1.板件的稳定和屈曲后强度的利用

合集下载

钢结构基础课后习题答案

钢结构基础课后习题答案

4钢结构基础(第二版)课后习题答案(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《钢结构基础》习题参考答案题:答:(1)按制作方法的不同分为型钢截面和组合截面两大类。

型钢截面又可分为热轧型钢和冷弯薄壁型钢两种。

组合截面按连接方法和使用材料的不同,可分为焊接组合截面(焊接截面)、铆接组合截面、钢和混凝土组合截面等。

(2)型钢和组合截面应优先选用型钢截面,它具有加工方便和成本较低的优点。

题:解:由附录1中附表1可得I20a 的截面积为3550mm 2,扣除孔洞后的净面积为3249275.213550A n =⨯⨯-=mm 2。

工字钢较厚板件的厚度为,故由附录4可得Q235钢材的强度设计值为215f =N/mm 2,构件的压应力为2155.138324910450A N 3n <≈⨯==σN/mm 2,即该柱的强度满足要求。

新版教材工字钢为竖放,故应计入工字钢的自重。

工字钢I20a 的重度为m ,故19712.19.8169.27N g =⨯⨯⨯=N ; 构件的拉应力为215139.113249197110450A N N 3n g <≈+⨯=+=σN/mm 2,即该柱的强度满足要求。

题:解:1、初选截面 假定截面钢板厚度小于16mm ,强度设计值取215f =,125f v =。

可变荷载控制组合:24kN .47251.410.22.1q =⨯+⨯=,永久荷载控制组合:38.27kN 250.71.410.235.1q =⨯⨯+⨯=简支梁的支座反力(未计梁的自重)129.91kN ql/2R ==,跨中的最大弯矩为m 63kN .1785.547.2481ql 81M 22max ⋅≈⨯⨯==,梁所需净截面抵抗矩为 36x max nx 791274mm 2151.051063.178f M W ≈⨯⨯==γ, 梁的高度在净空方面无限值条件;依刚度要求,简支梁的容许扰度为l/250,参照表3-2可知其容许最小高度为229mm 24550024l h min ≈==, 按经验公式可得梁的经济高度为347mm 3007912747300W 7h 33x e ≈-=-=,由净截面抵抗矩、最小高度和经济高度,按附录1中附表1取工字钢 I36a ,相应的截面抵抗矩3nx 791274mm 875000W >=,截面高度229mm 360h >=且和经济高度接近。

钢结构基本原理作业解答

钢结构基本原理作业解答

《钢结构基本原理》作业判断题2、钢结构在扎制时使金属晶粒变细,也能使气泡、裂纹压合。

薄板辊扎次数多,其性能优于厚板。

正确错误答案:正确1、目前钢结构设计所采用的设计方法,只考虑结构的一个部件,一个截面或者一个局部区域的可靠度,还没有考虑整个结构体系的可靠度.答案:正确20、柱脚锚栓不宜用以承受柱脚底部的水平反力,此水平反力应由底板与砼基础间的摩擦力或设置抗剪键承受。

答案:正确19、计算格构式压弯构件的缀件时,应取构件的剪力和按式计算的剪力两者中的较大值进行计算。

答案:正确18、加大梁受压翼缘宽度,且减少侧向计算长度,不能有效的增加梁的整体稳定性。

答案:错误17、当梁上翼缘受有沿腹板平面作用的集中荷载,且该处又未设置支承加劲肋时,则应验算腹板计算高度上边缘的局部承压强度。

答案:正确16、在格构式柱中,缀条可能受拉,也可能受压,所以缀条应按拉杆来进行设计。

答案:错误15、在焊接连接中,角焊缝的焊脚尺寸愈大,连接的承载力就愈高.答案:错误14、具有中等和较大侧向无支承长度的钢结构组合梁,截面选用是由抗弯强度控制设计,而不是整体稳定控制设计。

答案:错误13、在主平面内受弯的实腹构件,其抗弯强度计算是以截面弹性核心几乎完全消失,出现塑性铰时来建立的计算公式。

答案:错误12、格构式轴心受压构件绕虚轴稳定临界力比长细比相同的实腹式轴心受压构件低。

原因是剪切变形大,剪力造成的附加绕曲影响不能忽略。

答案:正确11、轴心受力构件的柱子曲线是指轴心受压杆失稳时的临界应力与压杆长细比之间的关系曲线。

答案:正确10、由于稳定问题是构件整体的问题,截面局部削弱对它的影响较小,所以稳定计算中均采用净截面几何特征。

答案:错误9、无对称轴截面的轴心受压构件,失稳形式是弯扭失稳。

答案:正确8、高强度螺栓在潮湿或淋雨状态下进行拼装,不会影响连接的承载力,故不必采取防潮和避雨措施。

答案:错误7、在焊接结构中,对焊缝质量等级为3级、2级焊缝必须在结构设计图纸上注明,1级可以不在结构设计图纸中注明。

【考研 钢结构复试题库】钢结构简答题3

【考研 钢结构复试题库】钢结构简答题3

1. 设计拉弯和压弯构件时应计算的内容?答:拉弯构件需要计算:强度和刚度(限制长细比);压弯构件则需要计算:强度、整体稳定(弯矩作用平面内稳定和弯矩作用平面外稳定)、局部稳定和刚度(限制长细比)。

2. 什么是梁的整体失稳现象?答:梁主要用于承受弯矩,为了充分发挥材料的强度,其截面通常设计成高而窄的形式。

当荷载较小时,仅在弯矩作用平面内弯曲,当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向弯曲和扭转,并丧失继续承载的能力,这种现象称为梁的弯扭屈曲或整体失稳。

10.实腹式轴心受压构件进行截面选择时,应主要考虑的原则是什么?答:(1)面积的分布尽量开展,以增加截面的惯性矩和回转半径,提高柱的整体稳定承载力和刚度;(2)两个主轴方向尽量等稳定,以达到经济的效果;(3)便于与其他构件进行连接,尽可能构造简单,制造省工,取材方便。

16.什么是梁的内力重分布?如何进行塑性设计?答:超静定梁的截面出现塑性铰后,仍能继续承载,随着荷载的增大,塑性铰发生塑形转动,结构内力重新分布,是其他截面相继出现塑性1铰,直至形成机构,这一过程称为梁的内力重分布。

