rc正弦波振荡器测量数据试验报告
正弦波振荡器实验报告
正弦波振荡器实验报告4.改变电容 C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。
填入表 1.3 中。
5.将 C4 的值恢复为0.033μF,分别调节 Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。
填入表 1.4 中。
四、暑假记录与数据处理1、电路的直流电路图和交流电路图分别如下:(1):直流通路图2)交流通路图2、改变电容 C 6的值时所测得的频率 f 的值如下:3、C40.033μF0.33μF0.01μFC6(pF)270470670270470670270470670F(Hz)494853.5403746.8372023.832756.832688.232814.4486357.7420875.4373357.21)、当 C4=0.033uF 时:C6=270pF 时, f= 1/T=1000000/2.0208=494853.5HZC6=470pF 时, f=1/T=1000000/2.4768=403746.8HZC6=670pF 时, f=1/T=1000000/2.6880=372023.8HZ2)、当 C4=0.33uF 时:C6=270pF 时, f= 1/T=1000000/30.5280=32756.8HC6=470uF时, f= 1/T=1000000/30.5921=32688.2HZC6=670uF 时, f= 1/T=1000000/30.4744=32814.4HZ3)、 C4=0.01时:当 C6=270uF 时,当 C6=270uF 时, f=1/T=1000000/2.0561=486357.7HZ当 C6=470uF 时, f=1/T=1000000/2.3760=420875.4HZ当 C6=670uF 时, f=1/T=1000000/2.6784=373357.2HZ2、将 C4 的值恢复为0.033μ F,分别调节 Rp 在最大到最小之间变化时的频率和波形如下:Rp(KΩ)5040302010F(HZ)403746.8416666.7420875.4425170.1422582.8529553.3(3)、当 Rp=30k 时, f= 1/T=1000000/2.3760=420875.4HZ(4)、当 Rp=20k 时, f= 1/T=1000000/2.3520=425170.1HZ(5)、当 Rp=10k 时, f= 1/T=1000000/2.3664=422582.8HZ(6)、当 Rp=0k 时, f= 1/T=1000000/2.3280=529553.3HZ总结:由表一可知,当 C4 较大(既为 0.33PF)时,不管 C6 如何变化,电路所输出的波形的频率比较稳定,而且没有失真。
实验 rc正弦波振荡器实验报告
实验rc正弦波振荡器实验报告
一、实验目的
1.掌握RC正弦波振荡器的设计方法
2.掌握RC正弦波振荡器的调试方法
二、实验仪器及器件
集成运算放大器μA741二极管电阻瓷片电容若干
三、实验原理
振荡电路有RC正弦波振荡电路、桥式振荡电路、移相式振荡电路和双T网络式振荡电
路等多种形式。
其中应用最广泛的是RC桥式振荡电路
1.电路分析
RC桥式振荡电路由RC串并联选频网络和同相放大电路组成,图中RC选频网络形成
正反馈电路,决定振荡频率fo, R、R,形成负反馈回路,决定起振的幅值条件。
两个二极管起稳定作用(如波形)
该电路的振荡频率
(1)起振幅值条件
(2)式中R,=R +15k +3k,若加二极管,此时R, =R +15k +3k/rj
此时rg为二极管的正向动态电阻
2.电路参数确定
(1) 确定R、R,
电阻R和R,应由起振的幅值条件来确定,由式(2)可知R,≥2 R 通常取R,=(2.1-2.5) R,
这样既能保证起振,也不致产生严重的波形失真。
(2) 确定稳幅电路
通常的稳幅方法是利用A,随输出电压振幅上升而下降的自动调节作用实现稳幅。
图中稳幅
电路由两只正反向并联的二极管D、D2和3kQ
电阻并联组成,利用二极管正向动态电
阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端
并联小电阻Rz。
实验证明,取R_≈rj时,效果最佳。
四、实验内容
1.根据图形连接好电路,填写如下表格
五、思考题及实验心得:
在RC桥式振荡电路中,若电路不能起振,应调整哪个参数?
