓词可以表示成P(x)。

量词则用来表示概括性的判断,包括全称量词∀和存在量词∃。

例如,“对于任意x,P(x)”可以表示成∀xP(x)。

在一阶逻辑中,语义是根据给定的语句和模型来确定语句的真假值。

模型是一种对应关系,它将谓词与具体的对象元素相联系。

通过使用变元(变量)和量化符号(全称量词∀和存在量词∃),我们可以构造出不同的语句并进行语义推理,从而得到推理结论。

此外,一阶逻辑还有一些特殊的推理规则,例如代入规则和全称推广规则。

代入规则是指在一个语句中的某个位置用一个等价的语句替换。

全称推广规则是指在一个语句中添加一个全称量词,将一个具体对象概括为所有对象的性质。

最后,我们来介绍一阶逻辑的应用。

一阶逻辑在人工智能、计算机科学和数学等领域有着广泛的应用。

屈婉玲离散数学第四章

屈婉玲离散数学第四章
2
谓词
谓词——表示个体词性质或相互之间关系的词 谓词常项 如, F(a):a是人 谓词变项 如, F(x):x具有性质F n(n1)元谓词 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间的关系 如, L(x,y):x与 y 有关系 L,L(x,y):xy,… 0元谓词——不含个体变项的谓词, 即命题常项 或命题变项
9
实例5
例5 设个体域为实数域, 将下面命题符号化 (1) 对每一个数x都存在一个数y使得x<y (2) 存在一个数x使得对每一个数y都有x<y 解 L(x,y):x<y (1) xyL(x,y) (2) xyL(x,y)
注意: 与不能随意交换 显然(1)是真命题, (2)是假命题
10
4.2 一阶逻辑公式及解释
14
封闭的公式
定义4.6 若公式A中不含自由出现的个体变项,则称A为封闭 的公式,简称闭式. 例如,xy(F(x)G(y)H(x,y)) 为闭式, 而 x(F(x)G(x,y)) 不是闭式
15
公式的解释
定义4.7 设L 是L生成的一阶语言, L 的解释I由4部分组成: (a) 非空个体域 DI . (b) 对每一个个体常项符号aL, 有一个 aDI, 称 a 为a在I 中的解释. (c) 对每一个n元函数符号fL, 有一个DI上的n元函数 f : DIn DI , 称 f 为f在I中的解释. (d) 对每一个n元谓词符号FL, 有一个DI上的n元谓词常项F , 称 F 为F在I中的解释. 设公式A, 取个体域DI , 把A中的个体常项符号a、函数符 号f、谓词符号F分别替换成它们在I中的解释 a、 f 、F , 称 所得到的公式A为A在I下的解释, 或A在I下被解释成A.
20

离散数学(微课版) 第4章

离散数学(微课版) 第4章

离散数学(微课版)第4章1. 引言在离散数学的第4章中,我们将讨论图论的基本概念和应用。

图论是研究图及其在现实生活中的应用的数学分支,它在计算机科学、网络设计、运筹学等领域中具有重要的应用价值。

本章将介绍图的定义、图的表示方法、图的遍历算法等内容。

2. 图的定义图由一组节点和一组节点之间的边构成。

节点通常表示现实世界中的对象,而边则表示对象之间的关系。

图可以用于描述各种问题,如社交网络中的用户关系、城市之间的交通网络等。

2.1 有向图和无向图图可以分为有向图和无向图两种类型。

在有向图中,边具有方向,表示节点之间的单向关系。

而在无向图中,边没有方向,表示节点之间的双向关系。

2.2 顶点和边图由顶点和边组成。

顶点是图的节点,用来表示对象。

边连接两个顶点,表示两个对象之间的关系。

2.3 路径和环路径是指在图中从一个顶点到另一个顶点的连接序列。

环是一条路径,其起点和终点相同。

3. 图的表示方法在计算机中,图可以用不同的数据结构来表示。

常见的表示方法包括:3.1 邻接矩阵邻接矩阵是用二维数组表示图的连接关系。

对于无向图,邻接矩阵是对称的,而对于有向图,则不对称。

A B CA010B101C010上述邻接矩阵表示了一个无向图,其中顶点A与顶点B相连,顶点B与顶点C相连。

3.2 邻接表邻接表是用链表表示图的连接关系。

对于每个顶点,邻接表保存了与其相连的其他顶点的信息。

A ->B -> NULLB -> A ->C -> NULLC -> B -> NULL上述邻接表表示了一个无向图,顶点A与顶点B相连,顶点B与顶点A、C相连,顶点C与顶点B相连。