塑形设计只用于不直接承受动力荷载的固端梁和连续梁,是利用内力塑性重分布,充分发挥材料的潜力,塑性铰弯矩按材料理想弹塑性确定,忽略刚才应变硬化的影响。

17.截面塑性发展系数的意义是什么?试举例说明其应用条件答:意义:用来表证截面所允许的塑性发展程度应用条件:(1)需计算疲劳的梁取1.0 (2)承受动力作用时取1.0 (3)压弯构件受压翼缘的自由外伸宽度与其厚度之比18.影响轴心受压杆件的稳定系数ψ的因素答:长细比、截面形式、加工条件、初弯曲、残余应力21.什么情况下不需要计算工字钢简支梁的整体稳定?答:有铺板(各种钢筋混凝土板和钢板)密铺在梁的受压翼缘上并与其牢固相连接,能阻止梁受压翼缘的侧向位移时H型钢或工字型截面简支梁受压翼缘的自由长度L1与其宽度b1之比不超过规定数值时。

钢结构基础第四章课后习题答案

钢结构基础第四章课后习题答案

第四章4.7 试按切线模量理论画出轴心压杆的临界应力和长细比的关系曲线。

杆件由屈服强度2y f 235N mm =的钢材制成,材料的应力应变曲线近似地由图示的三段直线组成,假定不计残余应力。

320610mm E N =⨯2(由于材料的应力应变曲线的分段变化的,而每段的变形模量是常数,所以画出 cr -σλ 的曲线将是不连续的)。

解:由公式 2cr 2Eπσλ=,以及上图的弹性模量的变化得cr -σλ 曲线如下:4.8 某焊接工字型截面挺直的轴心压杆,截面尺寸和残余应力见图示,钢材为理想的弹塑性体,屈服强度为 2y f 235N mm =,弹性模量为 320610mm E N =⨯2,试画出 cryy σ-λ——无量纲关系曲线,计算时不计腹板面积。

f yyf (2/3)f y(2/3)f yx解:当 cr 0.30.7y y y f f f σ≤-=, 构件在弹性状态屈曲;当 cr 0.30.7y y y f f f σ>-=时,构件在弹塑性状态屈曲。

因此,屈曲时的截面应力分布如图全截面对y 轴的惯性矩 3212y I tb =,弹性区面积的惯性矩 ()3212ey I t kb =()322232232212212ey cryy y y yI t kb E E E k I tb πππσλλλ=⨯=⨯= 截面的平均应力 2220.50.6(10.3)2y ycr y btf kbt kf k f btσ-⨯⨯==-二者合并得cry y σ-λ——的关系式cry cry342cry σ(0.0273)σ3σ10y λ+-+-= 画图如下4.10 验算图示焊接工字型截面轴心受压构件的稳定性。

钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。

已知构件承受的轴心压力为N=1500KN 。

0.6f yfyλσ0.20.40.60.81.0cry解:已知 N=1500KN ,由支撑体系知对截面强轴弯曲的计算长度 ox =1200cm l ,对弱轴的计算长度 oy =400cm l 。

钢箱梁入门系列漫谈(七)钢结构核心问题强度、稳定、疲劳

钢箱梁入门系列漫谈(七)钢结构核心问题强度、稳定、疲劳

钢箱梁入门系列漫谈(七)钢结构核心问题强度、稳定、疲劳美桥欣赏意大利 Constitution Bridge钢结构最常见的三种破坏形式对应着三大核心问题:强度、稳定和疲劳。

1)受拉构件的强度破坏(屈服)80+139+80 上承式钢桁组合梁(破坏前)80+139+80 上承式钢桁组合梁(破坏后)2)受压构件的失稳(屈曲)3)受拉(拉压)构件的疲劳开裂Silver Bridge强度构件在稳定平衡状态下由荷载引起的最大应力是否超过材料的极限强度。

钢材受拉破坏内因是钢材大范围的屈服,外因是荷载使构件内力过大,以屈服点作为制定截面最大应力限制依据。

稳定只要构件受压,终究不能离开稳定问题的困扰,这也是拱桥跨径小于斜拉桥、斜拉桥跨径小于悬索桥的主体原因。

稳定实质上是外荷载与结构内部抵抗力间的不平衡状态,在微小干扰下结构变形急剧增长的状态,是一个变形问题。

内因是材料特性、构件长细比、支撑条件、初始偏心、残余应力。

外因是荷载使受力构件所受到的压力,以构件的压溃强度为依据,借此制定应力限值,并以荷载使该构件所产生的压应力不大于该限值。

稳定问题包括整体稳定与局部稳定。

1)局部稳定受压构件通过宽厚比控制局部稳定,宽厚比过大,设置加劲肋解决。

加劲肋设置后根据加劲肋的刚柔性计算局部稳定折减面积,得到局部稳定折减后的验算面积。

如下图(《公路钢结构桥梁设计规范》(JTG D64-2015)图5.1.7)。

2)整体稳定受压构件整体稳定转化为类似强度验算,以轴心受压杆件为例,将验算面积(局部稳定折减后的有效面积)乘以一个小于1的系数(此系数根据杆件截面类型及相对长细比根据下图得到),控制总体稳定应力小于容许应力。

稳定折减系数如下图(《公路钢结构桥梁设计规范》(JTG D64-2015)附录A)。

疲劳只要受拉,构件就有疲劳问题,裂纹随着拉应力的变化扩展,所以受压构件不需检算疲劳。

受拉或者是拉压交替就会有裂纹扩展的危险,就需检算疲劳稳定。

钢结构设计原理第4章(2) 稳定性(整体)

