特种陶瓷制备工艺..
特种陶瓷工艺学3
特种陶瓷
⑵ 扩散
烧结
23
特种陶瓷
⑵ 扩散
烧结
对于固相烧结机理中的烧结收缩,烧结速率或者说线收缩率有 如下近似关系:
L (20a 3 D* / kT 21/ 2 ) 2 / 5 r 6 / 5 t 2 / 5 L
△L/L:线收缩;a3:原子体积;t:时间;γ:表面能; D:扩散系数; T:温度; r:粒子半径 ① ② ③ ④ 烧结速度随时间延长而下降 烧结速度与颗粒尺寸成反比 晶界扩散、晶粒扩散增加时,烧结速率提高 扩散与温度有关系,因此烧结速度依赖于温度
43
44
特种陶瓷
晶界迁移
烧结
45
46
特种陶瓷
烧结
晶 界工程 ① 提高晶界玻璃相的粘度
Si3N4陶瓷的烧结通常采用添加 Mg0,使之在高温时与颗粒表面的Si02形 成玻璃相, 从而实现迅速致密化。但在 高温下使用性能却有明显下降,分析 原因是由于玻璃相粘度不高造成的。 俄歇电子能谱发现,Ca易于在晶界富集,而CaO-MgO-SiO2体 系玻璃态粘度远低于MgO-SiO2体系,因此可以采用低Ca含量的高 纯度Si3N4原料, 来改善材料的高温性能。
特种陶瓷
气 孔
烧结
51
特种陶瓷
添加剂
烧结
添加剂是促进烧结致密化的一种有效办法,其作用机理方式 主要有以下几种: (1)改变点缺陷浓度,从而改变某种离子的扩散系数; (2)在晶界附近富集,影响晶界的迁移速率,从而减少晶粒长大 的干扰作用; (3)提高表面能/界面能比值,直接提高致密化的动力; (4)在晶界形成连续第二相,为原子扩散提供快速途备 (5)第二相在晶界的钉扎作用,阻碍晶界迁移。
30
特种陶瓷
特种陶瓷2粉体的制备方法
测定方法 扩散法 吸附法(气相) 吸附法(液相) 润湿热法 渗透法 反应速度法 散射法(光线) 散射法(X射线)
粒度范围(μm)
0.5-0.001 10-0.001 10-0.001 10-0.001 100-0.5
50-0.1 10-0.001 0.05-0.001
5.粉体颗粒的粒度分布
粉体颗粒是构成粉体的基本单位,由于粉体是具有粒度分 布的大量固体颗粒的分散相,因而不能用单一的大小来描 述。
完全, 不容易获得高纯的均匀粉体, 并且需要先高温合 成再粉碎的过程, 能耗较大, 因此不是主要的发展方向。 目前研究开发的有机前驱体热解法,可以认为是固相 法的一个新发展。与传统的固相法相比, 有机前驱体 热解法利用含C, Si, B, N等元素的有机前驱体, 在较低 的温度下(低于1200℃) 热解生成具有特定结构的、 高反应活性的碳化物、氮化物等陶瓷粉体。
4.颗粒群粒度的表示法
等体积球相当径 等面积球相当径 等沉降速度相当径 显微镜下观测法
测定方法 筛析法 光学显微镜 电子显微镜 通过细孔法 沉淀法(液相) 风筛法(气相) 离心力法
ห้องสมุดไป่ตู้
粒度范围( μm)
>40 500-0.5 10-0.001 500-0.5 500-0.5 100-1 5-0.01
气相法需要的设备较为复杂, 产量较低, 缺乏大规模工 业化生产的优势。
液相法的工艺过程相对简单, 成分容易控制, 得到了广 泛的研究与发展。
目前,陶瓷粉体合成方法已突破了传统的固相法、液 相法和气相法的分类,出现了各类方法融合的趋势。如 将提高反应活性的湿化学法与强调低价离子氧化物活 性的二次合成法工艺相结合的半化学法, 结合了湿化 学法和自蔓延高温合成优点的低温燃烧合成法, 结合 了液相法和气相法特点的喷雾热解法, 以及将外场作 用与液相沉淀法结合的超重力反应沉淀法。
特种陶瓷涂层的制备
特种陶瓷及涂层制备与加工中的新原理与新工艺摘要:特种陶瓷及其涂层以其良好的抗腐蚀和抗摩擦性能,受到人们的广泛关注。
尤其是陶瓷涂层的应用,大大提高了材料的抗腐蚀抗磨损能力。
近些年来,陶瓷涂层的制备加工新技术和新工艺层出不穷,本文将就介绍陶瓷涂层的制备方法,制备工艺及其原理予以简要介绍。
关键词:陶瓷涂层;原理;工艺众所周知,陶瓷材料具有良好的耐腐蚀和耐磨损性能,可以较好的弥补金属材料在这一方面的缺点,但是陶瓷材料具有本征的脆性,韧性较差。
金属表面喷涂陶瓷涂层可以很好的解决这一问题,充分利用了陶瓷的抗腐蚀和抗磨损能力和金属的良好韧性。
一、热喷涂技术热喷涂技术是在1908年由瑞士的肖普(schoop)博士发明(首创)并用雾化装置进行喷涂试验的。
在1913年制作出世界首台丝材喷枪,并在其后逐渐完善和得到应用。
1920年,日本人去瑞士考察后,发明了以交流电为热源的电弧热喷涂装置,但因交流电不稳定,效率低,涂层质量差等原因,这种交流电弧热喷涂技术及装置未能得到实际的推广和应用。
后来德国改用直流电源后,电弧喷涂才有了真正的实用价值。
1938年,美国研制成功了电弧丝材喷枪,其后又研制出粉末氧-乙炔火焰喷枪。
1953年,当时的西德研制出自熔性合金粉,这是喷涂材料发展的一次重大突破(是粉末喷涂材料从单一金属向合金材料发展,从低熔点材料向高熔点材料发展,从低耐磨性向高耐磨性发展的里程碑)。
上世纪50年代后期,美国又相继研制出爆炸喷涂和等离子喷涂,满足了当时航空、导弹等尖端技术对涂层性能的需要。
上世纪60~70年代,是喷涂材料发展十分活跃的时期,美国、加拿大、瑞士、西德、比利时等国分别研制生产出系列的复合粉、多种自熔合金粉、陶瓷粉、金属陶瓷粉和自粘结复合粉等,这其中包括以Ni-AL为基础的放热型复合粉,这些材料的出现以及材料生产技术的不断完善,使得喷涂材料更加齐备和商品化,满足了当时,直到今天人们在这方面的需求。