4. 图的遍历算法图的遍历算法是指按照一定的方式访问图中的所有节点。

常见的图的遍历算法有深度优先搜索和广度优先搜索。

4.1 深度优先搜索深度优先搜索从起点开始,尽可能深地访问尚未访问的节点,直到无法继续深入为止,然后回溯到上一个节点,继续深入其他未访问的节点。

F4一阶逻辑基本概念

F4一阶逻辑基本概念
(a)非空个体域 DI . (b) DI 中一些特定元素的集合{a1,a2 , …,ai , …}. (c) DI 上特定函数的集合{fin|i, n 1}. (d) DI 上特定谓词的集合{Fin|i, n 1}. †其实质是明确公式中各个变项, 繁琐之处毋庸细究.

第四章一阶逻辑基本概念
§4.1 一阶逻辑命题的符号化 §4.2 一阶逻辑公式及解释
091离散数学(60). W&M. §4.2 一阶逻辑公式及解释

命题逻辑形式系统 I = A, E, AX, R, 其中A, E是语言系统. 谓词逻辑形式系统的语言 , 它便于翻译自然语言. (下一章
Dx2Dx1A(x1, x2, …, xn) 可记为 A2(x3, x4, …, xn), …… ,
Dxn…Dx1A(x1, x2, …, xn) 中没有自由出现的个体变项, 可z) = x(F(x, y) G(x, z)) B(z) = yA(y, z) = yx(F(x, y) G(x, z)) C =zyA(y, z) = zyx(F(x, y) G(x, z))
(3) H(a, b), 其中 H: “…与…同岁”, a: 小王, b: 小 李.
(4) L(x, y), 其中L: “…与…具有关系L”.
091离散数学(60). W&M. §4.1 一阶逻辑命题的符号化

一元谓词 F(x) 表示 x 具有性质 F.
二元谓词 F(x, y) 表示个体变项 x, y 具有关系 F.
xy(x + y = 0) 与 yx(x + y = 0) 含义不同. ‡†句子的符号化形式不止一种. 设 H(x): x 是人, P(x): x 是完美的, 则 “人无完人”可 符号化为

离散数学PPT课件

离散数学PPT课件
定义2.1设A,B是两个命题公式,若A,B构成的等价 式AB为重言式,则称A与B等值,记为AB。
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理

离散数学课件 4.1一阶逻辑命题符号化

离散数学课件 4.1一阶逻辑命题符号化
说明: x yG(x, y) 和 x yG(x, y)表示的含义不同!
第 10 页
四、符号化
例2 在一阶逻辑中将下面命题符号化。
(1)人都爱美。
(2)有人用左手写字。
个体域分别为:
(a) D为人类集合 (b) D为全总个体域
解: (a)设F(x):x爱美,G(x):x用左手写字,则
(1) xF(x) (2) xG(x)
, L(x,y): x与y跑得同样快。 (5) ﹁ x y(F(x) G(y) H(x, y)) (6) ﹁ x y(F(x) F(y) L(x, y))
第 16 页
总结和作业
➢ 小结 ◆ 理解个体词、谓词、量词的含义 ◆ 掌握一阶逻辑命题的符号化
➢ 作业(做书上)
课本63-64页 4(1) (3), 5(1) (3),6 (1) (3) (5)
第1 页
第四章 一阶逻辑基本概念
➢ 命题逻辑的局限性
在命题逻辑中,研究的基本单位是简单命题,对简单 命题不再进行分解,并且不考虑命题之间的内在联系和数 量关系。
➢ 一阶逻辑所研究的内容
为了克服命题逻辑的局限性,将简单命题再细分,分 析出个体词、谓词和量词,以期达到表达出个体与总体的 内在联系和数量关系。 ◆ §4.1一阶逻辑命题符号化 ◆ §4.2一阶逻辑公式及解释 ◆ §5.1一阶逻辑等值式与置换规则 ◆ §5.2一阶逻辑前束范式
第四章 一阶逻辑基本概念
➢ 苏格拉底三段论
◆ 所有的人都是要死的。 ◆ 苏格拉底是人。 ◆ 所以,苏格拉底是要死的。 试证明此推理。 解:令p:所有的人都是要死的,q:苏格拉底是人,r:苏格拉底 是要死的,则 前提:p,q 结论:r 推理的形式结构: p Ù q ® r