钢结构设计原理第4章(2) 稳定性(整体)
y是由0y确定, b= 1.0, = 0.7
﹡缀材计算 按实际剪力和弯曲失稳剪力的较大值计算
V Af 85
fy 235
4.6 板件的稳定和屈曲后强度的利用
4.6.1 轴心受压构件的板件稳定
﹡均匀受压板件的屈曲现象
①板件宽厚比 原则: ● 允许板件先屈曲 ● 不允许板件先于构件整体屈曲,临界应力相等 (等稳原则)
是构件在弯矩作用平面内的长细比,
当<30 =30; 当>100时,取=100
横隔(每个单元不少于2个,间距不大于8m)
﹡翼缘的稳定与梁相同
不考虑塑性,
b1 / t 15 235 fy
部分考虑塑性,
b1 / t 13 235 fy
f
x A W1x 1 x N NEx
W1x=Ix /y0
x 是由0x确定的b类截面轴心压杆稳定系数。
﹡单肢计算(弯矩绕虚轴作用)
单肢1 N1 =Mx /a+N z2 /a
单肢2 N2 =N N1
按轴心受压构件计算。 注意计算长度取值。
﹡弯矩作用平面外稳定计算
●弯矩绕虚轴作用:单肢已经验算 ●弯矩绕实轴作用:按箱形截面的平面外计算,
c=0时,可不配置;否则按构造配置0.5h0≤a≤2h0
2、对于 h0 tw > 80 235 fy 的梁,一般应配置横
向加劲肋并按要求计算局部稳定。
3、h0 tw > 150 235 fy 时(受压翼缘扭转未约束),
h0 tw > 170 235 fy 或(受压翼缘扭转受约束),
应配置纵横加劲肋,必要时配置短加劲肋(下图)。
D / t 23500/ fy
4.6.2 受弯构件的板件稳定

钢结构考试简答填空

钢结构考试简答填空

2.提高钢梁整体稳定性的有效途径是加强受压翼缘和减少侧向支承点间的距离(或增加侧向支承点)3.高强度螺栓预拉力设计值与 螺栓材质 和 螺栓有效面积 有关。

4.钢材的破坏形式有 塑性破坏和 脆性破坏 。

6.高强度螺栓预拉力设计值与 性能等级 和 螺栓直径有关。

7.角焊缝的计算长度不得小于8hf ,也不得小于 40mm ;其计算长度不宜大于 60hf 。

8.轴心受压构件的稳定系数φ与 钢号 、截面类型 和 长细比有关。

10.影响钢材疲劳的主要因素有应力集中,应力幅或应力比,应力循环次数11.纯弯曲的弯矩图为 矩形,均布荷载的弯矩图为 抛物线,跨中央一个集中荷载的弯矩图为三角形。

13.钢结构设计的基本原则是 技术先进,经济合理,安全适用,确保质量14.按焊缝和截面形式不同,直角焊缝可分为 普通缝,平坡缝,深熔缝,凹面缝15.对于轴心受力构件,型钢截面可分为热轧型钢和 冷弯薄壁型钢;组合截面可分为 实腹式组合截面和 格构式组合截面16.影响钢梁整体稳定的主要因素有 荷载类型,荷载作用点位置,梁的截面形式,侧向支承点的位置和距离,梁端支承条件1.钢结构设计中,承载能力极限状态的设计内容包括:静力强度、动力强度、稳定3.在螺栓的五种破坏形式中,其中_螺栓杆被剪断、板件被挤压破坏 、板件净截面强度不够 须通过计算来保证。

4.梁的强度计算包括_弯曲正应力、剪应力、 局部压应力、折算应力5.轴心受压格构式构件绕虚轴屈曲时,单位剪切角γ1不能忽略,因而绕虚轴的长细比要采用换算长细比λ6提高轴心受压构件临界应力的措施有加强约束、减小构件自由长度、提高构件抗弯能力8.实腹梁和柱腹板局部稳定的验算属于_承载能力_极限状态,柱子长细比的验算属于_正常使用_极限状态,梁截面按弹性设计属于_承载能力_极限状态。

9.螺栓抗剪连接的破坏方式、螺栓剪断、孔壁承压破坏、板件拉断、螺栓弯曲、板件剪坏10.为防止梁的整体失稳,可在梁的 上 翼缘密铺铺板。

门式刚架设计要点

门式刚架设计要点

门式钢架设计要点轻型门式刚架房屋结构在我国的应用大约始于20世纪80年代初期。

近十多年来得到迅速的发展,目前国内每年有上千万平方米的轻钢建筑工程,主要用于轻型的厂房、仓库、体育馆、展览厅及活动房屋、加层建筑等。

单层轻型门式刚架结构是指以轻型焊接H形钢(等截面或变截面)、热轧H形钢(等截面)或冷弯薄壁型钢等构成的实腹式门式刚架或格构式门式刚架作为主要承重骨架,用冷弯薄壁型钢(槽形、Z形等)做檩条、墙梁;以压型金属板(压型钢板、压型铝板)做屋面、墙面;采用聚苯乙烯泡沫塑料、硬质聚氨酯泡沫塑料、岩棉、矿棉、玻璃棉等作为保温隔热材料并适当设置支撑的一种轻型房屋结构体系。

在目前的工程实践中,门式刚架的梁、柱多采用焊接H形变截面构件,单跨刚架的梁柱节点采用刚接,多跨者大多刚接和铰接并用;柱脚可与基础刚接或铰接;围护结构多采用压型钢板;保温隔热材料多采用玻璃棉。

1 单层轻型门式刚架结构的特点和设计中的注意事项1.1 单层轻型门式刚架结构相对于钢筋混凝土结构具有以下特点:(1)质量轻围护结构采用压型金属板、玻璃棉及冷弯薄壁型钢等材料组成,屋面、墙面的质量都很轻。

根据国内工程实例统计,单层轻型门式刚架房屋承重结构的用钢量一般为10~30kg/m2 ,在相同跨度和荷载情况下自重仅约为钢筋混凝土结构的1/20~1/30。

由于结构质量轻,相应地基础可以做得较小,地基处理费用也较低。

同时在相同地震烈度下结构的地震反应小。

但当风荷载较大或房屋较高时,风荷载可能成为单层轻型门式刚架结构的控制荷载。

(2)工业化程度高,施工周期短门式刚架结构的主要构件和配件多为工厂制作,质量易于保证,工地安装方便;除基础施工外,基本没有湿作业;构件之间的连接多采用高强度螺栓连接,安装迅速。