我国的热喷涂技术及工程应用早在上世纪50年代初就开始了丝的电弧热喷涂(据资料报道,就在江浙一带的高压输电钢结构塔上喷涂Zn涂层防腐,至今仍在起着防腐蚀的作用)。
第一章 特种陶瓷粉体的物理性能及其制备
二、化学合成方法 1、固相法制备粉末 主要原理: 以固态物质为起始原料, 主要原理: 以固态物质为起始原料,通过原料间 发生固相反应制备所需物质、 发生固相反应制备所需物质、后经一定工序获得 粉末的方法。 粉末的方法。 热分解反应法
△ 2NH4Al( SO4 )2 12H2O →Al2O3 + 2NH3 + 4SO2 + 13H2O
FILTER
特点:高温可进行化学反应,纯度高, 特点:高温可进行化学反应,纯度高,可制备超微颗粒 (4)气流磨 ) 最广泛使用的粉碎方法 用于无须化学反应时 获得粉体颗粒尺寸范围 0.1~0.5m 粒度均匀
第二节
特种陶瓷粉体制备方法
特种陶瓷粉体的制备方法:物理制备方法和 特种陶瓷粉体的制备方法:物理制备方法和化 学合成法 一、物理制备方法简介 机械粉碎法(滚筒式球磨机、振 滚筒式球磨机、
动磨、行星式研磨机等 动磨、行星式研磨机等)
物理制备方法
气流粉碎法(气流磨) 气流粉碎法(气流磨) 物理气相沉积(PVD)法 物理气相沉积(PVD)
①②③直流等 ①②③直流等 离子发生器, 离子发生器, ④线圈 ⑤原料输入管 ⑥石英管 ⑦⑧工作气体 ⑦⑧工作气体 管路
(3)激光熔融法 ) 利用激光将固体熔融并且 打出固体表面, 打出固体表面,形成辉光 含粒子流、等离子等) (含粒子流、等离子等) 对辉光进行收集。 ,对辉光进行收集。
COLLECTOR
粉 末
粉
超细粉体 (0.1~1μm) 0.1~1μm) 纳米粉体 (< 0.1μm) 0.1μm)
二、 粉体的粒度与粒度分布 1、粉体颗粒 定义:在物质的本质结构不发生改变的情况下, 定义:在物质的本质结构不发生改变的情况下, 分散或细化而得到的固态基本颗粒。 分散或细化而得到的固态基本颗粒。 一次颗粒 二次颗粒
特种陶瓷制备工艺
特种陶瓷制备工艺采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制制造的方法进行制造、加工,具有优异特性的陶瓷称为特种陶瓷。
由于不同的化学组分和显微结构而决定其具有不同的性质和功能,如高强度、高硬度、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、铁电、光电、电光、声光、磁光、超导、生物相容性等。
由于绝缘特殊,这类陶瓷可运用于高温、机械、电子、宇航、医学工程等方面,成为近代尖端科技技术的重要组成部分。
特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成型、第三步是烧结。
一、陶瓷粉体的制备粉体的制备方法有:固相法、液相法、和气相法等。
1.固相法:化合反应法:化合反应一般具有以下的反应结构式:A(s)+B(s)→C(s)+D(g)两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。
钛酸钡粉末的合成就是典型的固相化合反应。
等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应:BaCO3+TiO2→BaTiO3+CO2↑该固相化学反应在空气中加热进行。
生成用于PTC制作的钛酸钡盐,放出二氧化碳。
但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。
热分解反应法:用硫酸铝铵在空气中进行热分解,就可以获得性能良好的Al2O3粉末。
氧化物还原法:特种陶瓷SiC、Si3N4的原料粉,在工业上多采用氧化物还原方法制备,或者还原碳化,或者还原氧化。
例如SiC粉末的制备,是将SiO2与粉末混合在1460~1600℃的加热条件下,逐步还原碳化。
其大致历程如下:SiO2+C→SiO+CO↑SiO+2C→SiC+CO↑SiO+C→Si+CO↑Si+C→SiC2.液相法:由液相法制备粉末的基本过程为:金属盐溶液→盐或氢氧化物→氧化物粉末所制得的氧化物粉末的特性取决于沉淀和热分解两个过程。
热分解过程中,分解温度固然是个重要因素,然而气氛的影响也很明显。
特种陶瓷工艺学——特种陶瓷工艺简介
Sunny smile
陶瓷课件
(2)溶胶-凝胶法 该法是80年代迅速发展起来的新型液相制 备法。此法是将醇盐溶解于有机熔剂中,通过 加入蒸馏水使醇盐水解、聚合.形成溶胶。溶 胶形成后随着水的加入转变为凝胶。凝胶在真 空状态下低温干燥得到疏松的干凝胶。
Sunny smile
陶瓷课件
再将干凝胶作高温煅烧处理,即可得到氧化 物。此法广泛用于莫来石、堇青石、氧化铝、 氧化锆等氧化物粉末的制备。由于胶体混合 时可使反应物质进行最直接的接触,以达到 最彻底的均匀化,所制得的原料相当均匀, 具有非常窄的颗粒分布,团聚性小。
Sunny smile
陶瓷课件
采用这种方法能制得颗粒直径在5~100nm范围 的微粉,这种方法适用于制备单一氧化物、复 合物氧化物、碳化物或金属的微粉。使金属在 惰性气体中蒸发-凝聚,通过调节气压,就能 控制生成金属颗粒的大小。