若输出波形失真应如何调整?。
实验八 RC桥式正弦波振荡器
按表8 改变电阻R 和电容C 按表 8-1 改变电阻 R 和电容 C , 用示波器观察是否有 振荡波形,然后再次微调R 振荡波形 , 然后再次微调 Rf, 使输出端波形大而失真 用频率计测出振荡器的频率, 填入表8 小 。 用频率计测出振荡器的频率 , 填入表 8-1 中 , 并 与表中的理论比较。 与表中的理论比较。 表8-1
3.调节电压串联负反馈放大器的放大倍数 仍断开RC选频网络 加电源V 仍断开RC选频网络,加电源VCC,调整两级放大电 RC选频网络, 路的静态工作点,使两个三极管均处于放大状态, 路的静态工作点,使两个三极管均处于放大状态,在 放大器的输入端加上适当大小的交流信号V 放大器的输入端加上适当大小的交流信号 Vi ( 小于 频率约为1 调节负反馈电阻R 1V ) , 频率约为 1KHZ , 调节负反馈电阻 Rf , 使放大倍 稍大于3 示波器监视输出波形不产生失真。 数AV稍大于3。示波器监视输出波形不产生失真。 4.测量振荡频率 放大器调整后,去掉信号源,接上RC选频网络, RC选频网络 放大器调整后,去掉信号源,接上RC选频网络,用 示波器观察是否有振荡波形,然后微调R 示波器观察是否有振荡波形 , 然后微调 Rf , 使输出端 波形大而失真小。用频率计测出振荡器的频率 频率, 波形大而失真小。用频率计测出振荡器的频率,填入 并与表中的理论比较。 表8-1中,并与表中的理论比较。
实验八
一、实验目的
RC桥式正弦波振荡器 RC桥式正弦波振荡器
1.学会测量频率和测试振器; .学会测量频率和测试振器; 2.验证RC桥式振荡器的起振条件 。 .验证 桥式振荡器的起振条件
二、实验仪器设备
函数信号发生器; 1.双踪示波器; 双踪示波器; 2.函数信号发生器; 交流毫伏表; 3.交流毫伏表; DZX-2B型电子学综合实验装置 型电子学综合实验装置; 4.DZX-2B型电子学综合实验装置; 5.电阻器、电容器若干 电阻器、
3.RC正弦波振荡器实验报告
RC正弦波振荡器实验报告
学号200800120228 姓名辛义磊实验台号30
一、实验目的
1、掌握RC正弦波振荡器的基本工作原理及特点;
2、掌握RC正弦波振荡器的基本设计、分析和测试方法。
二、实验仪器
双踪示波器数字频率计晶体管毫伏表直流稳压电源数字万用表
三、实验原理
1、RC正弦波振荡器的原理
文氏电桥振荡器时应用最广泛的RC正弦波振荡器,它由同相集成运算放大器与串并联选频电路组成。
由于二极管的导通电阻r D具有随外加正偏电压增加而减小的非线性特性,所以振荡器的起振条件为
当适当减小错误!未找到引用源。
,提高负反馈深度,调整输出信号幅度,即可实现稳定输出信号幅度的目的。
振荡器的振荡角频率
欲产生振荡频率错误!未找到引用源。
符合上式的正弦波,要求所选的运算放大器的单位增益带宽积至少大于振荡频率的3倍。
电路选用的电阻均在千欧姆数量级,并尽量满足平衡电阻
的条件。
2、实验电路
本实验采用RC正弦波振荡器,如图所示为实验电路图。
RC振荡器
四、实验步骤及内容
准备:接通电路电源。
(一)电路调试
按照电路图连接电路,并进行调试
(二)振荡频率的测量
通过数字示波器测量电路的振荡频率
实验所测得的振荡频率为错误!未找到引用源。
=858.96Hz 五、思考题。
实验八 RC正弦波振荡器
实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。
2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。
3.掌握RC正弦波振荡器的设计和分析方法。
4.掌握RC正弦波振荡器的安装与调试方法。
实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。
图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。
2.在MULTISIM中搭建8-1电路,进行瞬态仿真。
所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。
表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。
表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。
实验四 RC振荡器实验
实验四 RC振荡器实验一、实验目的1、掌握文氏电桥振荡电路的原理2、掌握文氏电桥振荡电路振荡频率的计算方法二、实验内容1.调试文氏电桥振荡电路;2.测量并记录振荡波形的相关参数。