(3)综合经济效益高门式刚架结构通常采用计算机辅助设计,设计周期短;原材料种类单一;构件采用先进自动化设备制造;运输方便等。

所以门式刚架结构的工程周期短,资金回报快,投资效益相对较高。

腹板屈曲后强度计算

腹板屈曲后强度计算

在钢结构设计中,对工字型截面受弯构件而言,由荷载产生的弯矩主要由翼缘承担,腹板主要承担剪力,腹板的抗弯作用远不如翼缘有效,增大腹板的高度可显著增加翼缘的抗弯能力。

因而,先进的设计方法是采用高(宽)厚比较大的腹板,从而获得最佳的经济效益。

此做法虽然会出现腹板的高(宽)厚比超过按小挠度理论确定的局部稳定所要求的限度,引发腹板的局部屈曲,但并不表明构件丧失了承载能力,而是有相当可观的屈曲后强度可以利用。

规范对于承受静力荷载和间接承受动力荷载的组合梁宜考虑腹板屈曲后强度,按考虑腹板屈曲后强度来计算梁的抗剪和抗弯承载力,而不再验算腹板的局部稳定。

对于直接承受动力荷载的吊车梁及类似构件或不考虑腹板屈曲后强度的焊接工字梁,要求按规定配置加劲肋,并验算腹板的局部稳定性。

规范采用有效截面法考虑腹板屈曲后强度,同时也是符合钢结构设计规范4.3.1条。

天津西站无站台柱雨棚工程主体结构大部分构件(拱形钢梁)均采用了腹板高而薄的焊接H 型工字钢梁和焊接箱型钢梁。

充分利用了腹板屈曲后强度、有效截面的概念,既得到了很大的经济效益,又达到了建筑美观的要求。

西站雨棚整个结构体系为纵向(顺股道向)刚架,横向(垂直股道向)为多跨拱形钢梁,基本柱网为30mx21.5m。

雨棚分东西两部分(Y -1至Y -6轴和Y -7至Y -12轴),两部分的宽度均为138m,长度均为290.75m,总高度为18m。

东西雨棚均在纵向设置温度缝二道,在Y -M 与Y -L 轴之间设置一道温度缝,在Y -C 与Y -D 轴之间设置一道温度缝,最大温度区段长度为150m ,宽度为138m。

雨棚纵向钢梁采用两榀实腹箱形钢梁,截面规格为Φ1500x300x12x14。

中部横向钢梁为变截面拱形实腹工字钢梁,截面分为Η(1500~500)x220x8x12和Η(1700~1500)x220x12x12两种规格。

边部横向钢梁为焊接变截面箱形钢梁加T形钢结构,规格为Φ(1500~500)x 220x 8x 12和T350x220x6x8。

钢结构稳定问题概述钢结构承载力极限状态的六种情况1

钢结构稳定问题概述钢结构承载力极限状态的六种情况1

第二章钢结构稳定问题概述钢结构承载力极限状态的六种情况:(1)整个结构或其一部分作为刚体失去平衡(如倾覆);(2)结构构件或连接因材料强度被超过而破坏;(3)结构转变为机动体系(倒塌);(4)结构或构件丧失稳定(屈曲等);(5)结构出现过度的塑性变形,而不适于继续承载;(6)在重复荷载作用下构件疲劳断裂。

在这些极限状态中,稳定性、抗脆断和疲劳的能力都对钢结构设计有重要意义。

2.1钢结构的失稳破坏稳定性是钢结构的一个突出问题。

在各种类型的钢结构中,都会遇到稳定问题。

对这个问题处理不好,将造成不应有的损失。

现代工程史上不乏因失稳而造成的钢结构事故,其中影响很大的是1907年加拿大魁北克一座大桥在施工中破坏,9000t钢结构全部坠入河中,桥上施工的人员有75人遇难。

破坏是由悬臂的受压下弦失稳造成的。

下弦是重型格构式压杆,当时对这种构件还没有正确的设计方法。

缀条用得过小是出现事故的主要原因。

其他形式的结构,如贮气柜立柱,运载桥的受压上弦和输电线路支架等,也都出现过失稳事故。

设计经验不足、性能还不十分清楚的新结构形式,往往容易出现失稳破坏事故。

大跨度箱形截面钢梁桥就曾在1970年前后出现多次事故。

这些箱形梁设计上存在的主要问题之一是对有纵加劲的受压板件稳定计算没有考虑几何缺陷和残余应力的不利作用。

认真总结失败的教训,结合进行必要的研究工作,就能得出规律性的认识,以指导以后的设计。

轴心压杆的扭转屈曲,是人们了解得还不多的一个问题。

美国哈特福特城的体育馆网架结构,平面尺寸为92m x 110m,突然于1978年破坏而落到地上。

破坏起因虽然可以肯定是压杆屈曲,但究竟为何屈曲还是众说纷纭。

杆件的截面为四个角钢组成的十字形。

这种截面抗扭刚度低,有人认为扭转屈曲是起因,也有人认为起支撑作用的杆有偏心,未能起到预期的减少计算长度的作用才是起因。

文献[2.16]经过深入分析,阐明这两个因素都起相当作用,并提出了偏心支撑对增强压杆稳定性的计算方法。

钢结构填空简答题

钢结构填空简答题

二、填空题1. 钢结构设计规范中,钢材的强度设计值是材料强度的标准值(除以)抗力分项系数。

2. 鉴定钢材在弯曲状态下的塑性应变能力和钢材质量的综合指标是(冷弯性能合格)。

3. 承重结构的钢材应具有(极限抗拉强度)、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有(碳)含量的合格保证。