Sunny smile
陶瓷课件
(2)气相化学反应法 该法以金属、金属化合物等为原料,通过 热源、电子束、激光气化或诱导〃在气相中进 行化学反应,并控制产物的凝聚、生长,从而 合成超微粉末。这种方法生成物的纯度商,颗 粒分散性好,除适用于制备氧化物外,还适用 于制备液相法难于直接合成的氮化物、碳化。 物、硼化物等非氧化物。
Sunny smile
陶瓷课件
1.液相法 由液相法制备氧化物粉末的基本过程为:
盐溶液
添加沉淀剂 溶剂蒸发
盐或氢氧化物
热分解
粉末
所制得的氧化物粉末的特性取决于沉淀 和热分解两个过程。液相法的特点是:易 控制组成,能合成复合氧化物粉;添加微 量成分很方便,可获得良好的混合均匀性 等。但必须严格控制操作条件,才能使生 成的粉末保持所具有的在离子水平上的化 学均匀性。
特种陶瓷工艺学PPT课件
团粒质量较差,大小不一,体积密度小
② 加压造粒法
体积密度较大
③ 喷雾造粒法
质量好,产量大,可连续生产
④ 冻结造粒法
组成均匀,反应性与烧结性良好,主要用于实验
第8页/共43页
特种陶瓷 成型
喷雾造粒
第9页/共43页
特种陶瓷 成型
喷雾造粒
第10页/共43页
特种陶瓷 成型
悬浮问题
为了方便注浆成型,对塑性差、不利于悬浮的瘠性物料, 一般通过表面改性,通常通过在表面吸附活性物质来实现悬浮 的目的。
第19页/共43页
特种陶瓷 成型
注浆成型 空心注浆
注浆过程操作实例
第20页/共43页
实心注浆
特种陶瓷 成型
离心注浆
压力注浆
① 缩短吸浆时间 ② 减少坯体干燥时的收缩量 ③ 降低坯体脱模后的残留水分
第21页/共43页
特种陶瓷 成型
热压铸成型
主要是利用石蜡料浆加热融化后具有流动性和可塑性,冷却 后能在金属模中凝固成一定形状这一特点来完成的。和注浆成 型相比,要多了排蜡这一工序。
第30页/共43页
第31页/共43页
特种陶瓷 成型
模压具内部后,通过单向或双向加 压,将粉料压制成所需形状。 工艺要求:
注意加压速度和保压时间
干压成型特点工艺简单,操作方便,周期短,效率高,便于实行 自动化生产。此外,坯体密度大,尺寸精确,收缩小,机械强度高, 电性能好。但生产大型坯体时有困难,而且模具磨损大、加工复杂、 成本高,其次加压只能上下加压,压力分布不均,致密度不均,收缩 不均,会产生开裂、分层等现象。
体中某些成分发生还原作用 对制品性能的影响:
塑化剂挥发时会产生一定的气泡,可能 影响坯体性质。
第4次课特种陶瓷的烧结
1.4 特种陶瓷的烧结
1.4.2 特种陶瓷的烧结方法
2、低温烧结(p74) 低温烧结方法主要有以下几种:
1)引入添加剂;
① 使晶格空位增加,易于扩散; ② 使液相在较低的温度下生成,使晶体能粘性流动。
2)压力烧结(热压烧结); 3)使用易于烧结的粉料(如超细粉)
1.4 特种陶瓷的烧结
1.4 特种陶瓷的烧结
晶粒长大的几何情况: 晶界上有界面能作用,晶粒形成一个与肥皂泡沫相似
的三维阵列; 边界表面能相同,界面夹角呈1200夹角,晶粒呈正六边形;
实际表面能不同,晶界有一定曲率, 使晶界向曲率中心 移动。 晶界上杂质、气泡如果不与主晶相形成液相, 则阻碍晶界移动。
1.4 特种陶瓷的烧结
1.4.2 特种陶瓷的烧结方法
3、热压烧结 对于同一材料而言,压力烧结与常压烧结相比,烧
结温度低的多,烧结体中气孔率也低,所得的烧结体 致密。且较低的温度抑制了晶粒生长,具有较高的强 度。
① 一般热压法
② 高温等静压法
1.4 特种陶瓷的烧结
1.4.2 特种陶瓷的烧结方法
3、热压烧结 ① 一般热压法
1.4 特种陶瓷的烧结
如何改变材料性质:
1、 =f(G-12)
G 强度
断裂强度
晶粒尺寸
2、气孔 强度(应力集中点); 透明度(散射); 铁电性和磁性。
1.4 特种陶瓷的烧结
收缩
a
收缩
b
c
收缩
1.4 特种陶瓷的烧结
烧结:
陶瓷生坯在高温下的致密化过程和现象的总称;随着 温度的上升和时间的延长,固体颗粒相互键联,晶粒 长大,空隙(气孔)和晶界逐渐减少,通过物质的传 递,其总体积V 、气孔率 、强度 、致密度 ,成 为坚硬的具有某种显微结构的多晶烧结体的过程。
特种陶瓷的制备方法
特种陶瓷的制备方法
特种陶瓷是指具有特殊功能和性能的陶瓷材料,常用于高科技领域。
其制备方法主要包括以下几种:
1. 粉末冶金法:将陶瓷原料粉末混合后,在高温下通过压制和烧结等过程将其固化成块状材料。
常见的方法有热等静压、冷等静压、热等静压烧结等。
2. 溶胶-凝胶法:将陶瓷前驱体通过溶胶-凝胶过程进行制备。
首先将溶胶中的金属离子或无机化合物通过水解、缩聚或聚合等反应形成凝胶,然后通过热处理将凝胶转化为陶瓷材料。
3. 化学气相沉积法:通过将气体中的化学物质在高温下分解反应,使分解产物沉积在基底表面形成陶瓷薄膜。
常见的方法有化学气相沉积、热分解和物理气相沉积。
4. 电化学沉积法:在电化学工作电极上通过电化学反应将金属离子还原成金属沉积在基底上形成陶瓷薄膜。
通常包括电化学沉积、电化学离子共沉积等方法。
5. 激光烧结法:利用高能激光束对陶瓷粉末进行加热和烧结,使其瞬间熔融并结合成致密的陶瓷材料。
该方法具有快速、高效、精密的特点,适用于制备复杂形状和高精度的特种陶瓷。
以上是常见的特种陶瓷制备方法,不同方法适用于不同的特种陶瓷材料和要求。
在实际应用中,通常会根据具体需求选择合适的制备方法。
特种陶瓷制备工艺..