第4章_一阶逻辑

第4章_一阶逻辑

Q(1,2) = 0
Q(3,0) = 1
7
一阶逻辑基本概念
EXAMPLE 3
设R(x, y, z) 表示语句“x+y=z.”,
则R(1, 2, 3) 和R(0, 0, 1) 的真值是多少?
R(1, 2, 3)= 1
R(0, 0, 1)= 0
8
一阶逻辑基本概念
当n>1时,通常P给出了xi(i=1,2,…,n)之间的关系。 例如, P(x,y,z) 表示 x 位于 y 与 z 之间,是一个三元 谓词。当x,y,z分别用赤道、南半球、北半球代入时, 得到命题:赤道位于南半球与北半球之间,其真值 为 1 。再如,将杭州、南京、北京代入,则得到: 杭州位于南京和北京之间,真值为0。 当n=0时(即0元谓词),该谓词对应一个命题。
18
一阶逻辑基本概念
EXAMPLE 8
设P(x) 表示语句“x2>10.”,个体域 为不大于4的所有正整数。则xP(x)的 真值是多少?
xP(x) =P(1)∨P(2)∨P(3)∨P(4) =1
19
一阶逻辑基本概念
EXAMPLE 9
在一阶逻辑中将下列命题符号化: (1) 所有的狮子都是凶猛的。
x(C(x)∨y(C(y)∧F(x, y))) 其中,C(x)表示“x有一台计算机”,F(x,y)表示“x和y 是朋友”,x和y的个体域为数计学院的所有学生集合。 解答:对于数计学院的任意一个学生x来说,x有一台 计算机,或者存在一个学生y,y有一台计算机而且x和 y是好朋友。换句话说,数计学院的所有学生要么有一 台计算机,要么有一个拥有一台计算机的朋友。
从苏格拉底三段论到一阶逻辑
苏格拉底苏格拉底三段论:人都是会死的, 苏格拉底是人,所以苏格拉底会死。

《离散数学》教学大纲

《离散数学》教学大纲

《离散数学》教学大纲(Discrete Mathematics)适用专业:电子信息类课程类别:学科基础课课程学时:48课程学分:3.0先修课程:高等数学、线性代数等一、课程简介离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支,是计算机科学中基础理论的核心课程,是计算机科学与技术的支撑学科。

它在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能与机器人、数据库、网络、计算机图形学、算法设计与分析、理论计算机科学基础等必不可少的先行课程。

通过离散数学的学习,不但可以掌握离散结构的描述工具和处理方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。

二、教学目的与任务离散数学是一门培养学生缜密思维、严格推理,具有综合归纳分析能力的课程。

通过本课程的学习,使学生有一定的严格逻辑推理与抽象思维能力,掌握离散量的处理及运算技能,能够将离散数学应用到解决计算机技术中的实际问题中。

不仅能为学生奠定计算机科学的专业基础,并且能为将后续课程的学习及将来开发软、硬件技术及研究、应用提供有力的工具。

三、课程内容第1章命题逻辑的基本概念1.1命题与联结词1.2命题公式及其赋值第2章命题逻辑等值演算2.1等值式2.2析取范式与合取范式* 2.3联结词的完备集* 2.4可满足性问题与消解法第3章命题逻辑的推理理论3.1推理的形式结构3.2自然推理系统P3.3消解证明法第4章一阶逻辑基本概念4.1一阶逻辑命题符号化4.2一阶逻辑公式及其解释第5章一阶逻辑等值演算与推理5.1一阶逻辑等值式与置换规则5.2一阶逻辑前束范式* 5.3一阶逻辑的推理理论第6章集合代数6.1集合的基本概念6.2集合的运算6.3有穷集的计数6.4集合恒等式第7章二元关系7.1有序对与笛卡儿积7.2二元关系7.3关系的运算7.4关系的性质7.5关系的闭包7.6等价关系与划分7.7偏序关系第8章函数8.1函数的定义与性质8.2函数的复合与反函数* 8.3双射函数与集合的基数* 8.4一个电话系统的描述实例第14章图的基本概念14.1图14.2通路与回路14.3图的连通性14.4图的矩阵表示* 14.5图的运算第15章欧拉图与哈密顿图15.1欧拉图15.2哈密顿图15.3最短路问题、中国邮递员问题与货郎担问题第16章树16.1无向树及其性质16.2生成树16.3根树及其应用三、课程学时分配、教学内容与教学基本要求四、教学方法与教学手段说明该课程教学方式主要有:课堂教学、交互学习、课后作业。