三、实验仪器20MHz示波器四、实验原理RC振荡器由放大器和RC网络组成,根据RC网络的不同,可将RC振荡器分为相移振荡器和文氏电桥振荡器两大类。
其中,文氏电桥振荡器广泛用于产生几Hz到几百KHz频段范围的振荡器。
图10-1为文氏电桥振荡器的实验原理图.R27, C25, R28, C26组成RC选频网络同时兼作正反馈支路,R25, R26, R29, D3,D2构成负反馈及稳幅环节。
当R27= R28=R, C25=C26=C时(本实验R27= R28=12KS2,C25=C26=0.01uF),电路的振荡频率为:(10-1)设二极管D2, D3的正向导通电阻为rD当R26+(R29||rD)=RF时,电路起振的振辐条条件(10-2 ) 运放UlA组成放大器,振荡信号从TP6和TT2处输出,通过W3调节输出信号的幅度。
由于D2. D3正向电阻非线性特性不可能完全一致,所以振荡波形会有正负半周不对称的失。
本实验产生的信号仅用于一般原理性验证实验,因此对输出波形的失真未做处理。
五、实验步骤正弦波振荡器模块如图l、连接实验电路在主板上正确插好正弦波振荡器模块,开关K1. K9, K10, K11, K12向左拨,主板GND接模块GND,主板+12V接模块+l2V,主板-12V 接模块-12Vo检查连线正确无误后,打开实验箱右侧的船形开关,K9, Kl0向右拨。
若正确连接,则模块上的电源指示灯LED2,LED3亮。
2、观察、测量振荡输出波形及其相关参数用示波器在TT2处测量,调节电位器W3,观察TT2处波形的幅度变化及失真情况,记录TT2处波形的最大峰峰及频率fo,填表10-1a六、实验现象1. 将TT2引入到模拟示波器中观察波形如图2.调节电位器W3可观察到幅度变化及失真情况,如图波形底部被切割。
RC振荡电路实验
正弦波振荡电路实验1.实验目的(1)进一步学习RC 正弦波振荡电路的工作原理。
(2)掌握RC 正弦波振荡频率的调整和测量方法。
2.知识要点(1)实验参考电路见图2-11图2-11 RC 正弦波振荡电路电路参考参数:R 1=2k Ω R 2=2k Ω R 3=R 4=15k Ω R W =10k Ω C 1=C 2=0.1µF D 1、D 2为IN4001 运放选LM741(2)RC 正弦波振荡电路元件参数选取条件1)振荡频率 在图2-11电路中,取R 3=R 4=R ,C 1=C 2=C ,则电路的振荡频率为RC f π210=2)起振幅值条件11R R A f f +=应略大于3,R f 应略大于2R 1其中R f =R W +R 2//R D (R D 为二极管导通电阻)。
3)稳幅电路 实际电路中,一般在负反馈支路中加入由两个相互反接的二极管和一个电阻构成的自动稳幅电路,其目的是利用二极管的动态电阻特性,抵消由于元件误差、温度引起的振荡幅度变化所造成的影响。
3.预习要求(1)RC 振荡电路的工作原理和f 0的计算方法。
(2)RC 振荡电路的起振条件,稳幅电路的工作原理。
(3)写出预习报告或设计报告。
4. 实验内容及要求(1)RC 文式振荡电路实验1)按图2-11连接线路,用示波器观察U 0,调节负反馈电位器R w ,使输出U 0产生稳定的不失真的正弦波。
2)设计性实验(1)设计内容:正弦波振荡电路(2)设计要求:振荡频率f 0=320Hz (误差在1%以内)、放大环节采用运算放大电路、输出无明显失真(加稳幅二极管)。
(3)实验要求:设计电路、选择元件并计算理论值。
连接并调试电路,用示波器观察输出电压,得到不失真的正弦波信号。
用示波器测量输出电压频率,测量U0(P-P)和U f(P-P),计算反馈系数F=U f/U0。
测试结果与理论值相比较,检验是否达到设计要求,如不满足,调整设计参数,直到满足为止。
正弦波振荡器实验报告
正弦波振荡器实验报告
实验目的:验证正弦波振荡器的工作原理,并探究其参数对振荡频率的影响。
实验原理:
正弦波振荡器是一种能够产生稳定振荡信号的电路。
其基本原理是通过反馈回路将一部分输出信号重新引入到输入端,形成自激振荡。
常见的正弦波振荡器电路有震荡放大器电路和LC 震荡电路等。
实验器材:
- 正弦波振荡器电路板
- 函数发生器
- 示波器
- 电阻、电容等元器件
实验步骤:
1. 将正弦波振荡器电路与函数发生器、示波器连接起来。
2. 调节函数发生器产生一个适当的输入信号,通过示波器观察输出信号的波形。
3. 根据需要,可以调节电阻、电容等元器件的数值,观察输出信号波形的变化。
4. 记录各个参数对输出信号频率的影响。
实验结果:
根据实验步骤进行操作后,记录输出信号的波形和频率,以及各个参数的数值。
根据实验数据绘制实验曲线。
实验讨论:
根据实验结果分析各个参数对输出信号频率的影响,并探究为什么正弦波振荡器能够产生稳定振荡信号。
结论:
正弦波振荡器能够产生稳定振荡信号,并且其频率可以通过控制元器件的数值来调节。
实验结果与原理相符合,说明正弦波振荡器的工作原理有效。
正弦波振荡器实验报告
正弦波振荡器实验报告正弦波振荡器实验报告引言:正弦波振荡器是电子学中常见的一种电路,它能够产生稳定的正弦波信号。
在本次实验中,我们将通过搭建一个简单的正弦波振荡器电路,来探索正弦波振荡器的工作原理以及其在电子学中的应用。
一、实验目的本实验的主要目的有以下几点:1. 了解正弦波振荡器的基本原理;2. 学习如何搭建一个简单的正弦波振荡器电路;3. 观察并测量正弦波振荡器输出的波形特性;4. 分析正弦波振荡器的频率稳定性和幅度稳定性。
二、实验器材和原理1. 实验器材:- 信号发生器- 电容- 电感- 晶体管- 电阻- 示波器- 电压表- 电流表2. 实验原理:正弦波振荡器的基本原理是利用反馈回路中的放大器和RC(电阻-电容)网络来实现自激振荡。
在本次实验中,我们将使用一个简单的放大器电路和RC网络来构建正弦波振荡器。
三、实验步骤1. 搭建电路:根据实验原理,我们将放大器电路和RC网络按照图中的连接方式搭建起来。
确保电路连接正确且稳定。
2. 调节电路参数:通过调节电容、电感和电阻的数值,使得电路能够产生稳定的正弦波信号。
调节电路参数时,可以使用示波器来观察输出波形,并通过电压表和电流表来测量电路中的电压和电流数值。
3. 观察和测量输出波形:连接示波器,并调节示波器的设置,使其能够显示电路输出的正弦波信号。
观察输出波形的频率、幅度以及波形的稳定性。
4. 分析波形特性:通过改变电路参数,观察和测量不同条件下的输出波形特性。
分析正弦波振荡器的频率稳定性和幅度稳定性,并记录实验数据。
四、实验结果和数据分析在本次实验中,我们成功搭建了一个正弦波振荡器电路,并通过示波器观察到了稳定的正弦波输出。
通过测量电路中的电压和电流数值,我们得到了一系列实验数据。
根据实验数据,我们可以分析正弦波振荡器的频率稳定性和幅度稳定性。
频率稳定性是指正弦波振荡器输出信号的频率是否能够保持在一个稳定的数值范围内。
幅度稳定性是指输出信号的振幅是否能够保持稳定。
正弦波振荡电路的实验报告
新疆大学实训(实习)设计报告所属院系:机械工程学院专业:工业设计课程名称:电工电子学设计题目:正弦波振荡电路设计(RC)班级:机械10-5班学生姓名:盛晓亮学生学号:20102001007指导老师: 玛依拉完成日期:2012.7.5RCfnπ21=;(式4)图6 RC串并联电路这说明只有符合上述频率nf的反馈电压才能与0•U相位相同。
这时的反馈系数为31==••UUF f(式5)可见,RC串、并联电路既是反馈电路又是选频电路。
ωω•υF31ωωο90ο90-fϕο图7 幅频特性图8 相频特性2.自励振荡的幅度条件:反馈电压的大小必须与放大电路所需要的输入电压的大小相等,即必须有合适的反馈量。
用公式表示即ifUU=(式6)由于iUUA0=(式7)对于图6所示振荡电路,由于101R R A F+==3,故起振时o A >3, 即12R R F >, 因而要求F R 由起振时的大于12R 逐渐减小到稳定振荡时的等于12R 。
所以F R 采用了非线性电阻。
改变R 和C 即可改变输出电压的频率。
四、设计内容与步骤1.内容(1)根据设计结果连接电路。
(2)分析和观察不同时间段输出波形由小到达的起振过程和稳定到某一幅度的全过程。
(3)参数设置,若参数不能达到设计要求,按指标要求调试电路。
2.步骤(1)在Multisim 平台上建立如图9所示的实验电路,仪器参数按图8所示设置:nF C C 1.021==;电阻4R +5R >23R ;4R >5R .调节1R (即21,R R 同时改变)使振荡稳定时满足Ω==K R R 5.521。
图9 RC 正弦波振荡仿真电路图调节直至震荡稳定时的输出信号观测示波器显示(如图10、11)a. 起震:电位器8%图10 起震时的图形b. 振幅最大且不失真:电位器55%图11 震荡稳定时输出信号的图形(2)单击仿真开关运行动态分析,观测频率计数据(如图12所示)。
RC正弦波振荡电路-报告
电子线路EDA报告专业电气工程及其自动化学生姓名 xxx x学号 xxxxxx题目 RC正弦波振荡电路指导教师 xx2016年x月x日一、任务与要求了解用集成运算放大器构成简单的正弦波的方法,掌握RC桥式正弦波振荡器的设计、仿真与调试方法。