特种陶瓷制备工艺特种陶瓷是一种高性能材料,具有耐高温、耐腐蚀、耐磨损、高强度、低热膨胀系数等优异的物理和化学性能,广泛应用于航空、航天、电子、光电、化工等领域。
制备特种陶瓷的工艺技术十分重要,下面将介绍几种常见的特种陶瓷制备工艺。
超声波振实制备法超声波振实制备法是在陶瓷粉体和溶剂混合物中添加聚乙烯醇作为粘结剂,通过超声波振动使粘结剂均匀分散在混合物中,使得粘结剂在材料表面形成薄膜,随后通过干燥和烧结工艺制备成特种陶瓷。
优点:这种制备工艺可以制备出高密度、高维氧化硅、硼碳化物、氮化硼等特种陶瓷材料,且可以制备出具有复杂形状的特种陶瓷。
缺点:由于特种陶瓷材料的制备需要高能化的超声波作为加工手段,因此仪器设备的成本高昂,生产成本较高。
射流磨法射流磨法是在一定参数下将陶瓷釉料施加到陶瓷基材表面,通过高速喷射将釉料磨损成细小颗粒后与基材表面结合。
随后通过控制烧成工艺制备成特种陶瓷。
优点:与传统的制备工艺相比,射流磨法制备的特种陶瓷产量更高,成本更低。
缺点:射流磨法的精度受到喷嘴尺寸、流量的限制,对于纳米级粒子的制备有一定难度。
同时,射流磨法还具有环境污染的可能性。
凝胶注模制备法凝胶注模制备法是先将陶瓷粉体、溶剂和有机物混合物在低温下形成凝胶,随后将凝胶注入注模中,在高温下脱除有机物和水分,然后进行烧成工艺。
通过控制注模和烧成工艺可以制备出具有特定形状和维度的特种陶瓷。
优点:凝胶注模制备法不需要昂贵的仪器设备,可以制备出高密度的特种陶瓷材料。
缺点:在注模中可能会出现气孔等缺陷,影响制品质量。
溶胶凝胶法溶胶凝胶法是通过配制前驱体溶液,经过几步反应生成粉末,然后通过热流传递作用烧结成特种陶瓷。
溶胶凝胶法可以制备出大量形状复杂的特种陶瓷,同时可以控制陶瓷材料的物理性能,是目前比较流行的一种制备工艺。
优点:已经被广泛应用于特种陶瓷材料的制备过程中,制备出来的特种陶瓷质量高,表面平整度高。
缺点:由于制备过程需要进行多次反应和烧结工艺,生产成本相对较高。
特种陶瓷的成型方法
第三节 成型工艺
一、压力成型方法
所谓压力成型是用粉料,即以固体颗粒为原料在一定的 压力下进行成型的方法,也叫模压成型或干压成型。 为了减少摩擦和增加强度,粉料中可能含有少量液体、 粘结剂包裹在颗粒外面。粘结剂含量较低(一般为 7~ 8% )。
(一)干压成型
干压成型又称模压成型,是将粉料经过造粒、流动性好,颗粒级配 合适的粉料,装入模具内,通过压机的柱塞施以外加压力,使粉料压 成制一定形状的坯体的方法。 这是最常用的成型方法之一。由于粉末 颗粒之间,粉末与模冲、模壁之间的摩擦,使压制压力损失,造成压 坯密度分布的不均匀。单向压制时,密度沿高度方向降低。
条件下,快速充填到模具内,避免架桥和死角形成,对获得均匀坯体 尤为重要。 c.粘结剂和润滑剂:选择合适的润滑剂和粘结剂将有助于降低模壁与粉 体以及粉体之间的磨擦,从而使素坯密度保持均匀,也降低了模具的 磨损。 d.模具设计。很大程度上依赖于工程师们的经验,以及材料烧结收缩率, 选择合适的形状和公差,来保证成型工艺的质量和成品率。
第三节 成型工艺
(二) 挤压成型 挤压是利用液压机推动活塞,将已塑化的坯料从挤压
嘴挤出。由于挤压嘴的内型逐渐缩小,从而使活塞对泥团 产生很大的挤压力,使坯料致密并成型。
挤压被广泛用于生产砖、地砖、管子、棒以及具有等 截面的长形部件。截面形状非常复杂的部件也可采用挤压, 最具代表性的是大量用于汽车尾气排放的蜂窝陶瓷的生产, 目前国内制造陶瓷蜂窝体均采用此方法 。也可用于生产热 交换器的蜂窝结构。
(3)挤压法的优点: 污染小,操作易于自动化,可连续生产,效率高。
干式等静压制原理图
¾ 干压等静压成型的特点:
¾ 干式等静压更适合于生产形状简单的长形、壁薄、 管状制品。
第一章特种陶瓷粉体的物理性能及其制备
Ao =A / V, 单位 m2/m3 或m-1 。
2、粉体颗粒的吸附与凝聚
粉体所以区别于一般固体而呈独立物态,是因为:一方 面它是细化了的固体;另一方面,在接触点上与其它粒 子间有相互作用力存在。此外,颗粒之间也相互附着而 形成团聚体。 附着:一个颗粒依附于其它物体表面上的现象。 附着力(force of adhesion):存在于异种固体表面的引力。 凝聚:颗粒间在各种引力作用下的团聚。 凝聚力(agglomerative force) :存在于同种固体表面间的 引力。
积、可压缩性、流动性和工艺性能有重要影响。
特种陶瓷的制备,实际上是将特种陶瓷的粉体原
料经过成型、热处理,最终成为制品的过程。因 此,学习和掌握好特种陶瓷粉体的特性,并在此 基础上有目的地进行粉体制备和粉体性能调控、 处理,是获得优良特种陶瓷制品的重要前提。粉
体的制备方法一般可分为粉碎法和合成法两种。
3) 氧化还原法
非氧化物特种陶瓷的原料粉末多采用氧化物还原方法制备。 或者还原碳化,或者还原氮化。如SiC、Si3N4等粉末的制备。 SiC粉末的制备:将SiO2与碳粉混合,在1460~1600℃的加 热条件下,逐步还原碳化。其大致历程 如下: SiO2 + C → SiO+CO SiO + 2C → SiC+CO SiO + C → Si+CO Si + C → SiC Si3N4粉末的制备:在N2条件下,通过SiO2与C的还原-氮化。 反应温度在1600℃附近。其基本反应如下: 3SiO2+6C+2N2 → Si3N4 +6CO
2) 化合反应法