离散数学第四章

离散数学第四章
使用特性谓词M(x),所给命题就可以符号化为: (1)∀x(M(x)→F(x)) (2)∃x(M(x)∧ G(x))
13
例 在个体域限制为(a)和(b)条件时,将下列命题 符号化:
(1)对于任意的数x,均有x2-3x+2=(x-1)(x-2) (2)存在数x,使得x+5=3
其中:(a)个体域D1=N(自然数集合) (b)个体域D2=R(实数集合)
10
量词
量词是表示个体常项或变项之间数量关系的词。
量词分为两种: (1)全称量词:对应日常语言中的“一切”,“所有的”,
“任意的”,“每一个”等等,用符号“∀”表示。 用∀x表示对个体域里的所有个体,∀xF(x)表示个体
域里的所有个体都有性质F。 ∀x∀yG(x, y)表示个体域里的任意两个个体都有关系G。
不带个体变项的谓词称为0元谓词。 例如:F(a),G(a,b),P(a1,a2,…,an) 都是0元谓词。
8
例 将下面命题用0元谓词符号化。 (1)只有2是素数,4才是素数 (2)如果5大于4,则4大于6
命题的谓词符号化步骤: (a)找出谓词、个体词常项 (b)符号化谓词和个体词常项 (c)使用符号化了的谓词和个体词以及逻辑运算符
解:令 F(x) : x2-3x+2=(x-1)(x-2);G(x) : x+5=3 在个体域限制为(a)和(b)条件时 命题(1)的符号化均为:∀xF(x) 命题(2)的符号化均为:∃xG(x) 个体域为(a)时,(1)为真命题,(2)为假命题 个体域为(b)时,(1)为真命题,(2)为真命题
14
第四章 一阶逻辑的基本概念
1
4.1 一阶逻辑命题符号化
在一阶逻辑中,个体词、谓词、量词是命 题符号化的三个基本要素。

离散数学-第四章一阶逻辑的基本概念课后练习习题及答案

离散数学-第四章一阶逻辑的基本概念课后练习习题及答案

离散数学-第四章⼀阶逻辑的基本概念课后练习习题及答案第四章作业评分要求:1. 合计36分2. 给出每⼩题得分(注意: 写出扣分理由).3. 总得分在采分点1处正确设置.(解答时的具体格式参照教材及幻灯⽚)⼀在⼀阶逻辑中将下列命题符号化1 ⽕车都⽐轮船快.2 有的⽕车⽐有的汽车快.3 不存在⽐所有⽕车都快的汽车.4 说凡是汽车就⽐⽕车慢是不对的.(4⼩题,每题3分,总计12分。

每⼀⼩题正确设定谓词得1分,正确符号化得2分。

)1 设是⽕车, 是轮船, ⽐快x ( F(x) → (⽕车x⽐所有的轮船快) )x ( F(x) → (?y(G(y)→ H(x,y)) ) )xy(F(x)∧G(y)→H(x,y))2设是⽕车, 是汽车, ⽐快x ( F(x) ∧ (⽕车x⽐有的汽车快) )x ( F(x) ∧ (?y(G(y)∧H(x,y)) ))xy ( F(x)∧G(y)∧H(x,y) )3设是汽车, 是⽕车, ⽐快x ( F(x) ∧ (汽车x⽐所有⽕车都快) )x ( F(x) ∧ ( ?y(G(y)→H(x,y)) ))x ( F(x) ∧ ( ?y(G(y)→H(x,y)) ))xy ( F(x) ∧ ( G(y)→ H(x,y) ) )x?y ( F(x) ∧ ( G(y)→ H(x,y) ) )4 设是汽车, 是⽕车, ⽐慢x ( F(x) → (汽车x⽐所有⽕车慢) )x ( F(x) → ( ?y(G(y)→ H(x,y)) ))x ( F(x) → ( ?y(G(y)→ H(x,y)) ))x?y ( F(x)∧G(y)→ H(x,y) )⼆给定解释I如下.a) 个体域.b) 特定元素.c) 上的函数.d) 上的谓词.给出下列各式在I下的解释, 并讨论它们的真值. 1234(4⼩题,每题3分,总计12分。

每⼀⼩题正确写出解释下的公式得2分,正确给出真值得1分。

)1 “对任意⾃然数, ”假2 “对任意⾃然数, 如果, 则.”假3 “对任意⾃然数, 存在⾃然数, 使得.”真4 “存在⾃然数, 使得.”真三判断下列各式的类型1234(4⼩题,每题3分,总计12分。

