最新初中数学三角形真题汇编含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学三角形真题汇编含答案
一、选择题
1.如图,在ABC V 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:
①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .46
B .42
C .43
D .8 【答案】D
【解析】
【分析】
根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长.
【详解】
由题意可得出:PQ 是AB 的垂直平分线,
∴AE =BE ,
∵在△ABC 中,∠C =90°,∠CAB =60°,
∴∠CBA =30°,
∴∠EAB =∠CAE =30°, ∴CE =
12
AE =4, ∴AE =8.
故选D .
【点睛】 此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB =∠CAE =30°是解题关键.
2.长度分别为2,7,x 的三条线段能组成一个三角形,的值可以是( )
A .4
B .5
C .6
D .9
【答案】C
【解析】
【分析】
根据三角形的三边关系可判断x 的取值范围,进而可得答案.
【详解】
解:由三角形三边关系定理得7-2<x <7+2,即5<x <9.
因此,本题的第三边应满足5<x <9,把各项代入不等式符合的即为答案.
4,5,9都不符合不等式5<x <9,只有6符合不等式,
故选C .
【点睛】
本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.
3.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )
A .4
B .3
C .6
D .2
【答案】B
【解析】
【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.
【详解】
解:AD 是△ABC 中∠BAC 的平分线,
∠EAD=∠FAD
DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,
∴DF=DE ,
又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,
11742222
AC ∴=⨯⨯+⨯⨯ ∴AC=3.
故答案为:B
【点睛】
本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.
4.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )
A .1
B .2
C .32
D .85
【答案】C
【解析】
【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.
【详解】
解:在矩形ABCD 中,3,4AB BC ==,
∴∠B=90°, ∴22345AC =+=,
由折叠的性质,得AF=AB=3,BE=EF ,
∴CF=5-3=2,
在Rt △CEF 中,设BE=EF=x ,则CE=4x -,
由勾股定理,得:2222(4)x x +=-, 解得:32x =
; ∴32
BE =. 故选:C .
【点睛】
本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.
5.下列长度的三条线段能组成三角形的是( )
A .2, 2,5
B .3,3
C .3,4,8
D .4,5,6
【答案】D
【解析】
【分析】
三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.
【详解】
根据三角形三边关系可知,三角形两边之和大于第三边.
A、2+2=4<5,此选项错误;
B、1+3<3,此选项错误;
C、3+4<8,此选项错误;
D、4+5=9>6,能组成三角形,此选项正确.
故选:D.
【点睛】
此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.
6.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠
B=30°,则DE的长是()
A.12 B.10 C.8 D.6
【答案】C
【解析】
【分析】
由折叠的性质可知;DC=DE,∠DEA=∠C=90°,在Rt△BED中,∠B=30°,故此BD=2ED,从而得到BC=3BC,于是可求得DE=8.
【详解】
解:由折叠的性质可知;DC=DE,∠DEA=∠C=90°,
∵∠BED+∠DEA=180°,
∴∠BED=90°.
又∵∠B=30°,
∴BD=2DE.
∴BC=3ED=24.
∴DE=8.
故答案为8.
【点睛】
本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE是解题的关键.