两种或两种以上的固体粉末,经混合后在一定的热力学条件 和气氛下反应而成为复合物粉末,有时也伴随气体逸出。化 合反应的基本形式: A(s)+B(s)→C(s)+D(g) 钛酸钡粉末、尖晶石粉末、莫来石粉末的合成都是化学反应 法: BaCO3+TiO2→BaTiO3+CO2 Al2O3+MgO→MgAlO4 3Al2O3+2SiO2→3Al2O3· 2SiO2
特种陶瓷制备工艺
特种陶瓷制备工艺
特种陶瓷制备工艺主要包括以下几个步骤:
1. 材料准备:选择适合特种陶瓷制备的原材料,如氧化铝、氮化硅、氧化锆等,并按照一定的比例混合和研磨,使其成为粉末状。
2. 成型:将粉末状材料通过成型工艺成型,常见的成型方法包括注塑成型、压制成型和挤出成型等。
3. 烧结:将成型后的陶瓷件进行烧结处理,使其在高温下发生化学反应,颗粒之间发生结合,形成致密的陶瓷体。
常见的烧结工艺包括等静压烧结、热等静压烧结和热压烧结等。
4. 加工:对于需要进行后续加工的特种陶瓷制品,还需要进行精加工和表面处理。
常见的加工工艺包括磨削、抛光、切割等。
5. 检测与品质控制:对特种陶瓷制品进行质量检测,包括外观检查、尺寸测量、力学性能测试和化学成分分析等,确保产品符合要求。
6. 涂装和烤漆(可选):根据产品的需要,进行涂装和烤漆处理,增加陶瓷制品的美观和耐用性。
特种陶瓷制备工艺主要包括材料准备、成型、烧结、加工、检测与品质控制以及涂装和烤漆等环节,不同的特种陶瓷材料和应用领域会有不同的制备工艺。
特种陶瓷的制备及应用
特种陶瓷的制备及应用特种陶瓷是指在一定条件下具有特殊功能和用途的陶瓷材料,具有高温、耐磨、耐腐蚀、导热性能优异的特点。
特种陶瓷的制备及应用在现代材料领域具有重要意义,广泛应用于航空航天、电子通讯、医疗器械、能源和环保等领域。
特种陶瓷的制备包括原料准备、成型、烧结和表面处理等工艺步骤。
首先是原料准备,通常是选择高纯度的氧化物粉末作为主要原料,根据需要添加其他成分。
然后是成型,成型工艺有多种方法,如注射成型、压制成型和模压成型等,以获得所需的形状和尺寸。
接下来是烧结,烧结是制备特种陶瓷的关键步骤,通过高温烧结将原料粉末结合成致密的块状陶瓷材料。
最后是表面处理,包括抛光、涂层和改性等工艺,以提高特种陶瓷的表面平整度和性能。
特种陶瓷的应用领域非常广泛。
在航空航天领域,特种陶瓷被广泛用于制造发动机零部件和导向系统,如涡轮叶片、燃烧室和航天器热保护系统等,因其具有优异的高温耐磨和耐腐蚀性能。
在电子通讯领域,特种陶瓷被用于制造电容器、电子陶瓷、热敏电阻和压敏电阻等元器件,因其具有优异的介电性能和导电性能。
在医疗器械领域,特种陶瓷被用于制造人工关节、牙科修复材料和医疗器械包装等,因其具有良好的生物相容性和耐磨性能。
在能源和环保领域,特种陶瓷被用于制造燃料电池、太阳能电池和环保过滤器等,因其具有良好的化学稳定性和能量转换效率。
特种陶瓷的制备及应用在提高材料性能和推动科技进步方面发挥着重要作用。
随着科学技术的不断发展,特种陶瓷的制备工艺和应用技术也在不断创新。
例如,利用纳米技术制备纳米陶瓷材料,可以显著提高陶瓷材料的机械性能和导热性能。
利用3D打印技术制造特种陶瓷制品,可以实现复杂形状和结构的定制化制造。
利用表面处理和改性技术提高特种陶瓷的表面硬度和耐磨性能,提高其在特定环境中的应用寿命。
总之,特种陶瓷作为现代材料领域的重要一员,具有独特的特性和广泛的应用前景。
通过不断创新制备工艺和应用技术,特种陶瓷在航空航天、电子通讯、医疗器械、能源和环保等领域的应用将会更加广泛,为推动科技进步和社会发展做出更大的贡献。
第节特种陶瓷粉体制备方法特种陶瓷粉体制备方法
第 节 第三节特种陶瓷粉体制备方法特种陶瓷粉体的制备方法:物理制备方法 物理制备方法和化 化 学合成法机械球磨法(滚筒式球磨机、振动磨、行星式研磨机等)物理制备方法气流粉碎法(气流磨) 物理气相沉积(PVD 物理气相沉积( PVD)法 )法第三节 特种陶瓷粉体制备方法 化学合成法:固相法 热分解法 热 固相反应 火花放电 溶出法 化学气相反应法CVD 气 相 法 气体中蒸发法PVD 化学气相凝聚法CVC 溅射法沉淀法 液 相 法 水热法 溶胶-凝胶法 喷雾法 蒸发溶剂热法第三节特种陶瓷粉体制备方法粉碎法 粉碎法——由粗颗粒来获得细粉的方法,通常采用 由粗颗粒来获得细粉的方法 通常采用 机械粉碎(机械制粉)。
现在已发展到采用气流粉碎 等。
但是无论哪种粉碎方式,都不易制得粒径在1 微米以下的微细颗粒。
机械混合制备多组分粉体工 艺简单 产量大 但得到的粉体组分分布不均匀 艺简单、产量大。
但得到的粉体组分分布不均匀, 特别是当某种组分很少的时候;而且这种方法常常 会给粉体引入杂质。
合成法——由原子、离子、分子通过反应、成核和 成长、收集、后处理来获得微细颗粒的方法(化学 制粉)。
特点 纯度高 粒度可控 均匀性好 颗粒微细 特点:纯度高、粒度可控,均匀性好,颗粒微细。
实 并且可以实现颗粒在分子级水平上的复合、均化。
合成法可得到性能优良的高纯、超细、组分均匀的 粉料,其粒径可达10nm以下,是一类很有前途的粉 体(尤其是多组分粉体)制备方法 但这类方法或需 体(尤其是多组分粉体)制备方法。
但这类方法或需 要较复杂的设备,或制备工艺要求严格,因而成本 也较高。
第三节 特种陶瓷粉体的制备一、特种陶瓷粉末的机械制备法以机械力使原材料变细的方法在陶瓷工业中应用也极为广 泛。
陶瓷原料进行破碎有利于提高成型坯体质量,提高致 密程度并有利于烧结过程中各种物理化学反应的顺利进行, 降低烧成温度。
主要介绍两种:球磨法和气流粉碎法第三节 特种陶瓷粉体的制备1、球磨法球磨法是十分常用的制取粉末的方法,但它也常常用来作为 球磨法是十分常用的制取粉末的方法 但它也常常用来作为 成型前的粉末准备工序。