离散数学32一阶逻辑基本公式及解释1

离散数学32一阶逻辑基本公式及解释1

则所得命题为假命题。
一阶公式的解释
定义4.7 一阶公式的解释I由下面4部分组成:
(a)非空个体域DI。
(b)DI中一些特定元素的集合 {a1, a2, ai , } 。
(c)DI上特定函数集合{ fi n|i, n≥1}。 (d)DI上特定谓词的集合{ Fi n|i, n≥1}。
有x2,x3,…,xn自由出现的公式,可记为A1(x2,x3,…,xn). ? 类似的,Δx2Δx1A(x1,x2,…,xn)可记为A2(x3,x4,…,xn). ? Δxn-1Δxn-2…Δx1A(x1,x2,…,,可以记为An-1(xn)。 ? Δxn…Δx1A(x1,x2,…,xn)没有自由出现的个体变项。
举例
将例4.6(1)中的公式简记为A(y,z), 表明公式含有自由出现的个体变项y,z。 而? yA(y,z)中只含有z为自由出现的公式, ?z? yA(y,z)中已经没有自由出现的个体变项了,
闭式
定义4.6 设A是任意的公式,若A中不含有自由出现的个体变 项,则称A为封闭的公式,简称闭式。
例如: ? x? y(F(x)? G(y)? H(x,y)) 为闭式, ? x(F(x)? G(x,y)) 不是闭式 。
(2) 前件上量词? 的指导变元为x,量词? 的辖域 A=(F(x)→G(y)),x在A中是约束出现的,y在A中是自由出 现的。后件中量词? 的指导变元为y, 量词?的辖域为 B=(H(x)∧L(x,y,z)),y在B中是约束出现的,x、z在B中 均为自由出现的。
本书中的记法
? 用A(x1,x2,…,xn)表示含x1,x2,…,xn自由出现的公式。 ? 用Δ表示任意的量词? 或? ,则Δx1A(x1,x2,…,xn)是含
面给出两种指定法: (a)令个体域D1为全总个体域,

离散数学(一阶逻辑的基本概念)

离散数学(一阶逻辑的基本概念)
27
多个量词的使用
xyG(x,y):对于每一个x,都存在一个y, 真命题 x与y能配成一对。
yxG(x,y):存在一个y,对于每一个x,x 假命题 与y能配成一对。
28
小结
一元谓词用以描述某一个个体的某种特性, 而n元谓词则用以描述n个个体之间的关系; 如有多个量词,则读的顺序按从左到右的顺 序;另外,量词对变元的约束,往往与量词 的次序有关,不同的量词次序,可以产生不 同的真值,此时对多个量词同时出现时,不 能随意颠倒它们的顺序,颠倒后会改变原有 的含义。
20
实例
例 2 在一阶逻辑中将下面命题符号化 (1) 人都爱美 (2) 有人用左手写字 个体域分别为 (a) D为人类集合 (b) D为全总个体域 解:(a) D为人类集合 (1) xG(x), G(x):x爱美 (2) xG(x), G(x):x用左手写字
21
ቤተ መጻሕፍቲ ባይዱ 实例
(b) D为全总个体域 F(x):x为人,G(x):x爱美 (1) x(F(x)G(x)) (2) x(F(x)G(x)) 1. 引入特性谓词F(x) 2. (1),(2)是一阶逻辑中两个“基本”公式
29
小结
根据命题的实际意义,选用全称量词或存在 量词。全称量词加入时,其刻划个体域的特 性谓词将以蕴涵的前件加入,存在量词加入 时,其刻划个体域的特性谓词将以合取项加 入; 有些命题在进行符号化时,由于语言叙述不 同,可能翻译不同,但它们表示的意思是相 同的,即句子符号化形式可不止一种。
30
22
实例
例3 在一阶逻辑中将下面命题符号化 (1) 正数都大于负数 (2) 有的无理数大于有的有理数 解: 注意:题目中没给个体域,一律用全总个体域 (1) 令F(x):x为正数,G(y):y为负数, L(x,y):x>y x(F(x)y(G(y)L(x,y))) 或者 xy(F(x)G(y)L(x,y))