4. 角焊缝按受力的方向可分为(正面角焊缝) 、(侧面角焊缝)和(斜焊缝)。

5.在加引弧板施焊的情况下,所有受压、受剪的对接焊缝,以及受拉的(1)和2级焊缝,均与母材等强,不用计算;只有受拉的(3级)焊缝才需计算。

6. 轴心受拉构件与轴心受压构件相比,轴心受拉构件设计时不需要验算构件的(稳定)。

7.钢结构计算的两种极限状态是(承载能力极限状态) 和(正常使用极限状态。

)。

8. 钢材的破坏形式有(塑形破坏)和(脆性破坏)。

9.建筑钢材的主要机械性能指标是(屈服点)、(抗拉强度)、(伸长率))、(冲击韧性)、和(冷弯性能)。

10.钢结构的连接方法有( 焊接连接) 、(铆钉连接)和(螺栓连接)。

11.角焊缝的计算长度不得小于(8hf),也不得小于(40mm) 。

侧面角焊缝承受静载时,其计算长度不宜大于(60 hf) 。

13.轴心压杆可能的屈曲形式有(弯曲屈曲)、(扭转屈曲)和(弯扭屈曲) 。

14.轴心受压构件的稳定系数与(残余应力) 、(初弯曲) 、(初偏心)和(长细比) 有关。

15. 提高钢梁整体稳定性的有效途径是(加强受压翼缘) 和(增加侧向支承点)。

16.焊接组合工字梁,翼缘的局部稳定常采用**(宽厚比) 的方法来保证,而腹板的局部稳定则常采用设置(设置加劲肋)的方法来解决。

17. 钢结构设计规范中,荷载设计值为荷载标准值(乘以)分项系数。

18. 冷弯实验是判别钢材在弯曲状态下的(塑性应变能力)和钢材质量的综合指标。

19.角焊缝的焊脚尺寸不宜大于(较薄焊件厚度的1.2倍, 钢管结构除外),也不得小于(6mm)。

钢结构设计原理复习题及参考答案

钢结构设计原理复习题及参考答案

中南大学网络教育课程考试复习题及参考答案钢结构设计原理一、填空题:1.钢结构计算的两种极限状态是和。

2.提高钢梁整体稳定性的有效途径是和。

3.高强度螺栓预拉力设计值与和有关。

4.钢材的破坏形式有和。

5.焊接组合工字梁,翼缘的局部稳定常采用的方法来保证,而腹板的局部稳定则常采用的方法来解决。

6.高强度螺栓预拉力设计值与和有关。

7.角焊缝的计算长度不得小于,也不得小于;侧面角焊缝承受静载时,其计算长度不宜大于。

8.轴心受压构件的稳定系数φ与、和有关。

9.钢结构的连接方法有、和。

10.影响钢材疲劳的主要因素有、和。

11.从形状看,纯弯曲的弯矩图为,均布荷载的弯矩图为,跨中央一个集中荷载的弯矩图为。

12.轴心压杆可能的屈曲形式有、和。

13.钢结构设计的基本原则是、、和。

14.按焊缝和截面形式不同,直角焊缝可分为、、和等。

15.对于轴心受力构件,型钢截面可分为和;组合截面可分为和。

16.影响钢梁整体稳定的主要因素有、、、和。

二、问答题:1.高强度螺栓的8.8级和10.9级代表什么含义?2.焊缝可能存在哪些缺陷?3.简述钢梁在最大刚度平面内受荷载作用而丧失整体稳定的现象及影响钢梁整体稳定的主要因素。

4.建筑钢材有哪些主要机械性能指标?分别由什么试验确定?5.什么是钢材的疲劳?6.选用钢材通常应考虑哪些因素?7.在考虑实际轴心压杆的临界力时应考虑哪些初始缺陷的影响?8.焊缝的质量级别有几级?各有哪些具体检验要求?9.普通螺栓连接和摩擦型高强度螺栓连接,在抗剪连接中,它们的传力方式和破坏形式有何不同?10.在计算格构式轴心受压构件的整体稳定时,对虚轴为什么要采用换算长细比?11.轴心压杆有哪些屈曲形式?12.压弯构件的局部稳定计算与轴心受压构件有何不同?13.在抗剪连接中,普通螺栓连接和摩擦型高强度螺栓连接的传力方式和破坏形式有何不同?14.钢结构有哪些连接方法?各有什么优缺点?15.对接焊缝的构造有哪些要求?16.焊接残余应力和焊接残余变形是如何产生的?焊接残余应力和焊接残余变形对结构性能有何影响?减少焊接残余应力和焊接残余变形的方法有哪些?17.什么叫钢梁丧失整体稳定?影响钢梁整体稳定的主要因素是什么?提高钢梁整体稳定的有效措施是什么?18.角焊缝的计算假定是什么?角焊缝有哪些主要构造要求?19.螺栓的排列有哪些构造要求?20.什么叫钢梁丧失局部稳定?怎样验算组合钢梁翼缘和腹板的局部稳定?三、计算题:1.一简支梁跨长为5.5m,在梁上翼缘承受均布静力荷载作用,恒载标准值为10.2kN/m(不包括梁自重),活载标准值为25kN/m,假定梁的受压翼缘有可靠侧向支撑。

钢结构课程设计1(2024版)

钢结构课程设计1(2024版)

(10)
式中
φy——轴心受压构件弯矩作用平面外的稳定系数,以小
头为准,按GB 50017规范的规定采用,计算长度
取侧向支承点的距离。若各段线刚度差别较大,
Байду номын сангаас
确定计算长度时可考虑各段间的相互约束;
N0——所计算构件段小头截面的轴向压力; M1——所计算构件段大头截面的弯矩; βt——等效弯矩系数,按下列公式确定:
当λρ≤0.8时
ρ=1
当0.8<λρ≤1.2时 ρ=1-0.9(λρ-0.8)
当λρ>1.2时
ρ=0.64-0.24(λρ-1.2)
式中λρ——与板件受弯、受压有关的参数,按下式计算。
式中 κσ——板件在正应力作用下的屈曲系数。
(3) (4)
β=σ2/σl为腹板边缘正应力比值,以压为正,拉为负, 1≥β≥-1;
第二种方法普遍适用于各种情况,并且适合上机计算;
第三种方法则要求有二阶分析的计算程序。
A查表法
(A)柱脚铰接单跨刚架楔形柱的μγ可由表1-2查得。表中系 数 相 当 于 把 GB 50018 规 范 附 表 A3.2 的 μ 系 数 乘

,0.85是考虑柱脚实际上有一定转动约
束,
则是将数值换算成以小头为准
符合下列要求:
当V ≤ 0.5Vd时 当0.5Vd < V ≤ Vd时
M ≤ Me
当截面为双轴对称时
Mf = Af(hw+t)f
式中 Mf——两翼缘所承担的弯矩; We——构件有效截面最大受压纤维的截面模量; Me——构件有效截面所承担的弯矩,Me=Wef; Af——构件翼缘的截面面积; Vd——腹板抗剪承载力设计值。