理解RC 正弦波振荡电路的工作原理,利用Multisim 软件创建RC 桥式正弦振荡电路图,仿真分析其起振条件,稳幅特性。
掌握Multisim 软件中常用元器件的选取和参数设置,常用电子仪表的使用及电路调试的基本方法。
设计一个RC 桥式振荡电路。
其正弦波输出为: 振荡频率:500Hz振荡频率测量值与理论值的相对误差 电源电压变化时,振幅基本稳定 振荡波形对称,无明显非线性失真二、电路原理分析1、RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,如图1所示。
图中RC 选频网络形成正反馈电路,并由它决定振荡频率,和形成负反馈回路,由它决定起振的幅值条件和调节波形的失真程度与稳幅控制。
在满足1212R R R C C C ====,的条件下,该电路的振荡频率:o 12f RC π=(①)起振幅值条件 a bvf1a3R R A R +=≥或ba2R R ≥ (②)式中b 43d R R R r =+,d r 为二极管的正向动态电阻。
2、参数确定与元件选择一般说来,设计振荡电路就是要产生满足设计要求的振荡波形。
因此振荡条件是设计振荡电路的主要依据。
设计如图1所示振荡电路,需要确定和选择的元件如下:(1)确定R 、C 值根据设计所要求的振荡频率o f ,由式(①)先确定RC 之积,即o12RC f π=(③)为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使R 满足下列关系式:io R RR一般i R 约为几百千欧以上(如LM741型i 0.3M ΩR ≥),o R 而仅为几百欧以下,初步选定R 之后,由式(③)算出电容C 值,然后,再复算R 取值是否能满足振荡频率的要求。
正弦波振荡器实验报告
正弦波振荡器实验报告引言:正弦波振荡器是一种很重要的电路,在电子工程中有着广泛的应用。
它是实现信号产生和调制的基础,因此学习正弦波振荡器是学习电子工程的基础。
在实验中,我们将会学习到如何制作一个简单的正弦波振荡器电路,以及探究它的参数和特性。
实验设计:1.电路连接正弦波振荡器的基本构成为反馈电容C和反馈电阻R,而共同作用下,振荡器能够自持续发生正弦振荡信号。
电路连接如下图所示。
2.器材准备我们需要以下器材:- 电阻R,可调范围0-22kohm;- 电容C,为470nF;- 操作放大器,使用的是UA741;- 示波器。
3.参数测量和分析首先,我们需要测量电路中的R和C值。
然后,通过调整电位器,我们可以改变电路中的R值,进而观察输出波形的变化。
利用示波器,我们可以测量电路的输出波形,并通过测量峰峰值、频率和相位等参数,从而对电路性能进行分析。
实验结果:通过测量,我们得到了以下结果:在电容值为470nF的情况下,电路的输出波形为正弦波,并且频率在1KHZ左右。
当调整电位器改变电路中的R值时,可以观察到波形振幅随着R值的增加而增大,同时频率也有所变化。
具体数据如下:R/kohm|频率/KHZ|峰-峰值/V|相位/°--|--|--|--4.7||||10|1.18|495mV||15|1.03|863mV||20|0.91|1.2V||22|0.84|1.38V||24|0.78|1.54V||从数据可以看出,随着R值的增加,频率变低,峰-峰值变大。
我们还可以发现,在较大的R值下,电路的频率变得稳定,同时峰-峰值也变得更加平稳。
结论:通过实验,我们探究了正弦波振荡器的参数和特性,并得到了如下结论:1.正弦波振荡器中,反馈电容和反馈电阻是关键构成部分,能够实现自持续发生正弦振荡信号。
2.在电容值不变的情况下,随着电阻R值的增加,电路中的正弦波的频率降低,同时峰-峰值增大。
3.当R值达到一定范围时,电路的频率和峰-峰值变得更加稳定。
实验8RC正弦波振荡器
实验8RC正弦波振荡器比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大进入实验室的几点要求和希望1、要像上理论课一样,积极准备,认真实验;要像上理论课一样,积极准备,认真实验;2、要像到自己家里一样,保持实验环境整洁;要像到自己家里一样,保持实验环境整洁;3、要像爱护自己一样,爱护我们的实验设备。
要像爱护自己一样,爱护我们的实验设备。
实验前的准备工作1、检查实验台和相关设备是否供电正常;检查实验台和相关设备是否供电正常;2、检查实验所用到的电线是否完好无损;检查实验所用到的电线是否完好无损;3、输入设备与测试设备不要随意开关;输入设备与测试设备不要随意开关;4、完成后要关设备电源,整理实验台。
完成后要关设备电源,整理实验台。