离散数学课后习题答案

离散数学课后习题答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学第四章一阶逻辑基本概念

离散数学第四章一阶逻辑基本概念

在命题逻辑中,命题是最基本的单位,对简单命题不再进行分解,并且不考虑命题之间的内在联系和数量关系。

因而命题逻辑具有局限性,甚至无法判断一些简单而常见的推理。

考虑下面的推理:凡偶数都能被2整除;6是偶数。

所以,6能被2整除。

这个推理是我们公认的数学推理中的真命题,但是在命题逻辑中却无法判断它的正确性。

因为在命题逻辑中只能将推理中出现的三个简单命题依次符号化为p,q,r,将推理的形式结构符号化为(p∧q)→r由于上式不是重言式,所以不能由它判断推理的正确性。

为了克服命题逻辑的局限性,就应该将简单命题再细分,分析出个体词,谓词和量词,以期达到表达出个体与总体的内在联系和数量关系,这就是一阶逻辑所研究的内容。

一阶逻辑也称一阶谓词逻辑或谓词逻辑。

4.1 一阶逻辑的符号化下面直接仿照1.1来对谓词逻辑进行符号化。

个体词,谓词和量词是一阶逻辑命题符号化的三个基本要素。

下面讨论这三个要素。

一、个体词个体词是指所研究对象中可以独立存在的具体的或抽象的客体。

例如,小王,小李,中国,,3等都可以作为个体词。

将表示具体或特定的客体的个体词称作个体常项,一般用小写英文字母a,b,c…表示;而将表示抽象或泛指的个体词称为个体变项,常用x,y,z…表示。

称个体变项的取值范围为个体域(或称论域)。

个体域可以是有穷集合,例如,{1,2,3},{a,b,c,d},{a,b,c,…,x,y,z},…;也可以是无穷集合,例如,自然数集合N={0,1,2,…},实数集合R={x|x是实数}…。

有一个特殊的个体域,它是由宇宙间一切事物组成的,称它为全总个体域。

本书在论述或推理中如没有指明所采用的个体域,都是使用全总个体域。

二、谓词谓词是用来刻画个体词性质及个体词之间相互关系的词。

考虑下面四个命题(或命题公式):(1)是无理数。

(2)x是有理数。

(3)小王与小李同岁。

(4)x与y具有关系L.在(1)中,是个体常项,“…是无理数”是谓词,记为F,并用F()表示(1)中命题。

离散数学---一阶逻辑的等值式

离散数学---一阶逻辑的等值式

求前束范式例1 求前束范式例
求下列公式的前束范式: 求下列公式的前束范式 : 1、 ∀x A(x) ∧ ∀x B(x) 1、⇔∀ (A(x) ∧ B(x)) 、 、⇔∀x 2、 ∃x A(x) ∨ ∃x B(x) 2、⇔ ∃x(A(x) ∨ B(x)) 、 、 3、 ∀x A(x) ∨ ∀x B(x) 3、⇔ ∀x A(x) ∨ ∀y B(y) 、 、 4、 ∃x A(x) ∧ ∃x B(x) 、 ⇔ ∀x ∀y (A(x) ∨ B(y))
对于公式∀ ∧∀y ∧∃y 对于公式∀x A(x)∧∀ B(y)和∃x A(x)∧∃ B(y) ∧∀ 和 ∧∃ 对于公式∀ ∧∀y 对于公式∀x A(x)∧∀ B(y),由于∀对合取有分配律,所以 ∧∀ ,由于∀对合取有分配律, 可变换为: 可变换为: ∧∀y ∧∀x ∀x A(x)∧∀ B(y) ⇔ ∀x A(x)∧∀ B(x) ⇔ ∀x(A(x)∧B(x)) ∧∀ ∧∀ ∧ 注意运用此变换的前提是B(y)中不出现 , 如果 中不出现x,如果B(y) 注意运用此变换的前提是 中不出现 中出现x,则可使用换名规则(如果x是约束出现 是约束出现) 中出现 ,则可使用换名规则(如果 是约束出现)或者 是自由出现) 是替换规则(如果x是自由出现 先将x变为其他变换符 是替换规则(如果x是自由出现)先将x变为其他变换符 号。 对于公式∃ ∧∃y 对于公式∃x A(x)∧∃ B(y),由于∃对合取没有分配律, ∧∃ ,由于∃对合取没有分配律, 所以只能变换为: 所以只能变换为: ∨∃y ∃x A(x)∨∃ B(y) ⇔ ∃x∃y(A(x)∨ B(y)) ∨∃ ∃ ∨ 显然对于公式∀ ∧∃y ∧∀y 显然对于公式∀x A(x)∧∃ B(y)、∃x A(x)∧∀ B(y)都只能变 ∧∃ 、 ∧∀ 都只能变 换为: 换为: ∧∃y ∀x A(x)∧∃ B(y) ⇔ ∀x∃y(A(x)∧B(y))、 ∧∃ ∃ ∧ 、 ∧∀y ∃x A(x)∧∀ B(y) ⇔ ∃x∀y(A(x)∧B(y)) ∧∀ ∀ ∧