构件承载能力稳定性

构件承载能力稳定性

单向均匀受压薄板弹性阶段的临界力及临界应力的 计算公式统一表达为:
Ncr
2D
b2
K
cr
Ncr 1 t
2 DK
b2t
K 2 E 12 1 2
t
2
b
式中: 板边缘的弹性约束系数。
弹性嵌固的程度取决于相互连接的板件的刚度。对于工字形 截面的轴心压杆,一个翼缘的面积可能接近于腹板面积的二 倍,翼缘的厚度比腹板大得多,而宽度又小得多,因此常常是翼 缘对腹板有嵌固作用,计算腹板的屈曲应力时考虑了残余应力的 影响后可用嵌固系数 =1.3。相反,腹板对翼缘不起嵌固作用.
mx ny
w
Amn sin
m1 n1
sin a
b
将此式代入上式,
并引入边界条件: 当x 0和x a时:w 0 当y 0和y b时:w 0
2w x 2
2w y 2
0
2w y 2
2w x 2
0
求解可以得到板的屈曲力为:
N crx
2 D
m a
a m
n2 b2
2
式中 a、b 受压方向板的长度和板的宽度; m、n 板屈曲后纵向和横向的半波数。
Et
E
0.101321 0.02482
fy E
fy E
1.0
(二) 轴心受压构件的局部稳定的验算
对于局部屈曲问题,通常有两种考虑方法: 一是不允许板件屈曲先于构件整体屈曲,目前一 般钢结构的规定就是不允许局部屈曲先于整体屈曲来 限制板件宽厚比。 另一种做法是允许板件先于整体屈曲,采用有效 截面的概念来考虑局部屈曲对构件承载力的不利影响, 冷弯薄壁型钢结构,轻型门式刚架结构的腹板就是这 样考虑的。
由于临界荷载是微弯状态的最小荷载,即n=1(y

钢构件屈曲后强度设计适用方法

钢构件屈曲后强度设计适用方法

0引言在钢结构工程设计中,为了结构设计的合理性、经济性,经常会遇到钢结构板件屈曲后强度的应用与否问题,不少工程技术人员对板件屈曲后强度应用于设计的适用条件和各类板件有效截面的计算规则等设计方法不太熟练,本文对普通钢结构、冷弯薄壁型钢结构和门式刚架轻型房屋钢结构中各类不同受力形式的构件有效截面计算,屈曲后强度应用的具体设计特点进行了梳理,通过对照和比较,更容易明了和掌握他们的设计方法和不同之处。

1普通钢结构屈曲后强度设计《钢结构设计标准》的结构屈曲后强度分受弯构件、轴心受压构件和压弯构件,下面分别阐述3种受力形式的设计方法。

1.1受弯构件屈曲后强度设计《钢标》规定承受静力或间接承受动力荷载的焊接截面梁可考虑腹板屈曲后强度,腹板高厚比h0/t w<80εk,若无局部压应力,可不设加劲肋;腹板高厚比h0/t w>80εk,若不考虑腹板屈曲后强度,宜配置横向加劲肋,并应计算腹板的稳定,反之,意味着考虑腹板屈曲后强度,腹板可能出现局部失稳,按6.4.1条验算腹板屈曲后弯剪强度是否满足规范。

腹板受压高厚比h c/t w决定了腹板是否屈曲,并由h c/t w计算得到腹板受压区有效高度系数,进一步得到有效截面模量。

按最不利考虑,由公式λn,b=2h c/t w/138/εk,λn,b>0.85,腹板屈曲,计算有效截面,则对Q235来说,当h c/t w>58.65,双轴对称截面相当于腹板高厚比h0/t w>117时,考虑腹板屈曲,与应力大小无关,规范受弯构件S4级腹板高厚比限值是124εk,与此值相当。

受弯构件可考虑屈曲后强度设计时,当腹板高厚比h0/t w>80εk,未设加劲肋,可考虑腹板屈曲后强度设计,按规范6.4.1条验算腹板屈曲后弯剪强度是否满足规范,此中计算λn,b,当λn,b<0.85时,即截面等级为S1~S4取全截面模量,λn,b>0.85时,截面等级为S5,腹板取有效截面计算。

合工大钢结构课后思考题答案

合工大钢结构课后思考题答案

1.钢结构对钢材性能有哪些要求?答:较高的强度,较好的变形能力,良好的工艺性能。

2.钢材的塑性破坏和脆性破坏有何区别?答:塑性破坏是由于变形过大,超过了材料或构件可能的应变能力而产生的,而且仅在构件的应力达到了钢材的抗拉轻度fu后才发生。

破坏前构件产生较大的塑性变形,断裂后的端口呈纤维状,色泽发暗。

在塑性破坏前,构件发生较大的塑性变形,且变形持续的时间较长,容易及时被发现而采取补救措施,不致引起严重后果。

另外,塑性变形后出现内力重分布,使结构中原先受力不等的部分应力趋于均匀,因而提高了结构的承载能力。

脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢才的屈服点fy,断裂从应力集中处开始。

冶金和机械加工过程中产生的缺陷,特别是缺口和裂纹,常是断裂的发源地。

破坏前没有任何预兆,无法及时察觉和采取补救措施,而且个别构件的断裂常会引起整体结构塌毁,后果严重,损失较大。

3.刚才有哪几项主要性能,分别可用什么指标来衡量?答:屈服点fy,抗拉强度fy,伸长率δ,冷弯性能,冲击韧性4.影响钢材性能的主要性能有哪些?答:化学成分的影响。