比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大模拟电子技术实验实验八RC正弦波振荡器电工电子实验中心模电实验室2022年3月2022年比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大主要内容1、实验目的2、实验原理3、实验设备与器件4、实验内容及步骤5、思考题6、实验报告要求很大1实验目的比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大1实验目的了解选频网络的组成及其选频特性;掌握RC正弦波振荡器的组成及其振荡条件;学会测量、调试选频网络和振荡器。
比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理信号产生电路特点:无输入,自动产生输出(正弦、方波、三角波);原理:正反馈的自激振荡。
类型正弦波振荡电路:RC或LC正弦波振荡电路等;非正弦波振荡电路:比较器、方波/锯齿波产生电路;集成函数发生器:YB1605H、8038等。
产生振荡的条件是什么呢?振荡电路是由什么构成的?产生振荡的条件是什么呢?振荡电路是由什么构成的?很大2实验原理信号产生电路-振荡条件某i+–某f某idA某o某i++某f某idA某oFF&A&AF=&&1+AF&&AF=1&&AF=1&A&AF=&&1AF&&AF=1&&AF=1a+f=180°(2nπ+π)负反馈a+f=0°(2nπ)正反馈比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理信号产生电路-振荡条件振荡平衡条件&&AF=1&&AF=1a+f=0°(2nπ)某idA动画演示某o某fF&&如何起振?AF≥1如何保证输出频率?选频网络(RC/LC选频网络);起振原因是什么?内部噪声、接通电源时的阶跃。
正弦波振荡器实验报告
正弦波振荡器实验报告实验目的,通过搭建正弦波振荡器电路,了解正弦波振荡器的工作原理,并对其性能进行测试和分析。
实验器材,电源、电阻、电容、三极管、示波器、万用表等。
实验原理,正弦波振荡器是一种能够产生稳定的正弦波信号的电路。
在实验中,我们将搭建一个基于反馈原理的晶体管多级放大电路,利用正反馈使得电路产生自激振荡,最终输出稳定的正弦波信号。
实验步骤:1. 按照电路图连接电路,确认连接无误后接通电源。
2. 调节电源电压和电流,使其符合电路要求。
3. 使用万用表测量电路中各个元器件的电压和电流,并记录下来。
4. 连接示波器,观察输出波形,并进行调节,使其尽可能接近理想的正弦波形。
5. 测量输出波形的频率、幅度等参数,并进行性能分析。
实验结果与分析:在实验中,我们成功搭建了正弦波振荡器电路,并通过调节电路参数和观察输出波形,得到了稳定的正弦波信号。
经过测量和分析,我们得到了正弦波振荡器的频率、幅度等参数,验证了电路的正弦波输出性能。
实验中还发现,电路中各个元器件的参数对正弦波振荡器的性能有着重要影响。
例如电容和电阻的数值大小,对振荡频率和幅度有着直接影响;晶体管的工作点稳定性,也对输出波形的稳定性有着重要影响。
结论:通过本次实验,我们深入了解了正弦波振荡器的工作原理,并通过实际搭建和测试,验证了其性能。
正弦波振荡器作为一种重要的信号源电路,在通信、测量、控制等领域有着广泛的应用。
因此,对正弦波振荡器的深入了解和实际操作,对我们的专业学习和工程实践有着重要意义。
通过本次实验,我们不仅学习了正弦波振荡器的基本原理和性能分析方法,也提高了实际操作能力和问题解决能力。
在今后的学习和工作中,我们将继续努力,加强对电路原理和实际应用的理解,为将来的科研和工程实践打下坚实的基础。
rc正弦波振荡实验报告
竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。
按图1-1连接实验电路,输出端uo接示波器。
1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。
描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。
1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。
1.4.器振荡频率fo,并与理论值进行比较。
图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。
图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。
2.(1)二极管控制电路增益,实现稳幅。