离散数学一阶逻辑笔记

离散数学一阶逻辑笔记

离散数学一阶逻辑笔记一、一阶逻辑基本概念。

(一)个体词。

1. 定义。

- 个体词是指所研究对象中可以独立存在的具体的或抽象的客体。

- 例如,在“小王是学生”中,“小王”就是个体词;在“3是有理数”中,“3”是个体词。

2. 分类。

- 个体常项:表示具体或特定的客体的个体词,常用a,b,c,·s表示。

“小李”可以用a表示。

- 个体变项:表示抽象或泛指的个体词,常用x,y,z,·s表示。

例如,“某个学生”可以用x表示。

(二)谓词。

1. 定义。

- 谓词是用来刻画个体词性质及个体词之间相互关系的词。

- 例如,在“小王是学生”中,“是学生”就是谓词,它刻画了“小王”的性质;在“3大于2”中,“大于”是谓词,它刻画了“3”和“2”之间的关系。

2. 分类。

- 谓词常项:表示具体性质或关系的谓词。

如“是偶数”是谓词常项。

- 谓词变项:表示抽象的、泛指的性质或关系的谓词。

- 一元谓词:与一个个体词相联系的谓词。

例如P(x),其中P表示“是学生”,x是个体变项。

- 二元谓词:与两个个体词相联系的谓词。

例如Q(x,y),其中Q表示“大于”,x,y是个体变项。

- n元谓词:与n个个体词相联系的谓词,一般表示为P(x_1,x_2,·s,x_n)。

(三)量词。

1. 全称量词。

- 符号表示为“∀”,表示“所有的”“任意一个”等。

- 例如,“所有的人都会呼吸”可以表示为∀ x(P(x)to Q(x)),其中P(x)表示“x是人”,Q(x)表示“x会呼吸”。

2. 存在量词。

- 符号表示为“∃”,表示“存在一个”“至少有一个”等。

- 例如,“存在一个数是偶数”可以表示为∃ x(P(x),其中P(x)表示“x是数且x是偶数”。

二、一阶逻辑公式及其解释。

(一)一阶逻辑合式公式(谓词公式)1. 原子公式。

- 设P(x_1,x_2,·s,x_n)是n元谓词,t_1,t_2,·s,t_n是项,则P(t_1,t_2,·s,t_n)称为原子公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)设 A(x):x是书柜, B(x):x是大的
C(x):x是红的, D(y):y是古老的
E(y): y是图书, F(x,y):x摆满了y
a:这只
b:那些
符号化为:A(a)∧B(a)∧C(a)∧D(b)∧E(b)∧F(a,b)
量词(quantifiers)是表示个体常项或个体变项之间数量关系 的词。
–可以是有穷集合,如{a, b, c}, {1, 2}。 –可以是无穷集合,如N,Z,R,…。
全总个体域(universe)——宇宙间一切事物组成 。
说明 本教材在论述或推理中,如果没有指明所采 用的个体域,都是使用的全总个体域。
谓词(predicate)是用来刻画个体词性质及个体词之间相 互关系的词。
3. 若个体域的注明不清楚,将造成无法确定其真值。即对于 同一个n元谓词,不同的个体域有可能带来不同的真值。
例如 对于语句“(x)(x+6 = 5)”可表示为:“有一些 x,使得x+6 = 5”。该语句在下面两种个体域下有不同的 真值:
1
一阶逻辑命题符号化
2 一阶逻辑公式及其解释
重点掌握
1
1 谓词逻辑符 号化及真值 2 谓词公式的 有效性和基本 等价公式
一般掌握
2 1Байду номын сангаас谓词公式的 解释和真值 2 自由变元和 约束变元
了解
3 谓词公式及其 解释
一阶逻辑命题符号化的三个基本要素 –个体词 –谓词 –量词
个体词:指所研究对象中可以独立存在的具体或抽 象的客体。
(1) 是无理数。 是个体常项,“是无理数”是谓词,记为F,命题符号化为 F() 。
(2) x是有理数。 x是个体变项,“是有理数”是谓词,记为G,命题符号化为 G(x)。
(3) 小王与小李同岁。 小王、小李都是个体常项,“与同岁”是谓词,记为H, 命题符号化为H(a,b) ,其中a:小王,b:小李。
(4) x与y具有关系L。 x,y都是个体变项,谓词为L,命题符号化为L(x,y)。