特种陶瓷概述
特种陶瓷概述特种陶瓷概述特种陶瓷概述摘要本⽂主要叙述了国内特种陶瓷市场发展和⽣产现状,讲述了相关的制备⽅法和最新的相关技术前沿⼯艺,最后展望了特种陶瓷未来的发展趋势。
关键词特种陶瓷;市场现状;制备⼯艺;发展规模、⼋、,刖⾔特种陶瓷也称为先进陶瓷、新型陶瓷、⾼性能陶瓷等,突破了传统陶瓷以黏⼟为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与⾦属进⾏复合形成陶瓷⾦属复合材料,是⼀种采⽤现代材料⼯艺制备的,具有独特和优异性能的陶瓷材料。
已成为现代⾼性能复合材料的⼀个研究热点。
特种陶瓷于⼆⼗世纪发展起来,在近⼆、三⼗年内,新产品不断涌现,在现代⼯业技术,特别是在咼技术、新技术领域中的地位⽇趋重要。
许多科学家预⾔:特种陶瓷在⼆^⼀世纪的科学技术发展中,必将占据⼗分重要的地位。
特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,可作为⼯程结构材料和功能材料应⽤于机械、电⼦、化⼯、冶炼、能源、医学、激光、核反应、宇航等领域。
⼀些经济发达国家,特别是⽇本、美国和西欧国家,为了加速新技术⾰命,为新型产业的发展奠定物质基础,投⼊⼤量⼈⼒、物⼒和财⼒研究开发特种陶瓷,因此,特种陶瓷的发展⼗分迅速,在技术上也有很⼤突破。
1.发展现状1.1市场情况:与20年前相⽐,⽬前我国特陶⾏业结构变化巨⼤,私营企业、外资企业的数量和⽐重迅猛增加,特别是外资企业增长势头迅猛,约占我国全部特陶企业的10%左右。
当前在电⼦陶瓷⾏业中,股份制和三资企业市场竞争⼒最强。
我国特陶市场的开放和市场规模的潜⼒,吸引许多国外企业纷纷进⼊,投资不断增加,规模逐步扩⼤,其投资模式已从最初的产品输⼊(经销产品)到⽣产输⼊(投资设⼚),再到应⽤研究输⼊(设⽴实验室),对我国本⼟特陶企业带来巨⼤挑战。
1995年我国特种陶瓷产品销售额80亿元⼈民币(约合10亿美元),其中电⼦陶瓷约占70%约56亿元;结构陶瓷占30%约为24亿元。
绪论-特种陶瓷材料及工艺
的雷达天线罩、导弹鼻锥等部件。
其他领域应用案例
环保领域
特种陶瓷材料可用于环保领域,如制造高温烟气过滤器、催化剂载 体等,具有优异的耐高温、耐腐蚀和催化性能。
新能源领域
特种陶瓷材料在新能源领域中也有广泛应用,如用于太阳能电池板、 燃料电池中的电解质材料等。
高端装备制造
特种陶瓷材料还可应用于高端装备制造领域,如高精度轴承、超硬刀 具等,提高装备的耐磨性、精度和使用寿命。
感谢您的观看
THANKS
等静压成型
利用液体介质不可压缩的性质和均匀传递压力的特点,将 原料粉末装入橡胶或塑料等软模中,在各方向均匀加压, 得到密度均匀、形状复杂的坯体。
烧结过程控制及优化
根据原料的性质和特种陶瓷的性能要求,选择合适的 烧结温度和时间,以获得致密的显微结构和优异的性
能。
输入 气标氛控题制
在烧结过程中,通过控制气氛的组成和分压,可以实 现对陶瓷材料的氧化、还原、氮化等反应的控制,从 而得到具有特定性能的特种陶瓷。
化学稳定性及耐腐蚀性
耐酸碱腐蚀
特种陶瓷材料如氧化铝、氮化硅等,在 强酸、强碱环境下具有优异的耐腐蚀性。
耐化学腐蚀
特种陶瓷材料在多种化学介质中具有 很高的稳定性,不易发生化学反应。
抗氧化性
高温下,特种陶瓷材料能够抵抗氧化 气氛的侵蚀,保持稳定的化学性质。
生物相容性
部分特种陶瓷材料具有良好的生物相 容性,可用于医疗、生物工程等领域。
成型方法及设备简介
干压成型
将干燥的原料粉末放入模具中,通过压力机施加压力,使 粉末颗粒紧密结合形成所需形状的坯体。
热压铸成型
在加热加压的条件下,使原料粉末与有机添加剂混合后形 成的料浆注入金属模具中,冷却后得到所需形状的坯体。
2章特种陶瓷成型工艺.11.12
3)造粒的方法
A.一般造粒法:将坯料加入适当的塑化剂后,经 混合过筛,得到一定大小的团粒。
B.加压造粒法:将坯料加入塑化剂后,经预压成 块,然后破碎过筛而成团粒。
C.喷雾造粒法:把坯料与塑化剂混合好(一般用 水)形成料浆,再用喷雾器喷入造粒塔进行雾化、 干燥,出来的粒子即为较好的团粒。
D.冻结干燥法:将金属盐水溶液喷雾到低温有机 液体中,液体立即冻结,然后使冻结物在低温减 压条件下升华,脱水后进行热分解,可获得所需 的成型粉料。
MgO
CaO
SiO2
wt%
93
1.3
1.0
4.7
用原料氧化铝、滑石、碳酸钙、苏州高岭土配制,求出其质 量百分组成。
[解] 设:氧化铝、碳酸钙的纯度为100%;滑石为纯滑石 (3MgO • 4SiO263.5%, H2O 4.8%;苏州高岭土为纯高岭土(Al2O3•2SiO2 • 2H2O ),其理论组成为Al2O3 39.5%,SiO2 46.5%,H2O 14%。
➢ 制备蜡浆时,在粉料中加入少量的表面活性剂(一般为 0.4~0.8%,如蜂蜡等),可以减少石蜡的含量,改善成型性能 等。
➢ 料浆的性能指标如下: 1)稳定性 是指料浆在长时间加热而不搅拌的条件下,仍然保 持其均匀不分层的性能。通常用稳定性指标来表示:
u=V0/Vt
式中 u -------稳定性指标; V0-------被测试的料浆体积(cm3) Vt -------加热后分离出的蜡液体积(cm3)_
② 原料中如有水分则需烘干,否则要扣除水分。
