厌氧氨氧化基础知识累积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、世界Anammox的工程应用概述
(2016.12.19生物工程学报)厌氧氨氧化(Anaerobic ammonium oxidation,ANAMMOX)工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。在过去的20年中,许多基于ANAMMOX反应的工艺得以不断研究和应用。综述了各种形式的ANAMMOX工艺,包括短程硝化-厌氧氨氧化、全程自养脱氮、限氧自养硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厌氧氨氧化-反硝化耦合、单级厌氧氨氧化短程硝化脱氮工艺。对一体式和分体式工艺运行条件进行了比较,结合ANAMMOX工艺工程(主要包括移动床生物膜,颗粒污泥和序批式反应器系统)应用现状,总结了工程化应用过程中遇到的问题及其解决对策,在此基础上对今后的研究和应用方向进行了展望。今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。
厌氧氨氧化(Anaerobicammonium oxidation,ANAMMOX) 工艺,最初由荷兰Delft工业大学于20 世纪末开始研究,并于本世纪初成功开发应用的一种新型废水生物脱氮工艺。它以20 世纪90 年代发现的ANAMMOX 反应(1) 为基础,该反应在厌氧条件下以氨为电子供体,亚硝酸盐为电子受体反应生成氮气,在理念和技术上大大突破了传统的生物脱氮工艺。ANAMMOX 工艺具有脱氮效率高、运行费用低、占地空间小等优点,在污水处理中发展潜力巨大。目前该工艺在处理市政污泥液领域已日趋成熟,位于荷兰鹿特丹Dokhaven 污水厂的世界上首个生产性规模的ANAMMOX 装置容积氮去除速率(NRR) 更是高达9.5 kg N/(m3·d)。此外,ANAMMOX 工艺在发酵工业废水、垃圾渗滤液、养殖废水等高氨氮废水处理领域的推广也逐步开展,在世界各地的工程化应用也呈星火燎原之势。
本文介绍了不同形式的ANAMMOX 工艺,通过比较其运行条件,并结合ANAMMOX 工艺工程应用现状,总结了该工艺工程化应用面临的问题和解决对策,在此基础上对今后的研究和应用方向进行了展望。
1、ANAMMOX 工艺及其衍生工艺
经过20多年的研究和发展,基于ANAMMOX 反应开发出来的较成熟的工艺有SHARON(Singlereactor for high activity ammonia removal over nitrite)-ANAMMOX 工艺、全程自养脱氮(Completely autotrophic nitrogen removal over nitrite,CANON) 工艺、限氧自养硝化反硝化(Oxygen limited autotrophicnitrification and denitrification, OLAND) 工艺、反硝化氨氧化(Denitrifyingammonium oxidation, DEAMOX) 工艺、好氧反氨化(Aerobic deammonification,,DEMON) 工艺。近年来,研究人员仍在不断探索其他形式的ANAMMOX 衍生工艺,譬如同步短程硝化、厌氧氨氧化、反硝化耦合(Simultaneouspartial nitrification,ANAMMOX and denitrification,SNAD) 工艺、单级厌氧氨氧化短程硝化脱氮(Single-stage nitrogen removal using ANAMMOX)目前,存在两种方法为ANAMMOX 提供电子受体亚硝酸盐,一种是在一个独立的曝气反应器中产生而随后进入ANAMMOX 反应器,另一种是在一个无O2或者微O2的ANAMMOX反应器中产生并立即参与ANAMMOX 反应。据此,可将ANAMMOX 工艺相应分为分体式(两级系统) 和一体式(单级系统) 两种,一体式包括CANON、OLAND、DEAMOX、DEMON、SNAP 、SNAD 等工艺,分体式主要是SHARON-ANAMMOX 工艺。一体式工艺的基建成本低、结构紧凑、装置运行和控制简单,并且其短程硝化产生的亚硝酸盐立即参与ANAMMOX 反应,能有效避免因亚硝酸盐累积造成的抑制,另外单位体积脱氮速率高也是一体化工艺的优势。但是一体化工艺启动时间长,反应器内微生物间的生态关系复杂,经受负荷冲击时易失稳,并引发连锁反应,导致“雪崩”效应,系统受扰紊乱后恢复时间也长。与一体式工艺相比,分体式工艺中的两反应器可单独进行灵活和稳定的调控,系统受扰后恢复时间短,ANAMMOX 反应器进水具有相对稳定的氨氮和亚硝氮比例。其次由于短程硝化阶段能削减某些毒物和有机物,避免其直接进入ANAMMOX 反应器,所以更适合处理含毒物和有机物的废水。另外,处理高负荷含氮废水时,分体式工艺的高投资成本会通过较低的运营成本得以补偿。因此,这两种工艺各有利弊,实际应用时需根据具体情况,做到“因水制宜,量水裁艺”。
2 、ANAMMOX 工艺的应用现状
在过去的10年里,ANAMMOX工程化应用逐渐兴起,正如图1所示,ANAMMOX工程化装置和研究文献呈逐年增长趋势。第一座工程化装置的诞生与ANAMMOX 的发现和发展有短暂的滞后,由此可见中试和实验室研究对工程化应用具有积极的推动作用。预计到2014年末,全球范围内的ANAMMOX 工程将会超过100 座。
为了更好地控制短程硝化反应,短程硝化-厌氧氨氧化(Partial nitritation-ANAMMOX,PN-ANAMMOX) 装置大多采用两级系统或利用已有的短程硝化系统(如SHARON 反应器)。但随着工程化经验越来越丰富,重点开始转向单级系统。目前,工程化的装置主要包括移动床生物膜反应器(Moving bedbiofilm reactor,MBBR)、颗粒污泥反应器和序批式反应器(Sequencingbatch reactor, SBR),还有少数生物转盘(Rotating biological contactors, RBC)和活性污泥系统。
DEMON 是最为风靡的SBR 系统,该工艺首先装配在奥地利Strass,采用自主设计的基于pH 调控的进水控制系统,用来处理污泥压滤液。利用水力旋流器可以分别调节适合氨氧化菌(Ammonia-oxidizing bacteria, AOB) 和ANAMMOX菌(Anaerobic ammonium oxidizing bacteria, AnAOB) 的泥龄(Sludge retention time,SRT),并且可从接种污泥中分离出生长缓慢的AnAOB。还能使小絮体中的亚硝酸氧化菌(Nitrite-oxidizingbacteria, NOB) 被洗出,使大聚集体中的AnAOB 得以持留。另一种SBR 技术是由瑞士联邦水生科学技术研究所开发的基于氨控制的PN-ANAMMOX 工艺。该工艺最早装配在瑞士Zürich[4,51],在每个运行周期的开始阶段或者曝气阶段进水,进水流量受氨传感器调控,因此SBR 运行周期长度不固定。氨信号也可由电导率信号替代,通过控制曝气量确保短程硝化和ANAMMOX同步进行,一般溶解氧(Dissolved oxygen, DO) 浓度控制在0.1 mg/L 以下,通常情况下建议采用连续曝气,启动阶段或者污泥活性较低时采用间歇曝气。此外,一些PN-ANAMMOX 设施采用其他调控策略,差异主要在于进水模式(间歇或连续)、污泥存在形式(悬浮或附着生长)、曝气控制方式。比如德国Ingolstadt 污水厂的SBR 采用间歇进水(6 h 周期内进水4 次) 和间歇曝气(6 min 曝气/9 min停止)。但在德国Gütersloh 污水厂的SBR 周期为24 h,白天连续进水,进水量取决于污泥压滤液的产生量。当氨浓