二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。
稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。
负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。
也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。
(2)若断开二极管,波形会变得极不稳定。
正弦波振荡器实验报告
正弦波振荡器实验报告引言在电子学领域中,正弦波振荡器是一种重要的电路。
它通过产生稳定且频率可调的正弦信号,在许多应用中起到关键作用。
本实验旨在设计并搭建一个正弦波振荡器电路,并详细分析其工作原理和性能。
实验装置和步骤实验中使用的装置包括:电源供应器、信号发生器、元件(如电容、电感、电阻)和示波器。
实验分为以下几个步骤:1. 搭建电路:根据给定的电路图,依次连接元件和仪器。
确保电路连接的稳定性和正确性。
2. 设置电源:将电流源供应器连接到电路,调整输出电压,并保证电源稳定。
这是实现正弦波振荡的基础。
3. 信号发生器设置:使用信号发生器提供一个直流参考电压,作为振荡器的输入信号。
逐步调整频率,找到振荡器产生最稳定的正弦波的频率。
4. 输出测量:将示波器连接到电路的输出端,通过示波器的屏幕观察输出信号的波形和频率。
调整电路中的元件数值,使输出波形尽可能接近理想的正弦波。
工作原理与分析正弦波振荡器的工作原理基于放大器和反馈网络的相互作用。
根据霍尔的理论,正弦波振荡器需要满足以下两个条件:放大环路增益大于1并且相位延迟为360度。
在本实验中,我们采用集成运算放大器作为放大器和RC网络作为反馈网络。
RC网络是由电容和电阻串联而成,起到了相位延迟的作用。
电容的充放电过程导致输出信号在反馈回路中相位延迟,满足相位延迟的要求。
此外,电容和电阻的数值也决定了输出信号的频率。
放大器的设计是整个电路中的核心部分。
通过调整放大器的增益,我们可以控制正弦波振荡器的输出信号幅度。
通过选择合适的放大器类型和元件数值,同时结合反馈网络的设计,我们可以实现一个稳定且频率可调的正弦波输出。
实验结果与讨论在实验中,我们通过调整电路中元件的数值和信号发生器的频率,成功实现了一个正弦波振荡器。
通过示波器观察到的波形可以明显地看出,输出信号接近理想的正弦波。
频率的可调范围也较广,满足了实际应用的需求。
值得注意的是,在实际电路中存在一些不理想因素,如元件本身的非线性特性、放大器的失真等。
最新正弦振荡器实验报告
最新正弦振荡器实验报告实验目的:本实验旨在设计、搭建并测试一个基本的正弦振荡器电路。
通过实验,我们将进一步理解正弦波的产生原理,振荡器的工作方式,以及电路元件对振荡频率和波形的影响。
实验设备和材料:1. 运算放大器(如LM741)2. 电阻器、电容器(用于形成RC振荡电路)3. 电源(±15V)4. 示波器(用于观察输出波形)5. 面包板(用于临时搭建电路)6. 跳线实验步骤:1. 根据预先设计的电路图,在面包板上搭建RC振荡器电路。
电路主要由运算放大器、电阻器和电容器组成。
2. 连接电源,为电路提供所需的±15V电压。
3. 将示波器的探头连接到振荡器电路的输出端,以便于观察输出波形。
4. 打开示波器,调整适当的时间和电压尺度,确保正弦波形清晰可见。
5. 改变电路中的电阻器和电容器的值,观察并记录不同组合下振荡频率和波形的变化。
6. 确保振荡器在不同的电源电压下都能稳定工作,并记录波形的稳定性。
实验结果:1. 在标准电阻和电容值下,振荡器成功产生了稳定的正弦波输出。
波形频率和振幅符合预期。
2. 电阻和电容值的改变导致了振荡频率的显著变化,这与理论上的RC 振荡器频率公式相符。
3. 在不同的电源电压下,振荡器的波形稳定性有所差异。
在推荐的电源电压范围内,波形最为稳定。
实验讨论:本次实验中,我们观察到的正弦波形的质量和稳定性受到电路元件参数和电源电压的影响。
通过调整元件参数,我们能够在一定范围内控制振荡频率。
此外,实验也表明,电源电压的稳定性对于振荡器的正常工作至关重要。
结论:通过本次实验,我们成功地搭建并测试了正弦振荡器电路。
实验结果验证了理论设计的正确性,并加深了对正弦波产生原理的理解。
未来的工作可以包括进一步优化电路设计,提高振荡器的频率稳定性和波形质量。
rc正弦波振荡器实验报告
7.0915V 2.0359V 2.生振荡,但是,输出信号会越来越大,最后收器件电源电压限制,输出被限幅,输出波形会有畸变。因此,幅值平衡条件是总增益=1。