例 1 : 配 方 为 (Ba0.85Ca0.15)TiO3 , 采 用 BaCO3 , CaCO3 ,TiO2原料进行配料,计算出各原料的质 量百分比。[见表2-1(P44)]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特种陶瓷材料的制备工艺10材料1班王俊红,学号:1000501134摘要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。
目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。
当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。
压力成形不能满足形状复杂性和密度均匀性的要求。
多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。
关键词:特种陶瓷;成形;烧结;陶瓷材料前言:陶瓷分为普通陶瓷和特种陶瓷两大类,特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。
它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。
特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。
因此研究特种陶瓷制备技术至关重要。
正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。
特种陶瓷制备工艺流程图一、陶瓷粉体的制备粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。
由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。
陶瓷材料本身具有硬、脆、难变形等特点。
因此,陶瓷材料的制备工艺显得更加重要。
由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。
因此界面和表面的大小起着至关重要的作用。
就是说,粉末的粒径是描述粉末品质的最重要的参数。
因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。
制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。
粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。
同时,机械球磨混合无法使组分分的影响。
粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。
传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。
其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。
然后在一定的温度下煅烧。
由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。
根据起始组分的形态和反应的不同,化学法可分为以下三种类型:1.固相法:化合反应法:化合反应一般具有以下的反应结构式:A(s)+B(s)→C(s)+D(g)两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。
钛酸钡粉末的合成就是典型的固相化合反应。
等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应:BaCO3+TiO2→BaTiO3+CO2↑该固相化学反应在空气中加热进行。
生成用于PTC制作的钛酸钡盐,放出二氧化碳。
但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。
热分解反应法:用硫酸铝铵在空气中进行热分解,就可以获得性能良好的Al2O3粉末。
氧化物还原法:特种陶瓷SiC、Si3N4的原料粉,在工业上多采用氧化物还原方法制备,或者还原碳化,或者还原氧化。
例如SiC粉末的制备,是将SiO2与粉末混合在1460~1600℃的加热条件下,逐步还原碳化。
其大致历程如下:SiO2+C→SiO+CO↑SiO+2C→SiC+CO↑SiO+C→Si+CO↑Si+C→SiC2.液相法:由液相法制备粉末的基本过程为:金属盐溶液→盐或氢氧化物→氧化物粉末所制得的氧化物粉末的特性取决于沉淀和热分解两个过程。
热分解过程中,分解温度固然是个重要因素,然而气氛的影响也很明显。
从溶液制备粉末的方法其特点是:易控制组成,能合成复合氧化物粉末;添加微量成分很方便,可获得良好的混合均匀性等。
但是,必须严格控制操作条件,才能使生成粉末保持溶液说具有的、在离子水平上的化学均匀性。
3.气相法:由气相生成微粉的方法有如下两种:一种是系统不发生化学反应的蒸发-凝聚法(PVD),另一种是气相化学反应法(CVD)蒸发-凝聚法是将原料加热至高温(用电弧或等离子流等加热),使之气化,接着在电弧焰和等离子焰与冷却环境造成的较大温度梯度条件下急冷,凝聚成微粒状物料的方法。
气相化学反应法是挥发性金属化合物的蒸发通过化学反应合成所需要物质的方法。
气相化学反应法可分为两类:一类为单一化合物的分解;另一类为两种以上化学物质之间的反应。
二、特种陶瓷的成型粉末成形是陶瓷材料或制品制备过程中的重要环节。
粉料成形技术的目的是为了使坯体内部结构均匀、致密,它是提高陶瓷产品可靠性的关键步骤。