谓词常项:表示具体性质或关系的谓词。用大写字母表示。 如(1)、 (2) 、(3) 中谓词F、G、H。
谓词变项:表示抽象的、泛指的性质或关系的谓词。用大写 字母表示。如(4) 中谓词L。
n(n1)元谓词:P(x1,x2,…,xn)表示含n个命题变项的n元谓词
命题符号化为0元谓词的蕴涵式 G(b,a)→G(a,c)
由于G(b,a)为真,而G(a,c)为假,所以命题为假。
将命题“这只大红书柜摆满了那些古书。”符号化.
(1)设 F(x,y):x摆满了y,R(x):x是大红书柜
Q(y):y是古书, a:这只,
b:那些
符号化为:R(a)∧Q(b)∧F(a,b)
例4.1 将下列命题在一阶逻辑中用0元谓词符号化,并讨论真值。 (1)只有2是素数,4才是素数。 (2)如果5大于4,则4大于6.
解: (1)设一元谓词F(x):x是素数,a:2,b:4。
命题符号化为0元谓词的蕴涵式 F(b)→F(a)
由于此蕴涵前件为假,所以命题为真。 (2)设二元谓词G(x,y):x大于y,a:4,b:5,c:6。
P(x):x是电子科技大学的学生。
P(x)
x:个体词 P:谓词
P(x):命题函数
1. 谓词中个体词的顺序是十分重要的,不能随意变更 。如命题F(b, c)为“真”,但命题F(c, b)为“假”;
2. 一元谓词用以描述某一个个体的某种特性,而n元 谓词则用以描述n个个体之间的关系。
3. 0元谓词(不含个体词的)实际上就是一般的命题;
y表示个体域里有的个体,yG(y)表示个体域里存在个体具 有性质G等。
1. 从书写上十分不便,总要特别注明个体域; 2. 在同一个比较复杂的句子中,对于不同命题函数中的个
体可能属于不同的个体域,此时无法清晰表达; 如例 (所有的老虎都要吃人;)和(有一些人登上过月球;)
的合取
(x)P(x)∧(x)R(x) • x∈{老虎} • x∈{人}
1. 全称量词:符号化为“”
日常生活和数学中所用的“一切的”、“所有的”、“每一个”、“ 任意的”、“凡”、“都”等词可统称为全称量词。
x表示个体域里的所有个体,xF(x)表示个体域里所有个体 都有性质F。
2.存在量词:符号化为“”
日常生活和数学中所用的“存在”、“有一个”、“有的”、“至少 有一个”等词统称为存在量词。
4. 具体命题的谓词表示形式和n元命题函数(n元谓 词)是不同的,前者是有真值的,而后者不是命 题,它的真值是不确定的。如上例中S(a)是有 真值的,但S(x)却没有真值;
5. 一个n元谓词不是一个命题,但将n元谓词中的 个体变元都用个体域中具体的个体取代后,就 成为一个命题。而且,个体变元在不同的个体 域中取不同的值对是否成为命题及命题的真值 有很大的影响。

–n=1时,一元谓词——表示x1具有性质P。 –n≥2时,多元谓词——表示x1,x2,…,xn具有关系P。
0元谓词:不含个体变项的谓词。如F(a)、G(a,b)、
P(a1,a2,…,an)。
n元谓词是命题吗? 思考 不是,只有用谓词常项取代P,用个体常项取代
x1,x2,…,xn时,才能使n元谓词变为命题。
(2)苏格拉底是人。
(3)苏格拉底是要死的。
P:所有的人都是要死的; Q:苏格拉底是人。 R:苏格拉底是要死的。
可见,P,Q,R为不同的命题,无法体现三者相互之间的 联系。
问题在于这类推理中,各命题之间的逻辑关系不是体现 在原子命题之间,而是体现在构成原子命题的内部成分 之间。对此,命题逻辑将无能为力。
举例
–命题:电子计算机是科学技术的工具。 个体词:电子计算机。
–命题:他是三好学生。 个体词:他。
说明 个体词一般是充当主语的名词或代词。
个体常项:表示具体或特定的客体的个体词,用小写字母a, b,c,…表示。
个体变项:表示抽象或泛指的客体的个体词,用x,y,z,…表
示。
个体域(或称论域):指个体变项的取值范围。
离散数学
本章的主要内容
– 一阶逻辑基本概念、命题符号化 – 一阶逻辑公式、解释及分类
本章与后续各章的关系
–克服命题逻辑的局限性 –是第五章的先行准备
命题逻辑能够解决的问题是有局 限性的。只能进行命题间关系的推 理,无法解决与命题的结构和成分 有关的推理问题。
例如(著名的苏格拉底三段论)
(1)所有的人都是要死的;
相关文档
最新文档