图1-5
1.4
测量值 理论值 误差
振荡频率1.573 1.500 5% f(kHz)
输出波形见图2-1
将矩形波产生电路的输出信号直接接入积分运算电路的输入,然后两个地线相接,以积分电路的输出信号为输出,即可获得三角波信号。
图2-1 2.3
频率范围为320.52Hz~3.4221KHz 2.4
搭建三角波发生器电路如图2-2:
图2-2 输出波形记录如图2-3
图2-3 思考题:
如何设计一个占空比可调的方波发生器,
1.3.电位器RW,使输出电压Uo幅值最大且不失真,用交流毫伏表分别测量输出电压Uo、反馈电压U+(运放?脚电压)和U-(运放?脚电压),分析研究振荡的幅值条件。 1.4.器振荡频率fO,并与理论值进行比较。
图1-1
实验结果:
1.2
正弦波输临界起振 失真 情况 出
RW值(Ω) 15.8221 17.3492 18.4209
思考题
1、 正弦波振荡电路中有几个反馈支路,各有什么作用,运放工作在什么状态, 2、 电路中二极管为什么能其稳幅作用,断开二极管,波形会怎样变化,
解:1. 正弦波振荡电路中有一个正反馈支路,一(三,)个负反馈支路。
2. (1)二极管控制电路增益,实现稳幅。二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rc正弦波振荡器测量数据试验报告
一、实验目的
1、学习RC正弦波振荡器的组成及其振荡条件;
2、学会测量、调试振荡器。
二、实验原理
从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R、C元件组成选频网络,就称为RC振荡器,一般用来产生1HZ~1MHz的低频信号。
1、RC移相振荡器:电路如右图1所示,选择R>>Ri。
起振条件:放大器A的电压放大倍数|A|>29
电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。
频率范围:几赫~数十千赫。
2、RC串并联网络(文氏桥)振荡器:
本实验电路图如下面的图2所示。
电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
3、双T选频网络振荡器:本实验电路如下图3所示:
电路特点:选频特性好,调频困难,适用于产生单-窄带频率的振荡。
三、实验器材
1、+12V直流电源;
2、函数信号发生器;
3、双踪示波器;
4、频率计;
5、直流电压表;
6、数字万用表;
7、15K电阻2个、103电容4个、10电位器1个。
四、实验内容
1、RC串并联选频网络振荡器:
(1)按图2连接线路。
(2)断开RC串并联网络(即电路图A处断开),Rw调到9-10K,测量放大器静态工作点Ie1(0.86毫安)、IE2(1.1毫安)及不失真电压放大倍数Ao(9倍,信号源500-1000HZ范围内)。
(3)关闭信号源,接通RC串并联网络(即电路图A处接通),使电路起振,调小Rw,看停振现象。
再调大Rw(顺时针拧)使刚好不失真,用示波器观测输出电压uo波形,并测量此情况下的电压放大倍数
A(3.2倍,要断开RC串并联网络测量)。
(4)用频率表测量振荡频率(893HZ),并与计算值进行比较。
(5)两个电容C分别并联103电容,观察和记录振荡频率变化情况(520HZ)。
2、双T选频网络振荡器:
(1)按图3组接线路。
其中T2单级放大器由实验台上的“单级/负反馈两级放大器”的末级构成。
(2)断开双T网络(即电路图A处断开),调Rw2使T2静态工作
点Ie2=2.5毫安。
(3)接入双T网络,用示波器观察输出波形。
若不起振,调小RwI,使电路起振。
调节Rw1使波形不失真且输出电压幅度最大(调小Rw1波幅增大但失真产生,调大Rw1波幅减小但失真减小,且再增大停振)。
(4)测量电路振荡频率(1397HZ),并与计算值比较。
(5)断开双T网络(即电路图A处断开),在双T网络的右端接信号源,寻找使示波器波幅最小的陷波频率(1397HZ),与振荡频率对比。
(RC串并联选频网络的幅频特性的观察是找出使示波器波幅最大的通波频率,如有时间自己可以自定方法,定性测-下)。
3、RC移相式振荡器(如感兴趣且有时间才做的)
利用现有的元器件及实验台上的单元电路,组装-一个RC移相式振荡器,只要电路接好能起振就行,只定性做不测量数据。
五、实验总结和问题:
1、由给定电路参数计算振荡频率,并与实测值比较,分析误差产生的原因。
2、总结实验涉及到的RC振荡器各自的特点。
3、定性解释RC串并联选频网络振荡器和双T选频网络振荡器的选频网络特征频率与振荡频率的关系,是如何激起振荡的?。