成形过程就是将分散体系(粉料、塑性物料、浆料)转变为具有一定几何形状和强度的块体,也称素坯。
粉末的成形方法很多,如胶态成形工艺、固体无模成形工艺、陶瓷胶态注射成形等。
不同形态的物料应用不同的成形方法。
究竟选择哪一种成形方法取决于对制品各方面的要求和粉料的自身性质(如颗粒尺寸、分布、表面积)。
陶瓷材料的成形除将粉末压成一定形状外,还可以外加压力,使粉末颗粒之间相互作用,并减少孔隙度,使颗粒之间接触点产生残余应力(外加能量的储存)。
这种残余应力在烧结过程中,是固相扩散物质迁移致密化的驱动力。
没有经过冷成形压实的粉末,即使在很高的温度下烧结,也不会产生致密化的制品。
经烧结后即可得到致密无孔的陶瓷,可见成形在陶瓷烧结致密化中的重要作用。
坯体成形的方法种类很多,如:(1)热压铸成形热压铸成形也是注浆成形的一种,但不同之处在于它是在坯料中混入石蜡,利用石蜡的热流特性,使用金属模具在压力下进行成形,冷凝后获得坯体的方法。
热压铸成形的工作原理如下:先将定量石蜡熔化为蜡液再与烘干的陶瓷粉混合,凝固后制成蜡板,再将蜡板置于热压铸机筒内,加热熔化成浆料,通过吸铸口压入模腔,保压、去压、冷却成形,然后脱模取出坯体,热压铸形成的坯体在烧结之前须经排蜡处理。
该工艺适合形状复杂、精度要求高的中小型产品的生产,设备简单、操作方便、劳动强度小、生产效率高。
在特种陶瓷生产中经常被采用。
但该工艺工序比较复杂、耗能大、工期长,对于大而长的薄壁制品,由于其不易充满模具型腔而不太适宜。
(2)挤压成形将粉料、粘结剂、润滑剂等与水均匀混合,然后将塑性物料挤压出刚性模具即可得到管状、柱状、板状以及多孔柱状成形体。
其缺点主要是物料强度低容易变形,并可能产生表面凹坑和起泡、开裂以及内部裂纹等缺陷。
挤压成形用的物料以粘结剂和水做塑性载体,尤其需用粘土以提高物料相容性,故其广泛应用于传统耐火材料,如炉管以及一些电子材料的成形生产。
(3)流延成形流延成形是将粉料与塑化剂混合得到流动的粘稠浆料,然后将浆料均匀地涂到转动着的基带上,或用刀片均匀地刷到支撑面上,形成浆膜,干燥后得到一层薄膜,薄膜厚度一般为 0.01~1mm。
流延法用于铁电材料的浇注成形。
此外,它还被广泛用于多层陶瓷、电子电路基板、压电陶瓷等器件的生产中。
(4)凝胶注模成形凝胶注模成形是一种胶态成形工艺,它将传统陶瓷工艺和化学理论有机结合起来,将高分子化学单体聚合的方法灵活地引入到陶瓷的成形工艺中,通过将有机聚合物单体及陶瓷粉末颗粒分散在介质中制成低粘度,高固相体积分数的浓悬浮体,并加入引发剂和催化剂,然后将浓悬浮体(浆料)注入非多孔模具中,通过引发剂和催化剂的作用使有机物聚合物单体交联聚合成三维网状聚合物凝胶,并将陶瓷颗粒原位粘结而固化成坯体。
凝胶注模成形作为一种新型的胶态成形方法,可净尺寸成形形状复杂、强度高、微观结构均匀、密度高的坯体,烧结成瓷的部件较干压成形的陶瓷部件有更好的电性能。
目前已广泛应用于电子、光学、汽车等领域。
(5)气相成形利用气相反应生成纳米颗粒,如能使颗粒有效而且致密地沉积到模具表面,累积到一定厚度即成为制品,或者先使用其它方法制成一个具有开口气孔的坯体,再通过气相沉积工艺将气孔填充致密,用这种方法可以制造各种复合材料。
由于固相颗粒的生成与成形过程同时进行,因此可以避免一般超细粉料中的团聚问题。
在成形过程中不存在排除液相的问题,从而避免了湿法工艺带来的种种弊端。
(6)轧模成形将准备好的坯料伴以一定量的有机粘结剂置于两辊之间进行辊轧,然后将轧好的坯片经冲切工序制成所需的坯件。
轧辊成形时坯料只是在厚度和前进方向上受到碾压,宽度方向受力较小。
因此,坯料和粘结剂会出现定向排列。
干燥烧结时横向收缩大易出现变形和开裂,坯体性能会出现各向异性。
另外,对厚度小于 0.08mm 的超薄片,轧模成形是难以轧制的,质量也不易控制。
(7)注浆成形根据所需陶瓷的组成进行配料计算,选择适当的方法制备陶瓷粉体进行混合、塑化、造粒等,才能应用于成形。
注浆成形适用于制造大型的、形状复杂的、薄壁的陶瓷产品。
对料浆性能也有一定的要求,如:流动性好、粘度小,利于料浆充型,稳定性好。
料浆能长时间保持稳定,不易沉淀和分层,含水量和含气量尽可能小等。
注浆成形的方法有:空心注浆和实心注浆。
为提高注浆速度和坯体质量,可采用压力注浆、离心注浆和真空注浆等新方法。
注浆成形工艺成本低、过程简单、易于操作和控制,但成形形状粗糙,注浆时间较长、坯体密度、强度也不高。
在传统注浆成形的基础上,相继发展产生了新的压滤成形和离心注浆成形工艺,借助于外加压力和离心力的作用,来提高素坯的密度和强度,避免了注射成形中复杂的脱脂过程,但由于坯体均匀性差,因而不能满足制备高性能、高可靠性陶瓷材料的要求。
(8)注射成形陶瓷注射成形是借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成形的,成形之后再把高聚物脱除。
注射成形的优点是可成形形状复杂的部件,并且具有高尺寸精度和均匀的显微结构。
缺点是模具设计加工和有机物排除过程中的成本较高。
在克服传统注射成形缺点的基础上,水溶液注射成形和气相辅助注射成形工艺便发展起来。
水溶液注射成形采用水溶性的聚合物作为有机载体,较好地解决了脱脂问题。
水溶液注射成形技术可以很容易地实现自动控制,比起传统的注射成形成本低。
气体辅助注射成形是把气体引入聚合物熔体中而使成形更容易进行。
陶瓷胶态注射成形是将低粘度、高固相体积分数的水基陶瓷浓悬浮体注射到非孔模具中,并使之原位快速固化,再经烧结,制得显微结构均匀、无缺陷和净尺寸的高性能、高可靠性的陶瓷部件,并大大降低陶瓷制造成本。