冶炼、浇注、轧制过程及热处理的影响。

钢材的硬化。

温度的影响。

应力集中的影响。

重复荷载作用的影响。

5.简述化学元素对钢材性能有哪些影响?答;碳直接影响钢材的强度、塑性、韧性和可焊性等。

硫和磷降低钢材的塑性。

韧性。

可焊性和疲劳强度。

氧使钢热脆,氮使钢冷脆。

硅和锰是脱氧剂,使钢材的强度提高。

钒和钛是提高钢的强度和抗腐蚀性又不显著降低钢的塑性。

铜能提高钢的强度和抗腐蚀性能,但对可焊性不利。

6.什么是冷作硬化和时效硬化?答:钢材受荷超过弹性范围以后,若重复地卸载加载,将使钢材弹性极限提高,塑性降低,这种现象称为钢材的应变硬化或冷作硬化。

轧制钢材放置一段时间后,强度提高,塑性降低,称为时效硬化。

7简述温度对钢材的主要性能有哪些影响?答:温度升高,钢材强度降低,应变增大,反之温度降低,钢材强度会略有增加,塑性和韧性却会降低而变脆。

房屋钢结构复习题及参考答案

房屋钢结构复习题及参考答案

1.门式刚架轻型房屋屋面坡度宜取1/20-1/8,在雨水较多的地区取其中的较大值。

2.在设置柱间支撑的开间,应同时设置屋盖横向支撑,以构成几何不变体系。

3.当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置刚性系杆。

4.冷弯薄壁构件设计时,为了节省钢材,允许板件受压屈曲,并利用其屈曲后强度进行设计。

5.当实腹式刚架斜梁的下翼缘受压时,必须在受压翼缘两侧布置隅撑。

6.钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置垫板。

7.屋架上弦杆为压杆,其承载能力由稳定控制;下弦杆为拉杆,其截面尺寸由强度确定。

8.梯形钢屋架,除端腹杆以外的一般腹杆,在屋架平面内的计算长度L= 0.8 L,在屋架平面外的计算长度L= 1.0 L,其中L为杆件的几何长度。

9.拉条的作用是防止檩条变形和扭转并且提供x轴方向的中间支撑。

10.实腹式檩条可通过檩托与刚架斜梁连接,设置檩托的目的是为了防止檩条端部截面的扭转,以增强其整体稳定性。

11.屋架的中央竖杆常和垂直支撑相连,一般做成十字形截面,这时它的计算长度是 0.9L。

12.设计吊车梁时,对于构造细部应尽可能选用疲劳强度高的连接型式,例如吊车梁腹板与上翼缘的连接应采用焊透的k型坡口焊缝。

13.屋架上弦横向水平支撑之间的距离不宜大于60m。

14.桁架弦杆在桁架平面外的计算长度应取横向支撑点之间的距离。

15.能承受压力的系杆是刚性系杆,只能承受拉力而不能承受压力的系杆是柔性系杆。

16.普通钢屋架的受压杆件中,两个侧向固定点之间的垫板数不宜少于 2个。

17.吊车梁承受桥式吊车产生的三个方向荷载作用,即竖向荷载、横向水平荷载和纵向水平荷载。

18.门式刚架的构件和围护结构温度伸缩缝区段规定为:纵向不大于300m ,横向不大于150m,超过规定则需设置伸缩缝。

19.高层建筑一般由水平荷载控制设计,大跨度结构一般由竖向荷载控制设计。

20.压型钢板组合楼板中,钢梁上翼缘通长设置栓钉连接件,主要目的是保证楼板和钢梁之间能可靠地传递水平剪力。

钢结构板设计

钢结构板设计

钢结构板设计钢结构板是一种常用的建筑材料,具有强度高、耐腐蚀、耐久性好等特点,广泛应用于各种建筑工程中。

本文将详细介绍钢结构板设计的相关内容,包括设计要素、计算方法以及注意事项。

一、设计要素1. 材料选择:钢结构板通常采用高强度低合金钢(HSLA)作为基本材料,具有较高的抗拉强度和韧性,同时易于切割、焊接。

选择合适的材料可以满足结构板的强度和使用要求。

2. 结构板尺寸:根据具体的应用需求,结构板的长度、宽度和厚度需要进行合理的选取。

在进行尺寸设计时,需要考虑板件的受力情况、承载能力以及施工工艺等因素。

3. 荷载计算:在设计钢结构板时,需要充分考虑板件所承受的各种荷载,包括静载荷和动载荷。

根据具体的使用环境和预期荷载情况,合理计算和确定板件的设计荷载。

二、计算方法1. 强度设计:钢结构板在设计过程中需要满足强度要求,即板件在最不利荷载作用下不发生破坏。

根据板件的材料性能和受力特点,采用适当的强度设计方法,如极限强度设计、弹性设计等。

2. 稳定性设计:除了强度要求,钢结构板还需要满足稳定性的设计要求,确保板件在工作过程中不会产生失稳。

常用的稳定性设计方法包括侧扭稳定、屈曲稳定等。

3. 连接设计:在实际应用中,钢结构板通常需要进行连接,以提高整个结构的稳定性和承载能力。

合理的连接设计可以确保板件之间的刚性连接,并承担一定的荷载传递功能。

三、注意事项1. 材料质量监控:钢结构板的质量直接影响其使用寿命和安全性能。

在生产过程中,需要严格控制材料的供应和加工质量,确保板件的质量符合设计要求。

2. 施工监督:钢结构板的安装和施工过程需要严格监督,以确保板件的正确使用和连接。

合理的施工工艺和操作规范可以提高结构板的整体性能和使用效果。

3. 维护保养:钢结构板在使用过程中需要进行定期的维护和保养,包括防腐处理、清洁和涂漆等。

及时的维护措施可以延长结构板的使用寿命,提高其稳定性和安全性。

结论钢结构板设计是一项复杂而重要的工作,设计要素、计算方法和注意事项都需要充分考虑,以确保结构板的质量和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.6 板件的稳定和屈曲后强度的利用
均匀受压板件的屈曲现象
(一)薄板屈曲基本原理
1、单向均匀受压薄板弹性屈曲
对于四边简支单向均匀受压薄板,弹性屈曲时,由小挠度 理论,可得其平衡微分方程:
4w
4w 4w
2w
D
x4
2 x2y2
y4
Nx
x 2
0
(4 100)
四边简支单向均匀受压薄板的屈曲
求解上式,并引入边界条件: 当x 0和x a时:w 0 当y 0和y b时:w 0
cr
2E 12(1 2
)
t b
2
式中:
屈曲系数; 板边缘的弹性约束系数;
弹性模量折减系数; 其余符号同前。

E
=206X103
N/mm2,ν=0.3代入上式,得:
σcr 18.6 βχ
100t b
2
并视受压翼缘悬伸部分,为三边简支,且板长趋于无
穷大,故β=0.425;不考虑腹板对翼缘的约束作用,
K=4 K=5.42 K=6.97 K=0.425 K=1.277
综上所述,单向均匀受压薄板弹性阶段的临界力 及临界应力的计算公式统一表达为:
N cr
2D
b2 K
cr
N cr 1 t
2 D
b2t
2 E 12 1 2
t
2
b
(4 107)
2、单向均匀受压薄板弹塑性屈曲应力
板件进入弹塑性状态后,在受力方向的变形遵循切线模 量规律,而垂直受力方向则保持弹性,因此板件属于正交 异性板。其屈曲应力可用下式表达:
根据局部屈曲不先于整体屈曲的原则,即板件的屈曲 临界应力大于或等于构件的整体稳定临界应力即可确 定出构件的腹板高厚比(式4-115)和翼缘的宽厚比 (式4-113)。
注意公式的使用条件: 1. 只针对于工字型截面; 2. λ取构件两个方向长细比的较大者; 3. 当λ<30时,取λ=30 ;当λ ≥100时,取λ=100 。 实际轴压构件设计时,应首先验算截面的强度和杆件
A、工字形截面
h0 25 0.5 235
tw
fy
(4 115)
b t
bt110
100.10 .1235 fy
235 fy
(4 41) (4 114)
式中: 构件两方向长细比较大值,当 30时,
b1
取 30;当 100时,取 100。 t
B、箱形截面
b
235
13
t
fy
h0 40 235
➢ 强度计算不考虑截面塑性发展(γx=1.0)时:
235 fy
b1 15 235
t
fy
➢ 对于箱形截面受压翼缘在两腹板(或腹板与纵向加劲肋)间 的无支承宽度b0与其厚度的比值应满足:
b0 40 235
t
fy
b1 t
b1 t
b0
t
t
tw h0
b0
b
tw
h0
三、腹板的局部稳定
1、控制有两种考虑方法: 考虑腹板屈曲后强度:仅对承受静力荷载和间
接承受动力荷载的组合梁,计算其腹板的抗弯
和抗剪承载力。若用此法,其计算及构造要求 应满足4.6.4节内容。 不考虑腹板屈曲后强度:仅对直接承受动力荷
载的组合梁及不考虑腹板屈曲后强度组合梁, 其腹板的稳定是通过设置加劲肋来保证的。
3、对于H形、工字形和箱形截面腹 板高厚比不满足以上规定时,也可 以设纵向加劲肋来加强腹板。
纵向加劲肋与翼缘间的腹板,应满足高 厚比限值。
纵向加劲肋宜在腹板两侧成对配置, 其一侧的外伸宽度不应小于10tw,厚度不 应小于0.75tw。
≥10tw
横 向 加 劲 肋
纵向加劲肋
h0’ ≥0.75tw
小结:轴心受压构件的局部稳定
另一种是允许板件先屈曲。虽然板件屈曲会降低 构件的承载能力,但由于构件的截面较宽,整 体刚度好,从节省钢材来说反而合算,《冷弯 薄壁型钢结构技术规范》(GB 50018)就有这 方面的条款。轻型门式刚架结构的刚架梁腹板 就是这样考虑的。有时对于一般钢结构的部分 板件,如大尺寸的焊接工字形截面的腹板,也 允许其先有局部屈曲。
即得:
2D mb n2a 2
Nx
b2
a
mb
(4 104)
由于临界荷载是微弯状态的最小荷载,即n=1 (y方向为一个半波)时所取得的Nx为临界荷载:
N crx
2D
b2
mb a
a mb
2
2D
b2
K
(4 104)
式中:K
屈曲系,K
mb a
a mb
2
当a/b=m时,K=4,最小值; 当a/b=1以后实线时,K≈4;
1.0 ,令η=0.25,则:
σcr 18.6 0.425 1.0
0.25 100t 2 b
3.953
100t
2
b
由 cr 0.条95件f y,得:
b 13 235
t
fy
因此,规范规定不发生局部失稳的板件宽厚比:
➢ 强度计算考虑截面塑性发展(γx=1.05)b时1 : 13 t
所以,减小板长并 不能提高Ncr, 但 减小板宽可明显提 高Ncr。
四边简支均匀受压薄板的屈曲系数
对一般构件来讲,a/b远大于1,故近似取K=4,这时有 四边简支单向均匀受压薄板的临界力:
4 2 D
Ncrx b2 对于其他支承条件的单向均匀受压薄板,可采用相 同的方法求得K值,如下:
侧边
b
侧边 a
的整体稳定性,然后验算局部稳定。当翼缘不满足要 求时,应重新选择截面尺寸;当腹板不满足要求时, 可设置纵向加劲肋。
4.6.2 受弯构件的板件(局部)稳定
一、梁的局部失稳概念
当荷载达到某一值时,梁的腹板和受压翼缘将不能保 持平衡状态,发生出平面波形鼓曲,称为梁的局部失稳
二、受压翼缘的局部稳定
梁的受压翼缘近似视为:一单向均匀受压薄板, 其临界应力为:
tw
fy
C、圆管截面
D
235
100
t
fy
b0 40 235
t
fy
t
b0 b
t
D
(4 117)
(三)、轴压构件的局部稳定不满足时的解决措施 1、增加板件厚度;
2、对于H形、工字形和箱形截面,当腹板高厚比不 满足以上规定时,在计算构件的强度和稳定性时, 腹板截面取有效截面,即取腹板计算高度范围内两 侧各为 20tw 23部5 分f y,但计算构件的稳定系数时仍取 全截面。
cr
2E 12 1 2
t b
2
(4 108)
由试验资料可得:
0.10132 1 0.02482
fy E
fy E
(4 39
我们将板件的非弹性屈曲应力值控制在什么范围 内才认为板件是稳定的?
一种是不允许板件的屈曲先于构件的整体屈曲, 《钢结构设计规范》(GB 50017)对轴心压杆 就是这样规定的。
相关文档
最新文档